ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC GIÁO DỤC PHẠM THỊ THU HƯƠNG TỔ CHỨC HOẠT ĐỘNG THỰC HÀNH ỨNG DỤNG KIẾN THỨC TOÁN HỌC VÀO THỰC TIỄN TRONG DẠY HỌC HÌNH HỌC LỚP 6 LUẬN VĂN THẠC SĨ
Trang 1ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC GIÁO DỤC
PHẠM THỊ THU HƯƠNG
TỔ CHỨC HOẠT ĐỘNG THỰC HÀNH ỨNG DỤNG KIẾN THỨC TOÁN HỌC VÀO THỰC TIỄN
TRONG DẠY HỌC HÌNH HỌC LỚP 6
LUẬN VĂN THẠC SĨ SƯ PHẠM TOÁN HỌC
HÀ NỘI – 2023
Trang 2ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC GIÁO DỤC
PHẠM THỊ THU HƯƠNG
TỔ CHỨC HOẠT ĐỘNG THỰC HÀNH ỨNG DỤNG KIẾN THỨC TOÁN HỌC VÀO THỰC TIỄN
TRONG DẠY HỌC HÌNH HỌC LỚP 6
LUẬN VĂN THẠC SĨ SƯ PHẠM TOÁN HỌC CHUYÊN NGÀNH: LÝ LUẬN VÀ PHƯƠNG PHÁP DẠY HỌC BỘ
MÔN TOÁN HỌC Mã số: 8140209.01
Người hướng dẫn khoa học: PGS.TS Trịnh Thị Phương Thảo
HÀ NỘI – 2023
Trang 3Mặc dù đã rất cố gắng nhưng luận văn vẫn không tránh khỏi những thiếu sót, hạn chế, tôi rất mong nhận được sự góp ý chân thành của quý thầy cô và các bạn để luận văn được hoàn thiện hơn
Hà Nội, ngày 28 tháng 06 năm 2023
Học viên
Phạm Thị Thu Hương
Trang 4DANH MỤC TỪ VIẾT TẮT Viết tắt Viết đầy đủ
BG&ĐT Bộ Giáo dục và Đào tạo
Trang 53 Nhiệm vụ nghiên cứu: 2
4 Khách thể và đối tượng nghiên cứu 2
5 Giả thuyết khoa học 3
6 Phương pháp nghiên cứu 3
7 Những đóng góp của luận văn 3
8 Cấu trúc luận văn 4
CHƯƠNG 1: CƠ SỞ LÍ LUẬN VÀ THỰC TIỄN 5
1.1 Tổng quan tình hình nghiên cứu 5
1.1.1 Một số nghiên cứu trên thế giới 5
1.1.2 Một số nghiên cứu ở Việt Nam 7
1.2 Một số khái niệm sử dụng trong luận văn 11
1.2.1 Thực hành 11
1.2.2 Thực tiễn 12
1.2.3 Tình huống thực tiễn 13
1.2.4 Bối cảnh thực tiễn 14
1.2.5 Bài toán thực tiễn 14
1.2.6 Hoạt động thực hành ứng dụng kiến thức toán học vào thực tiễn 16
1.3 Thực hành ứng dụng các kiến thức Toán học vào thực tiễn trong dạy học toán 18
1.3.1 Mối liên hệ giữa Toán học và thực tiễn 18
1.3.2 Mục đích của việc tăng cường các hoạt động thực hành ứng dụng toán học vào thực tiễn 19
Trang 61.3.3 Các bước của quá trình thực hành ứng dụng Toán học vào thực tiễn 22
1.6.2 Phân tích nhiệm vụ thực tiễn trong chương trình Hình học lớp 6 34
1.7 Thực trạng về tổ chức HĐTH ứng dụng kiến thức Toán học vào thực tiễn trong dạy học hình học lớp 6 35
2.2 Yêu cầu của việc tổ chức hoạt động thực hành ứng dụng các kiến thức Toán học vào thực tiễn 44
2.3 Xây dựng một số kế hoạch bài dạy trong dạy học Hình học lớp 6 có khai thác các hoạt động thực hành ứng dụng kiến thức Toán học vào thực tiễn 44
2.3.1 Thiết kế bài dạy – Chủ đề 1: Làm tấm thiệp chúc mừng 45
2.3.2 Thiết kế bài dạy – Chủ đề 2 “Hình có trục đối xứng” 56
2.3.3 Thiết kế bài dạy – Chủ đề 3 “Chế tạo bập bênh” 65
Trang 72.4 Tổ chức HĐTH ứng dụng kiến thức toán học vào thực tiễn trong dạy học
Hình học lớp 6 74
2.4.1 Một số hình ảnh trong quá trình tổ chức 74
2.4.2 Một số lưu ý 76
KẾT LUẬN CHƯƠNG 2 77
CHƯƠNG 3:THỰC NGHIỆM SƯ PHẠM 78
3.1 Mục đích và yêu cầu của thực nghiệm sư phạm 78
3.1.1 Mục đích của thực nghiệm sư phạm 78
3.1.2 Yêu cầu của thực nghiệm sư phạm 78
3.2 Nội dung thực nghiệm sư phạm 78
3.3 Thời gian, đối tượng, địa bàn tổ chức thực nghiệm 79
3.3.1 Thời gian thực nghiệm sư phạm 79
3.3.2 Đối tượng tham gia thực nghiệm sư phạm 79
3.3.3.Tổ chức thực nghiệm 79
3.4 Những thuận lợi và khó khăn trong quá trình thực nghiệm 79
3.5 Xây dựng phương thức, đánh giá kết quả thực nghiệm sư phạm 80
3.5.1 Phương thức đánh giá định lượng 80
3.5.2 Phương thức và tiêu chí đánh giá mặt định tính 80
3.6 Đánh giá kết quả thực nghiệm sư phạm 80
3.6.1 Thực nghiệm 1: Khảo sát HS ở lớp TN và lớp ĐC thông qua bài kiểm tra một tiết môn Toán lớp 6 để đánh giá năng lực của HS sau khi tiến hành TN 80
3.6.2 Thực nghiệm 2: Khảo sát ý kiến GV và HS ở lớp TN thông qua phiếu khảo sát, phỏng vấn sau khi tiến hành TN 84
KẾT LUẬN CHƯƠNG 3 88
KẾT LUẬN VÀ KHUYẾN NGHỊ 89
TÀI LIỆU THAM KHẢO 91 PHỤ LỤC
Trang 8DANH MỤC BẢNG
Bảng 1.1 Bảng thống kê tỉ lệ tỉ lệ nhiệm vụ thực tiễn trong các sách giáo khoa
thông qua các bài tập phần Hình học lớp 6 34 Bảng 1.2 Thống kê đối tượng khảo sát 36 Bảng 3.1 Thống kê điểm kiểm tra của HS nhóm thực nghiệm và đối chứng
trước khi thực nghiệm sư phạm 81Bảng 3.2 Bảng phân bố tần số kết quả kiểm tra lần 1 của HS hai lớp 83 Bảng 3.3 Bảng so sánh các thông số về điểm của HS hai lớp 83 Bảng 3.4 Kết quả điều tra mức độ đánh giá hiệu quả của của HS lớp TN 6A5 85Bảng 3.5 Kết quả điều tra tính khả thi của kế hoạch bài dạy 87
Trang 9DANH MỤC HÌNH
Hình 1.1 Sơ đồ quá trình thực hành ứng dụng Toán học vào thực tiễn 22 Hình 1.2 Cách lát gạch theo hình vuông 24 Hình 1.3 Cách lát gạch theo hình thoi 25
Trang 10DANH MỤC BIỂU ĐỒ
Biểu đồ 1.1 Mức độ tăng cường đưa nội dung thực hành ứng dụng kiến thức
toán học vào thực tiễn trong dạy học hình học lớp 6 36 Biểu đồ 1.2 Mức độ tổ chức các hoạt động ứng dụng kiến thức toán học vào
thực tiễn và mức độ đưa các bài toán hay tình huống thực tiễn trong dạy học hình học 37 Biểu đồ 1.3 Mức độ HS tự nêu ra được các ứng dụng kiến thức toán học vừa
học vào thực tiễn 37 Biểu đồ 1.4 Đánh giá mức độ đưa các dạng câu hỏi có nội dung thực tiễn vào
trong bài kiểm tra 38 Biểu đồ 1.5 Mức độ đưa các dạng câu hỏi có nội dung thực tiễn vào trong bài
kiểm tra 38 Biểu đồ 1.6 Vấn đề khó khăn gặp phải trong quá trình tổ chức thực hành ứng
dụng kiến thức toán học vào thực tiễn trong dạy học hình học lớp 6 39Biểu đồ 1.7 Đánh giá sự gần gũi của toán học với cuộc sống 39 Biểu đồ 1.8 Mức độ ứng dụng những kiến thức của môn toán để giải quyết các
tình huống gặp phải trong cuộc sống 40 Biểu đồ 1.9 Đánh giá về mức độ hứng thú khi gặp phải các bài toán thực tiễn 40Biểu đồ 1.10 Mức độ mong muốn được thầy cô tăng cường tổ chức hoạt động
thực hành ứng dụng các kiến thức toán học vào thực tiễn 41Biểu đồ 1.11 Mức độ thường xuyên chủ động tìm hiểu các ứng dụng kiến thức
toán học trong thực tiễn cuộc sống 41 Biểu đồ 1.12 Vấn đề khó khăn trong việc giải những bài toán hình học có nội
dung thực tiễn 42Biểu đồ 1.13 Đánh giá mức độ giải bài toán hình học liên quan đến thực tiễn
trong bộ SGK mà các em đang học 42Biểu đồ 3.1 Biểu đồ so sánh kết quả bài kiểm tra môn Toán khi TNSP của hai
lớp 6A5 và 6A4 81
Trang 11MỞ ĐẦU 1 Lí do chọn đề tài
Trong thời đại hiện nay, sự tiến bộ của khoa học kĩ thuật càng ngày càng phát triển Với sự phát triển mạnh mẽ của khoa học và công nghệ đòi hỏi cần phải có đội ngũ lao động trình độ bậc cao Đó chính là nhiệm vụ trọng tâm của đội ngũ giáo dục đào tạo ra những con người có hiểu biết khoa học, có kĩ năng ứng dụng các thành tựu của toán học vào cuộc sống Vì vậy, việc dạy toán phải gắn với thực tiễn cuộc sống, đáp ứng được nhu cầu cuộc sống đặt ra, rèn cho các em có kĩ năng ứng dụng các kiến thức toán học vào thực tiễn hiệu quả nhất
