Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
1,55 MB
Nội dung
ĐỀ MẪU CĨ ĐÁP ƠN TẬP KIẾN THỨC TỐN 12 Thời gian làm bài: 40 phút (Không kể thời gian giao đề) - Họ tên thí sinh: Số báo danh: Mã Đề: 023 Câu Số cạnh khối đa diện loại {3; 5} bao nhiêu? A Hai mươi B Ba mươi C Mười sáu Đáp án đúng: D Câu Số phức liên hợp số phức z 1 2i số phức A 2i Đáp án đúng: A Câu Cho hàm số A C Đáp án đúng: C B 2i D Mười hai C 2i có đạo hàm D 2i Mệnh đề sau đúng? B D Câu Một nhóm gồm 12 học sinh có học sinh khối 12, học sinh khối 11 học sinh khối 10 Chọn ngẫu nhiên học sinh tham gia đội xung kích Tính xác suất để học sinh chọn không khối? 49 12 A 55 B C 55 D 55 Đáp án đúng: C M 3; 2;1 P Câu Trong không gian với hệ tọa độ Oxyz , cho điểm Mặt phẳng qua M cắt trục tọa độ Ox , Oy , Oz điểm A , B , C không trùng với gốc tọa độ cho M trực tâm tam giác ABC Trong mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng P A 3x y z 14 0 B x y z 0 C x y z 0 Đáp án đúng: D D 3x y z 14 0 M 3; 2;1 P Giải thích chi tiết: Trong không gian với hệ tọa độ Oxyz , cho điểm Mặt phẳng qua M cắt trục tọa độ Ox , Oy , Oz điểm A , B , C không trùng với gốc tọa độ cho M trực P tâm tam giác ABC Trong mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng A 3x y z 14 0 B x y 3z 0 C 3x y z 14 0 D x y z 0 Lời giải A a;0; ; B 0; b; ; C 0;0; c Gọi x y z 1 a.b.c 0 có dạng: a b c 1 1 P Vì qua M nên a b c MA a 3; 2; 1 ; MB 3; b 2; 1 ; BC 0; b; c ; AC a;0; c Ta có: MA.BC 0 2b c 2 a c MB AC Vì M trực tâm tam giác ABC nên: 14 14 a ; b ; c 14 1 2 P Từ suy Khi phương trình : 3x y z 14 0 P Phương trình mặt phẳng P Vậy mặt phẳng song song với là: 3x y z 14 0 Câu Có thể lập số gồm hai chữ số khác lấy từ chữ số 1,2, 3, 4, A 10 B 120 C 20 D Đáp án đúng: C Giải thích chi tiết: Có thể lập số gồm hai chữ số khác lấy từ chữ số 1,2, 3, 4, A 20 B 120 C D 10 Lời giải Số chữ số gồm hai chữ số khác lấy từ chữ số 1, 2, 3, 4, số chỉnh hợp chập phần tử Do A25 =20 Câu Cho a, b hai số dương với a ¹ thỏa mãn A Đáp án đúng: D Giải thích chi tiết: Cho bằng: Khi đó, giá trị B a, b C - bằng: D hai số dương với a ¹ thỏa mãn - Khi đó, giá trị A B C D - Lời giải - Với a, b hai số dương a 1 thỏa mãn , ta có: CASIO: CHỌN a=2, BẤM SAU ĐĨ BẤM RỒI BẤM SHIFT SOLVE TÌM ĐƯỢC b=8 , CALC VỚI a=2, b=8 TA TÌM ĐƯỢC - Câu Cho hình lăng trụ đứng ABCD ABC D có đáy hình thoi cạnh a , góc BAD 60 AA 2a Thể tích khối lăng trụ cho 3a 3a A B Đáp án đúng: C Câu Cho x2 + 4y2 = 12xy x > 0, y > Khẳng định là: log x 2y log log x log y A C log x log y log12 Đáp án đúng: A Câu 10 Giá trị nhỏ hàm số A 37 B 17 Đáp án đúng: D f x x 22 x C 3a D 3a B log x log y log12 log xy log x log y log 12xy D đoạn C 22 Giải thích chi tiết: [2D1-3.1-1] Giá trị nhỏ hàm số Câu 11 5; 22 D 15 f x x 22 x đoạn 5; 22 2 Thể tích V khối trịn xoay cho hình phẳng H giới hạn đường y = 1- x y = x - quay quanh trục Ox xác định công thức sau đây? A V = pò ( 1- x2 ) - ( x2 - 1) dx B - 1 2 V = pò ( 1- x2 ) - ( x2 - 1) dx - 1 V = pò( 1- x2 ) dx - C Đáp án đúng: D Giải thích chi tiết: Lời giải D 2 2ù V = òé ê( x - 1) - ( 1- x ) údx ë û - Thể tích vật thể quay hình vuông OABC quanh trục Ox p.4 = 64p Thể tích vật thể quay phần gạch sọc quanh Ox l 64p- ổ1 64p p.