Toán học thực chất là môn khoa học xuất phát từ thực tiễn và quay trở về phục vụ cho đời sống khoa học - kĩ thuật, đời sống xã hội và cho bản thân nó Toán học rất gần gũi với loài người và gắn liền với sự phát triển của loài người Đó là môn học có ứng dụng rộng rãi trong thực tiễn, những bài toán đặt ra đều xuất phát từ nhu cầu thực tiễn Thông qua Toán học con người có thể giải quyết hoặc sáng tạo và sản xuất ra cơ sở vật chất cho xã hội để phục vụ cuộc sống
Trong chương trình giáo dục phổ thông môn Toán (Ban hành kèm theo Thông tư số 32/2018/TT-BGD&ĐT ngày 26 tháng 12 năm 2018 của Bộ trưởng Bộ Giáo dục và Đào tạo) có đưa ra mục tiêu cho cấp trung học cơ sở nhằm giúp học sinh (HS) đạt các mục tiêu chủ yếu sau: “Góp phần hình thành và phát triển năng lực toán học với yêu cầu cần đạt: nêu và trả lời được câu hỏi khi lập luận, giải quyết vấn đề, thực hiện được việc lập luận hợp lí khi giải quyết vấn đề, chứng minh được mệnh đề toán học không quá phức tạp; sử dụng được các mô hình toán học (công thức toán học, phương trình đại số, hình biểu diễn, ) để mô tả tình huống xuất hiện trong một số bài toán thực tiễn không quá phức tạp ” hoặc “ Nội dung Hình học và Đo lường ở cấp học này bao gồm Hình học trực quan và Hình học phẳng Hình học trực quan tiếp tục cung cấp ngôn ngữ, kí hiệu, mô tả (ở mức độ trực quan) những đối tượng của thực tiễn (hình phẳng, hình khối); tạo lập một số mô hình hình học thông dụng; tính toán một số yếu
Trang 12tố hình học;…” Hoặc trong chương trình giáo dục phổ thông môn Toán cũng nhận định: “Môn Toán giúp HS có cái nhìn tương đối tổng quát về Toán học, hiểu được vai trò và những ứng dụng của Toán học trong thực tiễn, ” Chương trình giáo dục phổ thông môn Toán rất coi trọng hoạt động thực hành ứng dụng các kiến thức Toán học vào thực tiễn vì hoạt động này giúp HS hiểu được tầm quan trọng của Toán học với đời sống hàng ngày
Tuy chương trình có được thay đổi song việc được thực hành ứng dụng Toán học vào thực tiễn vẫn còn ít, HS chưa được tổ chức các hoạt động để vận dụng Toán học thường xuyên Nhiều trường còn thiếu thốn về cơ sở vật chất nên chưa có điều kiện cho HS thực hành, giáo viên (GV) muốn thực hiện nhưng còn khó khăn về trang thiết bị, đồ dùng
Vì những lý do trên tôi lựa chọn đề tài: “Tổ chức hoạt động thực hành
ứng dụng kiến thức toán học vào thực tiễn trong dạy học Hình học lớp 6”
2 Mục đích nghiên cứu:
Thiết kế và tổ chức hoạt động thực hành ứng dụng kiến thức toán học vào thực tiễn trong dạy học Hình học lớp 6 nhằm nâng cao chất lượng học tập môn toán của HS lớp 6
3 Nhiệm vụ nghiên cứu:
- Nghiên cứu lý luận về hoạt động thực hành trong dạy học - Nghiên cứu về ứng dụng các kiến thức toán học vào thực tiễn - Tìm hiểu về các bài toán có ứng dụng vào thực tiễn trong dạy học Hình học lớp 6
- Thiết kế và tổ chức hoạt động thực hành ứng dụng kiến thức toán học vào thực tiễn trong dạy học Hình học 6
- Tổ chức thực nghiệm sư phạm đánh giá tính cần thiết, khả thi của các hoạt động thực hành ứng dụng kiến thức toán học vào thực tiễn đã xây dựng
4 Khách thể và đối tượng nghiên cứu
4.1 Khách thể nghiên cứu
Quá trình dạy học môn Hình học lớp 6 trung học cơ sở
Trang 134.2 Đối tượng nghiên cứu
Việc thực hành ứng dụng kiến thức toán học vào thực tiễn trong dạy Hình
học lớp 6 trung học cơ sở 5 Giả thuyết khoa học
Nếu xây dựng các hoạt động thực hành ứng dụng toán học vào thực tiễn
trong dạy học Hình học lớp 6 thì sẽ góp phần phần tích cực hóa hoạt động học
tập của HS, góp phần nâng cao chất lượng học tập môn toán 6
6 Phương pháp nghiên cứu
6.1 Nghiên cứu lí luận
- Nghiên cứu về chương trình giáo dục phổ thông mới - Sưu tầm và nghiên cứu các công trình khoa học đã được công bố có liên quan đến hoạt động thực hành ứng dụng toán học vào thực tiễn trong dạy học Hình học lớp 6
- Nghiên cứu nội dung, chương trình, sách giáo khoa, phân phối chương trình toán lớp 6 – trung học cơ sở
6.2 Nghiên cứu thực tiễn
- Quan sát, khảo sát thực trạng của hoạt động thực hành ứng dụng toán học vào thực tiễn hiện nay về cả hai phía GV và HS
- Thăm dò về sự hứng thú của HS khi GV tổ chức hoạt động thực hành
ứng dụng toán học vào thực tiễn
6.3 Thực nghiệm sư phạm
Tổ chức thực nghiệm sư phạm để xem xét tính khả thi và hiệu quả của việc sử dụng các hoạt động thực hành và ứng dụng toán học vào thực tiễn để nâng cao hiệu quả và hứng thú của HS trong hoạt động dạy học Hình học 6 như đã đề xuất
7 Những đóng góp của luận văn
- Làm rõ hệ thống hóa lý luận về ứng dụng toán học ở trường trung học cơ sở
Trang 14- Chỉ ra được sự cần thiết của việc thực hành và ứng dụng toán học vào thực tiễn giúp phát triển các năng lực, phẩm chất cho HS
- Thiết kế một số hoạt động thực hành và ứng dụng toán học vào thực tiễn trong dạy Hình học 6
- Đánh giá tính khả thi của việc tổ chức các hoạt động thực hành và ứng dụng toán học vào thực tiễn trong dạy Hình học lớp 6
8 Cấu trúc luận văn
Ngoài các phần mở đầu, kết luận, tài liệu tham khảo và phụ lục, luận văn gồm ba chương
Chương 1 Cơ sở lí luận và thực tiễn Chương 2 Tổ chức hoạt động thực hành ứng dụng kiến thức toán học vào thực tiễn trong dạy học Hình học 6
Chương 3 Thực nghiệm sư phạm
Trang 15CHƯƠNG 1: CƠ SỞ LÍ LUẬN VÀ THỰC TIỄN 1.1 Tổng quan tình hình nghiên cứu
1.1.1 Một số nghiên cứu trên thế giới
Vấn đề ứng dụng kiến thức toán học vào thực tiễn trong dạy học được rất nhiều các nhà nghiên cứu khoa học trên thế giới quan tâm Các hoạt động này được thực hiện từ cấp học thấp nhất bậc tiểu học lên đến cấp học trung học phổ thông
Javier Diez-Palomar (2006) cho rằng toán học thường khó gắn với cuộc sống hàng ngày của HS Với lứa tuổi của HS, các em thường nghĩ về ứng dụng của toán học trong môi trường bên ngoài lớp học, chủ yếu là về các con số hoặc hình toán Nghiên cứu cho thấy kết quả học tập được cải thiện khi GV tích hợp lịch sử trí tuệ với các kỹ năng nền tảng của HS HS thường cảm thấy toán học là môn học ít gắn kết với cuộc sống hàng ngày, vì vậy GV cần cố gắng hết sức để gắn kiến thức giảng dạy với thực tiễn cuộc sống [20]
Stoehr Kathleen Jablon (2015) đã có một nghiên cứu cung cấp một cái
nhìn sơ lược về “Hiểu biết và thực hành của một GV về liên hệ giữa toán học và thế giới thực” Tác giả nhấn mạnh tầm quan trọng của việc các nhà giáo dục chia
sẻ kinh nghiệm cá nhân của họ với HS như một phương tiện để thiết lập mối liên hệ và khơi gợi trải nghiệm của chính HS Hơn nữa, tác giả nhấn mạnh rằng việc giảng dạy thông qua các thực hành quen thuộc không chỉ quan trọng về mặt hiểu biết của HS mà còn tạo cho họ sự tự tin để giải quyết các vấn đề một cách hiệu quả [23]
Trong Hội nghị giáo dục Toán học châu Âu lần thứ IX tại Prague, Cộng hòa Séc (2015), Batanero Carmen đã có một báo cáo trong phiên toàn thể, với tiêu đề “Hiểu về tính ngẫu nhiên: Những thách thức trong nghiên cứu và giảng dạy” (Understanding randomness: Challenges for research and teaching) Theo tác giả, khái niệm về tính ngẫu nhiên đã được khám phá từ các góc độ triết học, tâm lý học, toán học và sư phạm Các nhà nghiên cứu từ châu Âu đã
Trang 16giải quyết từng quan điểm này, trong khi việc giảng dạy xác suất cho HS nhỏ tuổi ngày càng trở nên phổ biến trên toàn quốc Mặc dù ý tưởng này có vẻ trừu tượng đối với HS tiểu học, nhưng điều quan trọng là phải giới thiệu nó với HS ở mọi lứa tuổi Ghi nhớ điều này, tác giả đi sâu vào các cách giải thích khác nhau về tính ngẫu nhiên và đưa ra các gợi ý cho hướng dẫn trong tương lai về chủ đề này [19]
Mesture Kayhan Altay, Betül Yalvaç, Emel Yeltekin (2017) nghiên cứu về “Kỹ năng giúp HS liên hệ toán học với thực tiễn cuộc sống” cho thấy ý nghĩa của các khái niệm toán học và ứng dụng thực tiễn của chúng cần được nhấn mạnh và thảo luận, thay vì chỉ tập trung vào các phép tính, hình và con số [22]
Yarhands Dissou Arthur (2018), trong công trình “Kết nối Toán học với các vấn đề thực tiễn trong cuộc sống” (Connecting Mathematics to Real Life
Problems) đã khuyến nghị rằng: GV nên tạo điều kiện thuận lợi cho việc chuyển giao các kỹ năng nhận thức từ toán học sang các tình huống trong thế giới thực và cuộc sống hàng ngày, cũng như các môn học khác Cách tiếp cận này sẽ giúp HS hiểu được tính thực tiễn của kiến thức họ đang tiếp thu và sự liên quan của nó với cuộc sống của họ Nghiên cứu tiếp tục gợi ý rằng những người hướng dẫn toán học nên nhấn mạnh các chiến thuật giải quyết vấn đề để tạo ra sự tham gia của HS vào toán học và thúc đẩy sự hiểu biết về tầm quan trọng của nó [24]
Putri Yuanita, Effandi Zakaria (2018) đã nghiên cứu để trả lời các câu hỏi sau: (i) Việc sử dụng phương pháp giáo dục toán học thực có ảnh hưởng đáng kể nào đến niềm tin toán học, biểu diễn toán và giải quyết vấn đề hay không? (ii) Biểu diễn toán có phải là một trung gian đáng kể giữa niềm tin toán học và việc giải quyết vấn đề hay không? Nghiên cứu này đã xác định hiệu quả của phương pháp giáo dục toán học thực trong niềm tin toán học, biểu diễn và giải quyết vấn đề: Biểu diễn toán như một trung gian giữa niềm tin toán học và giải quyết vấn đề [25]
Trang 17Marja Van den Heuvel-Panhuizen and Paul Drijvers đã đưa ra “một số nguyên tắc giảng dạy cốt lõi của giáo dục toán học thực” bao gồm:
- Nguyên tắc hoạt động: Học sinh được coi như những người tham gia hoạt động tích cực vào quá trình học tập
- Nguyên tắc thực tế: Giải quyết các vấn đề “có thực trong cuộc sống” như là cái đích của giáo dục toán học Dạy học toán học nên bắt đầu từ vấn đề thực tiễn trong cuộc sống của HS, từ đó gợi mở cho các em cách thức ứng dụng toán học vào để giải quyết các tình huống thực tiễn đó
- Nguyên tắc cấp độ: Trong học toán học sinh vượt qua nhiều cấp độ hiểu biết khác nhau, từ các hiểu biết cơ bản đến cái nhìn sâu sắc về các khái niệm và chiến lược giải quyết vấn đề
- Nguyên tắc đan xen: Các mảng nội dung toán học như số học, hình học, đo lường và xử lý dữ liệu không nên giảng dạy riêng biệt mà cần được tích hợp với nhau
- Nguyên tắc tương tác: Giáo dục toán học thực không chỉ là hoạt động của từng cá nhân mà còn là một hoạt động xã hội
- Nguyên tắc hướng dẫn: Những tri thức được dạy trong nhà trường phải được “tái tạo có hướng dẫn” [21]
Quá trình học tập ưu tiên tích hợp các tình huống thực tiễn, vì chúng đóng vai trò là nền tảng để phát triển các khái niệm và vấn đề toán học Những kịch bản này cũng cung cấp bối cảnh mà HS sau này có thể áp dụng chuyên môn toán học của mình để giải quyết các vấn đề
1.1.2 Một số nghiên cứu ở Việt Nam
Tại nước ta, vấn đề ứng dụng kiến thức toán học vào thực tiễn trong dạy học càng được quan tâm nhiều hơn nữa Thể hiện chính trong chương trình phổ thông 2018 là môn toán được dành cho mọi đối tượng
Luận văn Thạc sĩ của Nguyễn Thị Diễm Thúy (2012) nghiên cứu về “Bồi dưỡng năng lực vận dụng kiến thức toán học vào thực tiễn cho HS trong dạy
Trang 18học đại số và giải tích ở trường THPT” đã cho rằng quan điểm của các nhà
khoa học về chủ đề bồi dưỡng năng lực vận dụng kiến thức toán học vào các tình huống thực tiễn cho HS học toán nói chung, đặc biệt là đại số và giải tích trung học phổ thông đã được hệ thống hóa Thực trạng dạy và học đại số và giải tích ở trường phổ thông đã được đánh giá dựa trên trọng tâm nghiên cứu của đề tài Với việc xây dựng bài học dưới dạng các chủ đề trong toán học có thể phát huy năng lực vận dụng toán học vào thực tiễn, tác giả đã xây dựng một số biện pháp nhằm nâng cao việc bồi dưỡng kỹ năng này cho HS trong dạy học đại số và giải tích Thực nghiệm sư phạm đã được tiến hành để xác định tính khả thi của việc phát triển năng lực của HS trong việc áp dụng kiến thức toán học trong bối cảnh thực tiễn [13]
Với nghiên cứu của Bùi Thị Lan Phương (2013) về “Phát triển năng lực vận dụng toán học vào thực tiễn (theo Pisa) cho HS trong học môn toán 10 THPT” cung cấp cho chúng ta cái nhìn tổng quan về Pisa, đi sâu vào định nghĩa
về năng lực vận dụng các khái niệm toán học vào thực tiễn trong Pisa Nó cũng khám phá các phương pháp đánh giá khả năng này và cách thức kiểm tra, đánh giá giáo dục toán học ở Việt Nam Hơn nữa, nó bao gồm việc phân tích hiện trạng thực tiễn giảng dạy ở Việt Nam, với trọng tâm là làm thế nào để nâng cao khả năng áp dụng các khái niệm toán học trong môi trường thực tiễn Nghiên cứu đề xuất các nguyên tắc, biện pháp tăng cường khả năng này và tiến hành thực nghiệm sư phạm để chứng minh tính khả thi và hiệu quả của các biện pháp này [8]
Hứa Anh Tuấn (2014) đã đưa ra luận văn nghiên cứu về “Phát triển năng lực vận dụng kiến thức hình học vào thực tiễn cho HS THPT” Tác giả muốn
làm sáng tỏ cơ sở lý luận về việc trang bị cho HS THCS kỹ năng vận dụng kiến thức đã học vào các tình huống thực tiễn, trong bối cảnh giáo dục Toán học Trọng tâm là khảo sát thực trạng dạy và học môn Hình học lớp 9, với mục tiêu cuối cùng là đề xuất các biện pháp khai thác kiến thức này theo hướng phát
Trang 19triển năng lực vận dụng Toán học vào cuộc sống hàng ngày của HS Những biện pháp này được kỳ vọng sẽ tiếp thêm sinh lực cho phương pháp giảng dạy và nâng cao chất lượng giáo dục môn Toán ở các trường trung học Các thí nghiệm sư phạm đã được tiến hành để rút ra kết luận sơ bộ về hiệu quả của các biện pháp này [16]
Luận án tiến sĩ Đỗ Thị Thanh (2015) nghiên cứu về “Xác định và luyện tập một số dạng hoạt động nhận thức cho HS trong dạy học Hình học ở trường THPT” đã nêu được xác định các hoạt động nhận thức đa dạng của HS THPT
trong giờ học hình học Quy trình đề xuất bao gồm dạy học khái niệm, định lý, quy tắc giải bài tập nhằm phát triển năng lực nhận thức ở HS Luận án cố gắng giải quyết ba câu hỏi chính: Những loại hoạt động nhận thức nào cần được khuyến khích trong dạy học hình học ở trường phổ thông? Có thể tổ chức cho HS thực hành các hoạt động này như thế nào để đạt được hiệu quả cao? Cuối cùng, việc áp dụng các phương pháp tổ chức HS gợi ý có đáp ứng các tiêu chuẩn đổi mới giáo dục toán học hiện nay hay không [10]?