ũỗ xữ dx = ữ ỗ ữ ỗ ố4 ứ 64p 256p = 5 Vậy thể tích vật thể trịn xoay cần tính Câu 12 y f x Cho hàm số có đồ thị hình vẽ bên Tìm tất giá trị thực tham số m để phương trình f x m 2018 0 có nghiệm phân biệt m 2022 B m 2021 A 2021 m 2022 m 2022 C m 2021 D 2021 m 2022 Đáp án đúng: A Giải thích chi tiết: f x m 2018 0 f x 2018 m 2018 m 2021 m 2022 Câu 13 Giá trị nhỏ hàm số A 2022 B Đáp án đúng: D y 2022 x 2022 x khoảng 0; C Giải thích chi tiết: [Mức độ 1] Giá trị nhỏ hàm số y 2022 x D 4044 2022 x khoảng 0; Câu 14 Hàm số y x 3x đồng biến khoảng ? A ( 1;1) B ( ; 1) C ( ; ) D (1; ) Đáp án đúng: A Câu 15 Một khn viên dạng nửa hình trịn, người thiết kế phần để trồng hoa có dạng cánh hoa hình parabol có đỉnh trùng với tâm có trục đối xứng vng góc với đường kính nửa hình trịn, hai đầu mút cánh hoa nằm nửa đường trịn (phần tơ màu) cách khoảng 4m Phần cịn lại khn viên (phần không tô màu) dành để trồng cỏ Nhật Bản Biết kích thước cho hình vẽ, chi phí để trồng hoa 2 cỏ Nhật Bản tương ứng 150.000 đồng/ m 100.000 đồng/ m Hỏi số tiền cần để trồng hoa trồng cỏ Nhật Bản khn viên gần với số sau đây? A 4.115.000 (đồng) C 3.739.000 (đồng) B 3.926.000 (đồng) D 1.948.000 (đồng) Đáp án đúng: C Giải thích chi tiết: Kết hợp vào hệ trục tọa độ, ta được: P : y x nên C : x y R Do F 2; C nên nửa đường tròn Gọi đường trịn có tâm gốc tọa độ Gọi parabol P : y ax Do F 2; P y 20 x Đặt S1 diện tích phần tơ đậm Khi đó: S1 2. 5 20 x x dx 20 arcsin 5 S R S1 10 20 arcsin S Đặt diện tích phần khơng tơ đậm Khi đó: Vậy: Số tiền cần để trồng hoa cỏ Nhật Bản là: T 150000.S1 100000.S 3738574 (đồng) x 1 2t d : y 2 t z t Câu 16 Trong khơng gian Oxyz , viết phương trình tắc đường thẳng x y2 z x y 1 z 1 A B x y z 1 C Đáp án đúng: C x 1 y z 1 D log 25x log5 m x m Câu 17 Tìm tất giá trị để phương trình có nghiệm m 4 A Đáp án đúng: D B m 1 C m 1 m 1 m D 5 0 log 25x log5 m x 25 x log m 5x t t t log m x Giải thích chi tiết: Xét g t t t 0; ta có bảng biến thiên: 1 m 4 log m 4 log m 0 m 1 Phương trình cho có nghiệm Câu 18 Cắt hình nón đỉnh O khơng có mặt đáy theo đường thẳng qua đỉnh trải lên mặt phẳng hình quạt có tâm O Biết hình nón có r = a chiều cao h a Diện tích hình quạt tạo thành là: 2 B a A 2 a Đáp án đúng: A Câu 19 Cho hàm số A f x e10 x 20 Tìm f 2021 x 102021.201010.e10 x20 f 2021 x 10!.e10 x 20 C f 2021 3 a2 D 4 a x B C Đáp án đúng: B D Giải thích chi tiết: f 2021 x 102021.e10 x 20 f 2021 x 200.e10 x 20 ; ; ; ………………………………………………… f 2021 x 102021 e10 x 20 lim f ( x) 3 lim f ( x) Câu 20 Cho hàm số y f ( x) có x x Khẳng định sau khẳng định đúng? A Đồ thị hàm số cho khơng có tiệm cận ngang B Đồ thị hàm số cho có tiệm cận ngang C Đồ thị hàm số cho có hai tiệm cận ngang đường thẳng x 3 x D Đồ thị hàm số cho có hai tiệm cận ngang đường thẳng y 3 y Đáp án đúng: D Câu 21 Trong mặt phẳng tọa độ , cho phương trình tổng quát mặt phẳng P tơ pháp tuyến mặt phẳng có tọa độ là: 1; 3; 1; 3; A B Đáp án đúng: D C P : x y z 1 0 Một véc 1; 3; D 1; 3; P : x y z 0 Giải thích chi tiết: Phương trình tổng quát