Vũ Hữu Tuyên (2016) có công trình nghiên cứu về “Thiết kế bài toán hình học gắn với thực tiễn trong dạy học hình học ở trường trung học phổ thông” để đưa ra những kiến nghị cho GV Toán trong việc xây dựng các bài
toán hình học thiết thực, vận dụng được trong quá trình dạy học hình học nhằm nâng cao chất lượng dạy học hình học ở trường phổ thông Các câu hỏi nghiên cứu như sau: Cơ sở lý luận của việc xây dựng và sử dụng các bài toán hình học thực tiễn trong dạy học hình học ở trường phổ thông là gì? Thực trạng của việc thiết kế và triển khai các bài toán hình học thực tiễn trong dạy học hình học ở trường phổ thông hiện nay diễn ra như thế nào? Các bước có thể được thực hiện để tạo ra các bài toán hình học thực tiễn có thể được sử dụng trong giáo dục hình học ở trường trung học là gì? Các chiến lược đề xuất để thiết kế và thực hiện các bài toán hình học thực tiễn trong giáo dục hình học ở trường phổ thông có khả thi và hiệu quả không [17]?
Trang 20Hoàng Thị Thanh (2019) khi nghiên cứu về “ Phát triển năng lực giải quyết vấn đề và sáng tạo cho HS trung học cơ sở miền núi phía Bắc thông qua các bài toán hình học có nội dung gắn với thực tiễn” đã chỉ ra rằng một trong
những mục tiêu chính của giáo dục phổ thông là trau dồi kỹ năng giải quyết vấn đề và tính sáng tạo của HS Mặc dù vậy, HS trung học cơ sở ở một số cộng đồng miền núi vẫn đang gặp khó khăn trong việc phát triển những năng lực quan trọng này Trong bài viết này, chúng tôi xem xét các kết quả nghiên cứu về năng lực sáng tạo và giải quyết vấn đề trong môn Toán và đề xuất một số giải pháp nhằm nâng cao năng lực này ở HS trung học phổ thông miền núi Cụ thể, chúng tôi khuyên HS nên tham gia vào các bài toán hình học có ứng dụng thực tiễn để phát huy kỹ năng giải quyết vấn đề và tư duy sáng tạo của các em [11]
Trong nghiên cứu của Nguyễn Thị Quỳnh (2019) về “Phát triển năng lực vận dụng toán học vào thực tiễn cho HS THCS trong dạy học hình học 9”
đã đề xuất các biện pháp có thể thực hiện để sử dụng kiến thức được truyền đạt trong dạy học Hình học 9 nhằm nâng cao khả năng vận dụng các khái niệm toán học vào các tình huống thực tiễn của HS THCS Điều này sẽ góp phần đổi mới phương pháp dạy học và nâng cao chất lượng chương trình môn Toán ở trường THCS Để thực hiện được điều này, cần nghiên cứu xây dựng cơ sở lý luận về phát triển năng lực vận dụng kiến thức toán học vào thực tiễn cho HS trong quá trình dạy học Toán ở trường THCS Ngoài ra, cần xem xét thực trạng dạy và học Hình học lớp 9 trong nội dung nghiên cứu của đề tài Cần đề xuất các biện pháp sư phạm nhằm tăng cường vận dụng kiến thức toán học vào tình huống thực tiễn cho HS trung học cơ sở trong quá trình dạy học Hình học lớp 9 Cuối cùng, cần tiến hành thực nghiệm sư phạm để có những kết luận bước đầu về hiệu quả của các biện pháp sư phạm đã đề xuất [9]
Hoàng Thị Thanh, Nguyễn Thị Hương Lan (2021) cho thấy rõ cách xây
dựng bài toán gắn với thực tiễn tại miền núi trong nghiên cứu “Thiết kế bài toán hình học trung học cơ sở gắn với thực tiễn miền núi” Năm 2018, Chương trình
giáo dục phổ thông môn Toán nhấn mạnh tầm quan trọng của việc nâng cao
Trang 21khả năng vận dụng và thực hiện các khái niệm toán học trong thực tiễn Yêu cầu này được vạch ra cho từng cấp lớp trong chương trình, đòi hỏi GV phải tham gia nghiên cứu và thiết kế để kết hợp các vấn đề và nội dung liên quan đến thực tiễn địa phương vào hướng dẫn của họ Bài viết dưới đây nghiên cứu nội dung, quy cách chương trình Hình học THCS cũng như những lý thuyết liên quan về bài toán hình học Bên cạnh đó, đề xuất các biện pháp thiết kế các bài toán hình học THCS gắn trực tiếp với thực tiễn đặc thù của miền núi, góp phần thực hiện mục tiêu cuối cùng là giáo dục thành công môn Toán ở cấp THCS [12]
Nguyễn Danh Nam, Trịnh Ngọc Liên (2021) trong nghiên cứu “Tổ chức hoạt động trải nghiệm cho HS trong dạy học Hình học Lớp 6 ở trường Trung học Cơ sở” đã chỉ ra sự thay đổi dạy học trải nghiệm khác với cách dạy học truyền thống chỉ thiên về dạy học lý thuyết Bài viết trình bày các quan điểm
khác nhau về giáo dục trải nghiệm và ý nghĩa của nó trong chương trình giáo dục phổ thông Người viết đánh giá thực trạng hoạt động trải nghiệm trong dạy học môn Toán cho HS lớp 6 ở trường trung học cơ sở, đồng thời xem xét các yếu tố cơ bản dẫn đến tình trạng này Tác giả đề xuất một quy trình dạy học trải nghiệm dựa trên mô hình của David Kolb Tác giả đã tận dụng các phương pháp nghiên cứu thực tiễn và phương pháp chuyên gia Bài báo giới thiệu hai hoạt động trải nghiệm và cách tổ chức của chúng trong lớp học Kết quả nghiên cứu thực nghiệm cho thấy hoạt động trải nghiệm là hiệu quả, phù hợp, góp phần tiến bộ về kỹ thuật dạy học, bồi dưỡng năng lực nhận thức, phát huy kỹ năng giải quyết vấn đề ở HS [5]
1.2 Một số khái niệm sử dụng trong luận văn
1.2.1 Thực hành
Thực hành là “làm để áp dụng lý thuyết vào thực tiễn” “Thực hành là việc vận dụng những kiến thức lý luận được học vào một ngữ cảnh khác, hoặc vận dụng để thực hiện nhiệm vụ nào đó của thực tiễn” [1]
Trang 22Theo quan điểm của chúng tôi, thực hành trong hoạt động dạy học là việc học sinh dùng những kiến thức đã được học để vận dụng vào giải quyết các nhiệm vụ thực tiễn mà giáo viên đặt ra Các nhiệm vụ thực tiễn chính là nội dung các bài toán thực tiễn có trong sách giáo khoa hoặc giáo viên đặt ra bài toán và yêu cầu HS giải quyết
Việc áp dụng dạy học thực hành sẽ tạo ra trí tò mò khoa học của HS Dạy học thực hành không chỉ giúp HS hiểu, vận dụng được kiến thức, kỹ năng mà còn giúp rèn luyện cho HS ý thức quản lý, tác phong làm việc Ngoài ra, HS có khả năng quan sát, tự phân tích, đánh giá và đúc kết kinh nghiệm cho phần thực hành của chính bản thân [1]
- Các đặc điểm cơ bản của hoạt động thực hành + Luyện tập, thực hành để củng cố kiến thức Việc thực hiện các kỹ năng phải được thực hiện trên tinh thần tự giác
+ HS vận dụng kiến thức một cách sáng tạo để giải quyết được một số tình huống Ngoài việc được rèn luyện về kiến thức thì HS còn được rèn luyện cả về kĩ năng trong thực hành
+ Phải rèn luyện thường xuyên, thống nhất, hợp lý với HS Việc luyện tập được thực hiện ở mọi môn học Đặc biệt trong toán học và các môn học phổ thông khác, bài tập là bắt buộc
+ Thực hành cần phải có mục đích, mục tiêu rõ ràng Trước khi thực hành, HS cần chuẩn bị trước phần nội dung kiến thức cần áp dụng trong quá trình thực hành
1.2.2 Thực tiễn
Theo quan điểm của Các Mác(Karl Marx) và Phriđơrich Ăngghen (Friedrich Engels) thì “Thực tiễn là toàn bộ hoạt động vật chất có mục đích, mang tính lịch sử - xã hội của con người nhằm cải biên thế giới khách quan”
[26] Có thể hiểu cụ thể hơn, thực tiễn là hoạt động khi con người sử dụng công
Trang 23cụ tác động vào đối tượng vật chất làm cho đối tượng đó thay đổi theo mục đích của mình
Theo Từ điển Tiếng Việt, với nghĩa danh từ, “thực tiễn” (đồng nghĩa với “thực tế”) là “tổng thể nói chung những gì đang tồn tại, đang diễn ra trong tự nhiên và xã hội, về mặt có quan hệ đến đời sống con người”, với nghĩa động từ “thực tiễn” được hiểu là “những hoạt động của con người, trước hết là lao động sản xuất, nhằm tạo ra những điều kiện cần thiết cho sự tồn tại của xã hội” [7, tr 957]
Trong luận văn này, chúng tôi quan niệm thực tiễn là tất cả các hoạt động của con người Thực tiễn (của HS) liên quan đến việc HS được tiếp cận vấn đề, tình huống mà có thể hình dung/ tưởng tượng hơn là những vấn đề thực tế, có nghĩa là những vấn đề thực tiễn phù hợp với HS Đề tài này chủ yếu liên quan đến các vấn đề thực tiễn ở nhiều khía cạnh như: bám sát thực tiễn cuộc sống, thực tiễn nội tại của phân môn hình học lớp 6, phù hợp với nhận thức của HS lớp 6 theo chương trình phổ thông mới
1.2.3 Tình huống thực tiễn
Tình huống thực tiễn được hiểu là “tình huống mà con người được đặt vào một bối cảnh có thật trong cuộc sống, bối cảnh đó yêu cầu con người phải giải quyết, đối mặt, hành động, giải quyết một hay một số nhiệm vụ nào đó trong thực tiễn…” [15, tr.24]
Ví dụ: Với bài tập: Làm thế nào để chia que tre dài 1m thành hai đoạn tre bằng nhau?
Với bài toán trên HS có thể có nhiều cách chia khác nhau: Cách 1: Dùng thước đo sao cho đoạn tre dài 50cm, đánh dấu và cắt theo vết đánh dấu
Cách 2: Sử dụng một sợi dây đo dài đúng que tre 1m, gập đôi sợi dây áp lên que tre 1m rồi đánh dấu và cắt
Trang 24Trong bài toán trên HS đã biết vận dụng tính chất của trung điểm để thao tác cắt được que tre thành hai đoạn tre có độ dài bằng nhau Từ hoạt động này giúp các em hình thành tính cẩn thận, tỉ mỉ, chính xác
Ví dụ: Nhiệm vụ thực tiễn đánh giá HS một lớp 6 có học tốt môn Toán hay không, với nhiệm vụ này ta có thể chia thành các nhiệm vụ cụ thể chi tiết như sau:
Nhiệm vụ 1: Thống kê điểm kiểm tra môn Toán của tất cả HS trong lớp Nhiệm vụ 2: Tính điểm trung bình môn Toán của cả lớp
Nhiệm vụ 3: So sánh ở các mức độ trung bình, khá, giỏi để kết luận sức học môn toán của lớp học đó
Các nhiệm vụ trên khi GV giao đều phù hợp với khả năng giải quyết của HS, thông qua mỗi nhiệm vụ HS biết vận dụng các kiến thức Toán học đã biết như liệt kê điểm của các bạn trong lớp, tính trung bình của một dãy số, so sánh các kết quả Từ các kết quả cụ thể HS có những nhận xét ban đầu từ đó rút ra được mình cần cố gắng hay giữ vững thành tích đã có
1.2.5 Bài toán thực tiễn
Ở một số tài liệu, bài toán thực tiễn là bài toán mà nhu cầu cần thỏa mãn được xuất phát ngay từ trong thực tiễn cuộc sống của con người Ví dụ: “Tính số tiền cần thiết để xây dựng một bức tường bao xung quanh một ngôi nhà”, “Tính toán giá cước của xe taxi và chọn phương án đi tối ưu” là những bài toán thực tiễn [4]
Trang 25Bài toán thực tiễn có thể được phân thành 4 dạng [14]: Dạng 1 Bối cảnh không thực tiễn không bao giờ xảy ra, do con người nghĩ ra, tưởng tượng ra, nhưng vẫn có những từ, thuật ngữ trong thực tiễn; Dạng 2 Bối cảnh có những yếu tố thực tiễn có một số từ, thuật ngữ, nội dung có trong thực tiễn, rất hiếm khi xảy ra, không gần gũi với HS ; Dạng 3 Bối cảnh có những yếu tố thực tiễn nhưng đã được mô hình hóa, toán học hóa lược đi hoặc đơn giản đi những nội dung thực tiễn nhưng gần gũi với học sinh; Dạng 4 Bối cảnh thực tiễn được lấy từ thực tế, có xảy ra, học sinh nhận thức được và thiết thực với HS
Ví dụ: Một căn phòng dạng hình chữ nhật có kích thước 9,5 m và 7,3 m cần được lót loại thảm bề ngang 4 m
a) Hãy vẽ sơ đồ hai cách lót thảm cho căn phòng b) Tính chiều dài thảm cần thiết cho mỗi cách lót c) Thảm được bán theo giá 1 000 000 đồng một mét vuông Hãy tính tiền thảm cho cách lót tiết kiệm hơn và cho biết tiết kiệm được bao nhiêu tiền
Hướng dẫn cách làm a) Vẽ sơ đồ
b) Chiều dài thảm cần thiết cho cách lót thứ nhất là:
7,3 + 7,3 + 1,5 + 1,5 = 17,6 (m)
Trang 26Chiều dài thảm cần thiết cho cách lót thứ hai là: 9,5 + 9,5 = 19 (m)
c) Tiền thảm cho cách lót tiết kiệm hơn (cách 1) là: 1 000 000 17,6 = 17 600 000 (đồng)
Tiết kiệm hơn so với cách 1 là: 1 000 000 19 – 17 600 000 = 1 400 000 (đồng) Mỗi bài toán thực tiễn sẽ giúp HS giải quyết được một nhiệm vụ thực tiễn, bài toán trên giúp HS biết tích kiệm tối đa chiều dài của thảm cần dùng cũng như tính toán được số tiền mình phải bỏ ra sao cho tiết kiệm nhất
1.2.6 Hoạt động thực hành ứng dụng kiến thức toán học vào thực tiễn
Cần hiểu rõ thực hành vận dụng kiến thức toán học vào thực tiễn: là việc
trên cơ sở những kiến thức và phương pháp học tập môn Toán được lĩnh hội, học sinh biết vận dụng chúng để giải quyết các tình huống thực tiễn, nhiệm vụ thực tiễn được đặt trong bối cảnh thực tiễn hoặc giải quyết các bài toán thực tiễn Để thực hiện điều này, học sinh cần phải thực hành các bài thực hành liên quan đến các phương pháp lý thuyết, phân tích và giải quyết các vấn đề thực tiễn, sử dụng các công cụ và phần mềm hỗ trợ, tổ chức các buổi họp và cuộc thảo luận và tìm hiểu nâng cao kiến thức thông qua các nguồn tài liệu, trang web, tài liệu và các tài liệu khác
Hoạt động thực hành vận dụng kiến thức toán học vào thực tiễn có đặc điểm:
- Thứ nhất, quá trình dạy học toán giúp HS nắm vững kiến thức Toán học Cần huy động và sử dụng một cách đúng đắn kiến thức cơ bản của Toán học vào các tình huống mới (trong học tập, trong đời sống)
- Thứ hai, phát triển khả năng chuyển đổi từ ngôn ngữ thực tiễn sang ngôn ngữ Toán học và ngược lại (trong những trường hợp cụ thể) Nhằm đáp ứng các yêu cầu đã nêu, phần này sẽ sử dụng các bài toán có tình huống thực
Trang 27tiễn Thông qua các ví dụ thực tiễn để củng cố khái niệm, công thức, quy tắc Chỉ ra khả năng vận dụng của kiến thức toán vào thực tiễn đời sống
Ví dụ: Mặt trên của chiếc bánh có dạng hình lục giác đều (như hình vẽ) Em hãy cắt bánh chia đều cho:
a) 6 bạn b) 12 bạn c) 4 bạn
Ở trường hợp chia bánh cho 4 người, hình trên chỉ là 1 cách minh họa, ngoài ra HS có thể minh họa bằng cách vẽ khác như thay đổi đỉnh khác vì bản chất Hình lục giác là hình có 6 đỉnh và 6 cạnh
Bài toán này đưa đến một cơ hội thực hành cho HS, các em phải vận dụng kiến thức hình học để chia cắt được chiếc bánh theo yêu cầu đề bài cho
Từ bài toán trên, không những giáo viên tạo được cơ hội thực hành cho học sinh mà từ việc thực hành đó có thể dẫn dắt học sinh đến việc nhận thức những kiến thức toán học mới
Ví dụ: Sau khi chia bánh cho 6 người xong giáo viên có thể đặt câu hỏi mới cho học sinh như sau:
Từ cách chia bánh cho 6 người, hãy cho biết mỗi người được bao nhiêu phần của chiếc bánh?