mặt phẳng nên véc tơ pháp tuyến P 2; 6; 1; 3; mặt phẳng có tọa độ hay log x 2 log a log b a , b , x Câu 22 Cho số thực dương Biết , tính x theo a b a4 x b A Đáp án đúng: A B x a b Giải thích chi tiết: Cho a, b, x số thực dương Biết C x 4a b D log x 2 log a log b x a b , tính x theo a b a4 a x b B x 4a b C b D x a b A Lời giải x log x 2 log a log b log x 4 log a log b log x log 3 a4 a4 x b b Câu 23 Huyền có bìa hình vẽ, Huyền muốn biến đường trịn thành phễu hình nón Khi Huyền phải cắt bỏ hình quạt trịn AOB dán OA , OB lại với Gọi x góc tâm hình quạt trịn dùng làm phễu Tìm x để thể tích phểu lớn nhất? A Đáp án đúng: C B C D Giải thích chi tiết: S xq R2 x xR 2 r r x 2 bán kính đáy phểu; R Ta có diện tích hình phểu 1 V r h r R r r R r 3 thể tích phểu Xét hàm số phụ y r R r y 4r R 6r y 0 2.R 3r 0 r R R 2 r 2 R 2 r x x x y R 3R Vậy max V V max Câu 24 Cho khối chóp S ABCD có đáy ABCD hình vng cạnh a , cạnh SA vng góc với đáy SC tạo o với mặt đáy góc 60 Tính thể tích khối chóp S ABCD a3 A Đáp án đúng: C 2a 3 B a3 C a3 D Giải thích chi tiết: [ Mức độ 1] Cho khối chóp S ABCD có đáy ABCD hình vng cạnh a , cạnh SA vng o góc với đáy SC tạo với mặt đáy góc 60 Tính thể tích khối chóp S ABCD a3 a3 a3 2a 3 A B C D Lời giải ABCD hình vng S ABCD a Ta có: 60 SC, ABCD SC , AC SCA o o Do : SA AC.tan 60 a a 1 a3 V S ABCD SA a a 3 Vậy: 2x Câu 25 Phương trình A 2 5 x 4 có tổng tất nghiệm B C D Đáp án đúng: A Câu 26 Cho số phức z 2i , w 2 i Điểm hình bên biểu diễn số phức z w ? A P Đáp án đúng: A B N C Q D M Giải thích chi tiết: Cho số phức z 2i , w 2 i Điểm hình bên biểu diễn số phức z w ? A N B P C Q D M Lời giải P 1;1 z w 2i i 1 i Ta có Vậy điểm biểu diễn số phức z w điểm Câu 27 Trong hàm số sau, hàm số có đồ thị hình bên? y x x 1 A Đáp án đúng: B Giải thích chi tiết: B 1;0 Đồ thị qua điểm y y x 1 2x C y x 1 2x D y x 1 x 1 x 1 2x nên Câu 28 Công thức tính thể tích khối trụ: A C Đáp án đúng: D B D 2 y x 1 Câu 29 Tập xác định hàm số là: D 1; A B D D ;1 D \ 1 C D Đáp án đúng: A Câu 30 Khối lập phương khối đa diện loại 3;4 3;5 5;3 A B C Đáp án đúng: D Giải thích chi tiết: Khối lập phương khối đa diện loại 5;3 B 3;4 C 3;5 D 4;3 A Lời giải 4;3 Khối lập phương khối đa diện loại D 4;3 0; 2 Câu 31 Gọi M m giá trị lớn giá trị nhỏ hàm số y x x đoạn 2 Giá trị biểu thức M m A B 52 C 40 D 20 Đáp án đúng: C 10 Giải thích chi tiết: Gọi M m giá trị lớn giá trị nhỏ hàm số y x x 2 0; 2 đoạn Giá trị biểu thức M m Câu 32 Hàm số A nghịch biến khoảng? B C Đáp án đúng: C Câu 33 D Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức trịn có phương trình: A thoả mãn đường B C D Đáp án đúng: C Câu 34 Cho hình lập phương ABCD A′ B ′ C ′ D ′ cạnh a Góc B′ D′ A′ D A 45 B 1200 C 90 D 600 Đáp án đúng: D Giải thích chi tiết: Cho hình lập phương ABCD A′ B ′ C ′ D′ cạnh a Góc B′ D ′ A′ D A 600 B 90 C 45 D 1200 Vì B′ D ′ // BD , suy ( ^ B′ D ′ ; A′ D )=( ^ BD ; A ′ D ) Mà A′ B=BD =A ′ D=a √ 2⇒ tam giác A′ BD ⇒ ( ^ BD ; A ′ D )=600 Vậy ( ^ B′ D ′ ; A′ D )=60 2017 Câu 35 Cho hàm A I 1 Đáp án đúng: D f x thỏa mãn f x dx 1 B I 0 Tính tích phân I f 2017 x dx C I 2017 D I 2017 HẾT - 11