Sau khi trả lời được câu hỏi này, học sinh sẽ nhận ra kiến thức mới trong câu hỏi trên đó là nhận biết được phân số Ngoài ra GV có thể phát triển thêm
Trang 28bằng các câu hỏi để HS tư duy như: Muốn cắt được 1
3 chiếc bánh thì ta sẽ cắt
thế nào?
Như vậy, hoạt động thực hành ứng dụng kiến thức toán học vào thực tiễn không chỉ giúp chúng ta có kiến thức giải quyết tình huống thực tiễn mà ngược lại cũng cho chúng ta thêm nhận thức về kiến thức toán học
1.3 Thực hành ứng dụng các kiến thức Toán học vào thực tiễn trong dạy học toán
1.3.1 Mối liên hệ giữa Toán học và thực tiễn
Như chúng ta đã biết, Toán học và thực tiễn có mối quan hệ mật thiết với nhau Toán học là một hình thức phản ánh hiện thực khách quan, cụ thể là:
- Phản ánh nguồn gốc của toán học: Lịch sử đã chứng minh toán học bắt nguồn từ thực tiễn, liên hệ chặt chẽ với thực tiễn và chính sự phát triển của thực tiễn đã tác động rất lớn đến toán học
- Phản ánh thực tiễn của toán học: Khi xem xét kỹ lưỡng các hoàn cảnh cụ thể đi kèm với sự tiến hóa của các đối tượng và tầm quan trọng của các khái niệm toán học, rõ ràng là thực tiễn không chỉ là nguồn gốc và động lực của tiến bộ toán học, mà nó còn đóng vai trò là tiêu chuẩn cuối cùng cho bất kỳ lý thuyết toán học nào
- Phản ánh các ứng dụng thực tiễn của toán học vào cuộc sống: Ứng dụng thực tiễn trong toán học cho HS thấy được rằng toán học nghiên cứu những mối quan hệ số lượng và hình dạng không gian của thế giới khách quan nên toán học có vai trò rất quan trọng và được ứng dụng trong rất nhiều lĩnh vực của khoa học tự nhiên, kinh tế, y học, vật lý, …
Như vậy, Toán học không phải là một sản phẩm thuần túy của trí tuệ mà được hình thành do chính nhu cầu thực tiễn cuộc sống đặt ra Toán học sẽ giúp con người giải quyết được vấn đề do thực tiễn đặt ra
Trang 291.3.2 Mục đích của việc tăng cường các hoạt động thực hành ứng dụng toán học vào thực tiễn
a) Tăng cường các hoạt động thực hành ứng dụng Toán học vào thực tiễn góp phần hoàn thành mục tiêu, nhiệm vụ dạy học bộ môn Toán ở trường THCS trong giai đoạn hiện nay
Trước hết ta đề cập đến mục tiêu chung của của giáo dục nước ta đã được quy định trong Luật Giáo dục (năm 2019): “Mục tiêu của giáo dục phổ thông là giúp HS phát triển toàn diện về đạo đức, trí tuệ, thể chất, thẩm mỹ và các kĩ năng cơ bản, phát triển năng lực cá nhân, tính năng động và sáng tạo, hình thành nhân cách con người Việt Nam xã hội chủ nghĩa, xây dựng tư cách và trách nhiệm công dân; chuẩn bị cho HS tiếp tục học lên hoặc đi vào cuộc sống lao động, tham gia xây dựng và bảo vệ Tổ quốc” (Điều 27) Mục tiêu hàng đầu của các trường phổ thông Việt Nam là đặt nền móng cho việc hình thành một cá nhân toàn diện , phù hợp với những yêu cầu, hoàn cảnh và điều kiện cụ thể của đất nước
Trong thời đại hiện nay, thế giới đang chuyển dịch sang nền kinh tế tri thức và toàn cầu hóa Sự thay đổi này một phần là do những tiến bộ vượt bậc của khoa học và công nghệ, đặc biệt là trong lĩnh vực công nghệ cao Đối với nước ta, tháng 4 năm 2006 đã diễn ra Đại hội Đảng toàn quốc lần thứ X Ngoài ra, ngày 7 tháng 11 năm 2006, Việt Nam được chào đón là thành viên chính thức của Tổ chức Thương mại Thế giới (WTO) - Diễn đàn Hợp tác kinh tế Thái Bình Dương (APEC) diễn ra tại Hà Nội Những sự kiện này cho thấy Việt Nam đang tự tin bước vào một kỷ nguyên mới - kỷ nguyên hội nhập quốc tế và hợp tác toàn cầu
Để bắt nhịp với những chuyển đổi kinh tế và chính trị xã hội đáng chú ý cả trong nước và trên toàn cầu, giáo dục cần phải gánh vác trách nhiệm chuẩn bị cho các thế hệ công dân Việt Nam những phẩm chất cần thiết về trí tuệ và bản lĩnh để không chỉ hội nhập thành công trong nước mà còn cạnh tranh hiệu
Trang 30quả trên đấu trường toàn cầu, nơi cạnh tranh giữa con người với nhau Giáo sư Hoàng Tụy đã từng có ý kiến cho rằng: “Xã hội công nghệ ngày nay đòi hỏi một lực lượng lao động có trình độ suy luận, biết so sánh phân tích, ước lượng tính toán, hiểu và vận dụng được những mối quan hệ định lượng hoặc lôgic, xây dựng và kiểm nghiệm các giả thuyết và mô hình để rút ra những kết luận có tính logic” [3, tr 28 -29]
Muốn vậy, nền giáo dục cũng phải có những thay đổi về mục tiêu, nhiệm vụ và phương pháp dạy học Trong Đại hội đại biểu toàn quốc lần thứ X của Đảng, một trong những nhiệm vụ và giải pháp lớn về giáo dục được đề ra là: “Nâng cao chất lượng giáo dục toàn diện; đổi mới cơ cấu, tổ chức, nội dung, phương pháp dạy và học theo hướng “chuẩn hóa, hiện đại hóa, xã hội hóa” Phát huy trí sáng tạo, khả năng vận dụng, thực hành của người học Đề cao trách nhiệm của gia đình, nhà trường và xã hội” [19, tr 58]
Để giải quyết các câu hỏi đã nói ở trên, trước tiên chúng ta phải thiết lập tầm quan trọng của việc sử dụng Toán như một công cụ đào tạo cho nhân viên mới Một khía cạnh quan trọng liên quan đến việc củng cố khả năng tiếp xúc của sinh viên với các tình huống có thể áp dụng đồng thời hướng dẫn họ các nguyên tắc lý thuyết và các vấn đề thực hành Nguyên lý giáo dục đã chỉ rõ: “Học đi đôi với hành, giáo dục kết hợp với lao động sản xuất, lý luận gắn liền với thực tiễn, giáo dục nhà trường kết hợp với giáo dục gia đình và xã hội” Trong lý luận dạy học cũng nêu rõ: “Ðảm bảo sự thống nhất giữa lý luận và thực tiễn” Trên thực tiễn, nhiều nhà giáo dục có xu hướng ưu tiên các khái niệm lý thuyết hơn là ứng dụng thực tiễn của kiến thức thu được Ngoài ra, trong kiểm tra đánh giá, các em thường xem nhẹ mối quan hệ giữa kiến thức đó với việc sử dụng kiến thức đó trong thực tiễn Do đó, để HS tham gia một cách hiệu quả vào các lĩnh vực khoa học và công nghệ không ngừng phát triển, điều cần thiết là các GV toán trung học phải kết hợp một quy trình ôn tập cho
Trang 31phép HS tiếp cận các vấn đề và tình huống từ cả góc nhìn thực tiễn, thế giới thực và một toán học, và để chuyển đổi liền mạch giữa hai
b) Tăng cường các hoạt động thực hành ứng dụng Toán học vào thực tiễn góp phần hoàn thiện một số tri trí thức, kĩ năng toán học cần thiết cho học sinh
Thông qua các hoạt động thực hành ứng dụng Toán học, HS được rèn luyện những kĩ năng trên các bình diện khác nhau Cụ thể:
+ Kỹ năng vận dụng tri thức trong nội bộ môn toán: Kỹ năng vận dụng tri thức trong nội bộ môn toán rèn luyện được cho HS khả năng biết sử dụng các kiến thức Toán học để giải quyết bài toán trong nội bộ môn toán Thông qua việc rèn luyện kỹ năng trên bình diện này, HS sẽ nâng cao được mức độ thông hiểu các nội dung Toán học do muốn vận động để làm toán tốt thì cần phải hiểu rõ và sử dụng một cách hợp lý
+ Kỹ năng vận dụng tri thức Toán học vào các môn học khác: Tương tự với việc rèn luyện kỹ năng trên bình diện thứ nhất, việc rèn luyện kỹ năng trên bình diện này cũng giúp HS nâng cao được mức độ thông hiểu tri thức, đồng thời thể hiện rõ vai trò công cụ của môn toán học đối với các môn học khác và liên môn trong nhà trường phổ thông Do vậy, GV dạy toán cần tích cực dạy học tích hợp trong dạy học bộ môn
+ Kỹ năng vận dụng toán học và đời sống: Mục tiêu quan trọng của Toán học là HS biết ứng dụng các kiến thức toán học để giải quyết thực tiễn cuộc sống GV cần cho HS thấy rõ mối quan hệ giữa Toán học và thực tiễn, qua đó HS thấy được tầm quan trọng của Toán học và nảy sinh nhu cầu, hứng thú học tập
Như vậy, việc tổ chức các hoạt động thực hành ứng dụng Toán học vào thực tiễn cho HS trong quá trình dạy học đã giúp HS nắm rõ hơn tri thức và hình thành cho HS kỹ năng phân tích, tổng hợp, đánh giá…
Trang 32c) Tăng cường các hoạt động thực hành ứng dụng Toán học vào thực tiễn giúp hình thành và phát triển thế giới quan duy vật biện chứng cho học sinh
Có quan điểm cho rằng Toán học xa rời với thực tiễn cuộc sống hay nó khá trừu tượng Do đó, HS thường đặt ra những câu hỏi học tích phân để làm gì? Học hình học không gian để làm gì? Ngày nay, việc chúng ta áp dụng trực tiếp các khái niệm toán học vào các tình huống trong thế giới thực là điều không bình thường Thay vào đó, chúng ta thường che giấu ứng dụng của nó đằng sau các ngành khoa học khác như sinh học, kinh tế và nghiên cứu môi trường Điều ít được biết đến là rất nhiều thứ phổ biến mà chúng ta gặp phải trong cuộc sống hàng ngày đều dựa chủ yếu vào các nguyên tắc toán học để giải quyết vấn đề
Do vậy, dạy học môn toán theo hướng tăng cường các hoạt động thực hành ứng dụng Toán học vào thực tiễn sẽ góp phần làm rõ được ý nghĩa của môn toán là “Toán học bắt nguồn từ thực tiễn và trở về phục vụ thực tiễn”
1.3.3 Các bước của quá trình thực hành ứng dụng Toán học vào thực tiễn
Để thực hành ứng dụng Toán học vào thực tiễn theo [2] quy trình thực hành ứng dụng Toán học vào thực tiễn được chia thành 5 bước và có thể biểu diễn theo sơ đồ sau:
Hình 1.1 Sơ đồ quá trình thực hành ứng dụng Toán học vào thực tiễn
Bước 1: Từ tình huống thực tiễn xây dựng thành bài toán thực tiễn Bước 2: Chuyển bài toán thực thực tiễn sang mô hình toán học
(b2)
(b3) (b1)
Tình huống thực tiễn
Mô hình toán học
Bài toán thực tiễn
(b4) (b5)
Lời giải bài toán toán học
Trang 33Bước 3: Sử dụng công cụ toán học giải quyết bài toán trong mô hình Bước 4: Chuyển kết quả trong mô hình toán học sang lời giải của bài toán thực tiễn
Bước 5: Điều chỉnh kết quả cho phù hợp với tình huống thực tiễn ban đầu [2]
Để thực hiện nhiệm vụ học tập môn toán, HS cần phải biết mô hình hóa toán học, đưa các vấn đề trong thực tiễn chuyển đổi sang ngôn ngữ toán học Từ đó ứng dụng toán học để phát hiện và tìm cách giải quyết những vấn đề do thực tiễn đặt ra
Với chương trình mới, các tình huống thực tiễn đã được đưa vào trong sách Chình vì vậy việc tổ chức các hoạt động thực hành ứng dụng kiến thức Toán học vào thực tiễn giúp cho HS phát triển được các năng lực, phẩm chất cũng như có những ước mơ riêng về một số nghề nghiệp mà HS mong muốn
1.3.4 Một số ví dụ minh họa
Ví dụ 1 Ngôi nhà của bạn An cần phải lát lại nền nhà hình chữ nhật do
đã bị hỏng, biết nền nhà có chiều dài 12 m và chiều rộng 5 m
a) Tính diện tích nền nhà b) Nhà An sử dụng loại gạch hình vuông có cạnh 50 cm để lát nền Giả sử có hai cách lát: lát theo hình vuông hoặc lát theo hình thoi Hãy lựa chọn cách lát nền nào để bác thợ lát nền dùng ít gạch lát nhất
Phân tích bài toán: + HS dễ dàng tìm được diện tích của nền nhà Lời giải: Diện tích nền nhà là: 12 5 = 60 (m2) + GV phân nhóm hoạt động đồng thời để HS tìm ra cách lát nền tốn ít gạch nhất có thể GV chia thành 4 nhóm, 2 nhóm lát gạch theo hình vuông và 2 nhóm lát gạch theo cách xoay hình vuông thành hình thoi Cách chia nhóm hoạt động như vậy cũng giúp GV so sánh được kết quả làm bài của các nhóm
Cách 1: Lát gạch theo hình vuông
Trang 34Bài toán được giải quyết như sau: Diện tích của một viên gạch là: 50 50 = 2500 (cm2) = 0,25 (m2) Số viên gạch cần sử dụng để lát hết nền nhà là: 60 : 0,25 = 240 (viên) Như vậy với hai nhóm thực hiện như cách 1 các em sẽ tính rất nhanh số viên gạch cần dùng Với cách tính toán thông thường thì bài toán được đưa ra rất dễ dàng giải quyết tuy nhiên phải so sánh với cách 2 ta mới biết được cách nào là tối ưu
Cạnh một tam giác vuông cân là: 50√2 : 2 = 25√2 (cm) Diện tích tam giác vuông cân là: (25√2 25√2 ) : 2 = 625 (cm2) = 0,0625(m2)
Vậy số gạch cần dùng để lát nền nhà là: 60 : 0,0625 : 4 = 240 (viên)
5 m
12 m
Trang 35Với cách 2 không dễ tính như cách 1 vì các em phải vận dụng định lý Pitago để tính đường chéo của hình vuông Các em phải chia viên gạch làm 4 phần bằng nhau để tạo được các tam giác vuông cân rồi tính ra số tam giác sử dụng để lát Cuối cùng lấy số tam giác vuông cân đã tính chia 4 thì ra số gạch cần dùng
Nhưng còn một lý do khác nếu dùng cách 2 thì người thợ phải cắt gạch mà trong quá trình cắt không tránh được việc hư hỏng gạch, như vậy không nên chọn lát nền theo cách 2
Hình 1.3 Lát gạch theo cách 2
Thông qua bài toán HS phần nào hiểu hơn về công việc hàng ngày của một bác công nhân xây dựng và quan trọng hơn cả các em có thể vận dụng toán học vào giải quyết tính kinh tế trong xây dựng cũng như những vấn đề khác trong thực tiễn cuộc sống
Qua bài toán HS cũng có cơ hội để thực hành, cũng như giải quyết được tình huống thực tiễn được diễn ra trong chính cuộc sống xung quanh mình Từ đó hình thành trong các em những năng lực giải quyết các vấn đề thực tiễn, hình thành những ước mơ, định hướng trong nghề nghiệp
Ví dụ 2 Khi ký hợp đồng ngắn hạn (2 năm) với các công nhân được
tuyển dụng Công ty M đề ra 2 phương án trả lương để người tuyển dụng lựa chọn, cụ thể là:
50√2 cm
25√2 cm
5 m
12 m
Trang 36Phương án 1: Người được tuyển dụng sẽ nhận 5 triệu đồng mỗi tháng và cuối mỗi quý được thưởng thêm 20% tổng số tiền được lãnh trong quý
Phương án 2: Người được tuyển dụng sẽ nhận 16 000 000 triệu cho quý đầu tiên và kể từ quý thứ hai mức lương sẽ tăng thêm 1 triệu đồng cho mỗi quý
Theo em phương án tuyển dụng nào có lợi hơn? Lời giải cho bài toán như sau:
+ Với phương án 1: Số tiền lương thu sau 1 quý là : 5 000 000 3 = 15 000 000 (đồng) Số tiền lương được thưởng ở mỗi quý là :
15 000 000 20% = 3 000 00 (đồng) Sau 1 năm người đó thu được số tiền là: (15 000 000 + 3 000 000 ) 4 = 72 000 000 (đồng) + Với phương án 2:
Số lương thu sau 1 năm là : 16 000 000 + 17 000 000 + 18 000 000 + 19 000 000 = 70 000 000 (đồng) Như vậy sau khi vận dụng kiến thức hai bài toán về phân số HS có thể nhẩm tính ngay được mức lương ở các phương án và đưa ra lựa chọn theo phương án 1 là có lợi hơn Từ bài toán ta thấy được việc ứng dụng kiến thức Toán học vào thực tiễn sẽ giúp HS thành thạo trong tính toán, rèn được tính cẩn thận, tỉ mỉ đồng thời tạo ra cơ hội cho các em biết lựa chọn những điều tốt nhất với bản thân
1.4 Quy trình thiết kế và tổ chức HĐTH ứng dụng kiến thức toán học vào thực tiễn
Chúng tôi xác định quy trình thiết kế hoạt động thực hành ứng dụng kiến thức toán học vào thực tiễn như sau:
- Bước 1: Xác định chủ đề thực hành
Căn cứ vào nội dung chương trình môn Toán của Chương trình giáo dục phổ thông 2018, GV sẽ đưa ra tiêu chí đạt được cụ thể và lựa chọn nội dung
Trang 37dựa trên đặc điểm của HS và tình hình của nhà trường Nội dung học tập sẽ là
nền tảng cho các hoạt động thực hành về các chủ đề có liên quan
-Bước 2: Xác định mục tiêu của chủ đề thực hành
GV xác định mục tiêu mà HS cần đạt thông qua trả lời các câu hỏi sau : HS sẽ đạt được những kiến thức, năng lực, phẩm chất cụ thể nào sau khi tham
gia chủ đề này
- Bước 3: Xác định các nội dung HĐTH
Dựa trên các mục tiêu của chủ đề đã xác định ở bước 2, hãy xác định các tình huống thực tiễn, bối cảnh thực tiễn hay các tình huống thuần toán học để hoàn thành nội dung hoạt động cần thiết cho chủ đề Đối với mỗi hoạt động cũng cần xác định rõ mục tiêu, kiến thức toán học sử dụng và phương pháp
Trong hoạt động này GV cần thể hiện rõ vai trò của mình
Tùy theo mục đích và nội dung của bài học, GV có thể tổ chức hoạt động thực hành như một phần của hoạt động hình thành kiến thức hoặc hoạt động vận dụng, luyện tập, tìm tòi, mở rộng Tùy theo mức độ rèn luyện năng lực của HS mà GV sử dụng các hình thức thực hành phù hợp nhằm rèn luyện một số năng lực thành phần GV cần quyết định xem các hoạt động trong lớp sẽ là hoạt động cá nhân hay nhóm và địa điểm của thí nghiệm (lớp học, sân trường, v.v.) để xây dựng kế hoạch bài học một cách phù hợp, hợp lí
1.5 Quy trình tổ chức hoạt động thực hành thực hành ứng dụng kiến thức Toán học vào thực tiễn
Trong tổ chức hoạt động thực hành chúng tôi đưa ra các bước tổ chức như sau:
Trang 38- Bước 1: GV đề xuất nhiệm vụ
Đây là bước đầu tiên trong việc tổ chức HĐTH Các nhiệm vụ GV đặt ra phải phù hợp với trình độ HS, HS có thể tạo ra sản phẩm để làm cơ sở đánh giá
sau hoạt động
- Bước 2: Tổ chức cho HS tham gia thực hành cụ thể
Giai đoạn này đòi hỏi HS phải tự thực hành và tích lũy kinh nghiệm thực tiễn để giải quyết các nhiệm vụ được giao Ở giai đoạn này, GV nên dự đoán được, HS thực hành cá nhân, theo nhóm hay cả lớp học, có hoặc không có hướng dẫn Nếu có người hướng dẫn, người đó có thể là GV chủ nhiệm lớp, GV bộ môn, tổ trưởng, phụ huynh HS Trong giai đoạn này, GV cũng có thể quan sát người học có những kinh nghiệm, kiến thức, năng lực nào có thể sẽ liên quan đến kỹ năng mới sẽ được hình thành, từ đó GV có thể đánh giá dễ dàng kinh nghiệm của người học trước khi tham gia tìm hiểu vấn đề mới
- Bước 3: Tổ chức cho phân tích/xử lí
Thông qua quá trình quan sát, cảm nhận, so sánh, phân tích, đánh giá các sự vật, hiện tượng, chúng ta liên hệ chúng với kinh nghiệm của bản thân và tìm hiểu về chúng Thông qua thực hành cụ thể, HS độc lập suy nghĩ về tính đúng đắn, hợp lý của sự vật và thảo luận với các HS khác GV dẫn dắt lớp học, tạo môi trường để cá nhân, nhóm tự do phát biểu ý kiến, điều chỉnh kịp thời, định hướng cho HS hoạt động thực hành, hỗ trợ, động viên HS khó khăn thông qua phiếu bài tập, câu hỏi nên sử dụng
Thông qua quá trình quan sát, cảm nhận, so sánh, phân tích, đánh giá các sự vật, hiện tượng, HS sẽ liên hệ chúng với kinh nghiệm của bản thân để có thể tìm hiểu về chúng Sau khi thực hiện hoạt động thực hành cụ thể, HS độc lập suy nghĩ về tính đúng đắn, hợp lý của sự vật và thảo luận với các HS khác ý tưởng và kế hoạch cho các hiện tượng nảy sinh trong mỗi HS GV bao quát lớp, tạo môi trường để cá nhân/nhóm tự do trình bày ý kiến, kịp thời điều chỉnh, định hướng cho HS hoạt động thực hành, hỗ trợ HS khó khăn thông qua phiếu bài tập, góp ý, sử dụng câu hỏi đặt ra
Trang 39- Bước 4: HS tổng quát/khái quát hóa
GV kết hợp các phương pháp và kỹ thuật giảng dạy khác nhau để giúp HS tìm và diễn đạt kiến thức liên quan đến sản phẩm và kết quả học tập Thông qua đó, HS được luyện tập và thực hành ứng dụng các kiến thức toán học mới vào quá trình học tập
- Bước 5: Áp dụng trong các tình huống mới(nếu có)
Từ những hiểu biết kiến thức liên quan, các khái niệm mới được làm rõ và các quy trình thực hành được xây dựng trong Bước 3 Kết thúc quá trình thực hành, HS có thể củng cố kiến thức và phát triển các kỹ năng mới, do đó có được những kinh nghiệm mới cho bản thân và những kinh nghiệm này là điểm khởi đầu cho các quá trình học tập tiếp theo
- Bước 6: Đánh giá
Để đánh giá kiến thức của HS GV có thể sử dụng những bài tập trắc nghiệm hoặc những câu hỏi nhanh để kiểm tra HS Qua quá trình hoạt động
nhóm, các hoạt động thực hành đánh giá kỹ năng của HS
Ví dụ 3: Thiết kế hoạt động thực hành: Thiết kế chiếc bập bênh - Bước 1: Xác định chủ đề thực hành và đặt tên cho chủ để của HĐTH
+ Chủ đề: Thiết kế chiếc bập bênh
- Bước 2: Xác định mục tiêu của chủ đề HĐTH
+ HS củng cố kiến thức về khái niệm, tính chất của trung điểm của đoạn thẳng
+ HS rèn luyện kỹ năng phân tích, vân dụng kiến thức để có thể sáng tạo ra các mô hình đáp ứng yêu cầu từ những vật liệu có sẵn
+ Hình thành và luyện cho HS kỹ năng làm việc nhóm + Định hướng phát triển năng lực và thái độ, phẩm chất cho HS
- Bước 3: Xác định nội dung của HĐTH
+ HS nhắc lại được những kiến thức đã học về trung điểm + HS sáng tạo, thiết kế được chiếc bập bênh từ các ống hút nhựa đã có sẵn sau khi được quan sát hình ảnh mẫu và được quan sát thực tiễn
Trang 40+ HS xác định được những đặc điểm của sản phẩm sau khi hoàn thành (trung điểm, độ dài đoạn,… )
-Bước 4: Thiết kế HĐTH * Hoạt động 1: Khởi động:
+ Mục tiêu hoạt động: Giúp HS ôn tập, nhắc lại kiến thức về khái niệm, tính chất của trung điểm của đoạn thẳng
+ Hình thức tổ chức: Hoạt động cá nhân + Cách thức thực hiện: HS nhắc lại những kiến thức cũ đã học về trung điểm của đoạn thẳng
* Hoạt động 2: Nghiên cứu kiến thức nền và đề xuất giải pháp + Mục tiêu: HS trình bày được thông số về kích thước của chiếc bập
bênh Phân tích được độ dài, chiều cao tương ứng của bập bênh sao cho phù hợp Biết cách lựa chọn những kiến thức liên quan đến đo độ dài đoạn thẳng để vận dụng chế tạo bập bênh theo yêu cầu HS đề xuất được giải pháp và xây dựng được bản thiết kế chiếc bập bênh
+ Hình thức tổ chức: Hoạt động theo nhóm + Cách thức thực hiện: Nhóm HS chia nhau tìm hiểu các chủ đề kiến thức theo phân công Từ đó đề xuất được giải pháp tối ưu, phù hợp cho bản thiết kế
* Hoạt động 3 TIêu chí đánh giá
+ Mục tiêu: HS thiết lập bảng đánh giá chiếc bập bênh Vận dụng được các kiến thức liên quan đến đoạn thẳng, độ dài đoạn thẳng, cách xác định trung điểm của đoạn thẳng Lựa chọn các yêu cầu để xây dựng tiêu chuẩn đánh giá và gắn điểm tương ứng cho việc đánh giá
+ Hình thức tổ chức: Hoạt động theo nhóm + Cách thức thực hiện: HS làm việc nhóm để hoàn thành phiếu đánh giá theo yêu cầu của GV Kẻ bảng phân rõ yêu cầu đánh giá Vận dụng các kiến thức về độ dài, chia độ dài đoạn thẳng Thuyết trình về sự hợp lý của phiếu đánh giá chiếc bập bênh