1. Trang chủ
  2. » Tất cả

Giáo án đường tiệm cận

18 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 895,6 KB

Nội dung

Trường Tổ TOÁN Ngày soạn / /2021 Tiết Họ và tên giáo viên Ngày dạy đầu tiên ĐƯỜNG TIỆM CẬN Môn học/Hoạt động giáo dục Toán GT 12 Thời gian thực hiện tiết I MỤC TIÊU 1 Kiến thức Nắm khái niệm đường tiệ[.]

Trường:…………………………… Tổ:TOÁN Ngày soạn: … /… /2021 Tiết: Họ tên giáo viên: …………………………… Ngày dạy đầu tiên:…………………………… ĐƯỜNG TIỆM CẬN Mơn học/Hoạt động giáo dục: Tốn - GT: 12 Thời gian thực hiện: tiết I MỤC TIÊU Kiến thức - Nắm khái niệm đường tiệm cận đứng, đường tiệm cận ngang đồ thị hàm số Năng lực - Năng lực tự học: Học sinh xác định đắn động thái độ học tập; tự đánh giá điều chỉnh kế hoạch học tập; tự nhận sai sót cách khắc phục sai sót - Năng lực giải vấn đề: Biết xác định đường tiệm cận đứng, đường tiệm cận ngang ax  b phương trình chúng từ đồ thị hàm số y  cx  d - Năng lực tự quản lý: Làm chủ cảm xúc thân trình học tập vào sống; trưởng nhóm biết quản lý nhóm mình, phân cơng nhiệm vụ cụ thể cho thành viên nhóm, thành viên tự ý thức nhiệm vụ hồn thành nhiệm vụ giao - Năng lực giao tiếp: Tiếp thu kiến thức trao đổi học hỏi bạn bè thơng qua hoạt động nhóm; có thái độ tơn trọng, lắng nghe, có phản ứng tích cực giao tiếp - Năng lực hợp tác: Xác định nhiệm vụ nhóm, trách nhiệm thân đưa ý kiến đóng góp hồn thành nhiệm vụ chủ đề - Năng lực sử dụng ngôn ngữ: Học sinh nói viết xác ngơn ngữ Tốn học Phẩm chất - Rèn luyện tính cẩn thận, xác Tư vấn đề tốn học cách lôgic hệ thống - Chủ động phát hiện, chiếm lĩnh tri thức mới, biết quy lạ quen, có tinh thần trách nhiệm hợp tác xây dựng cao - Biết nhận xét đánh giá làm bạn, tự đánh giá kết học tập thân - Chăm tích cực xây dựng bài, chủ động ghi nhớ lại vận dụng kiến thức theo hướng dẫn GV - Hình thành tư logic, lập luận chặt chẽ linh hoạt trình suy nghĩ II THIẾT BỊ DẠY HỌC VÀ HỌC LIỆU - Máy chiếu - Bảng phụ - Phiếu học tập III TIẾN TRÌNH DẠY HỌC HOẠT ĐỘNG 1: MỞ ĐẦU a) Mục tiêu:Nắm vững phương pháp tìm giới hạn bên, giới hạn hữu hạn vô cực hàm số nhận biết kết giới hạn từ đồ thị hàm số b) Nội dung:GV hướng dẫn, tổ chức học sinh ôn tập số dạng toán xác định giới hạn hàm số x 1 x 1 H1- Tính giới hạn bên: lim ; lim x 2 x  x 2 x  x 1 x 1 H2- Tính giới hạn bên: lim ; lim x  x  x  x  H3- Cho hàm số y  f  x  liên tục xác định \ 1 có đồ thị hình vẽ Hãy đánh dấu X vào ô tương ứng với câu trả lời lim f  x    lim f  x   x  2 x  lim f  x    lim f  x    x 1 x  lim f  x    lim f  x    x 1 x  lim f  x    lim f  x   x  2 x  c) Sản phẩm: Câu trả lời HS x 1 x 1 L1- lim  ; lim   x 2 x  x 2 x  x 1 x 1 L2- lim  1; lim  x  x  x  x  L3X x  2 x  lim f  x    X lim f  x    X x  X lim f  x    lim f  x   x  lim f  x   x  lim f  x    x 1 lim f  x    x 1 lim f  x    x  2 d) Tổ chứcthực hiện: *) Chuyển giao nhiệm vụ : GV nêu câu hỏi *)Thực hiện:HS suy nghĩ độc lập *) Báo cáo, thảo luận: - GV gọi học sinh, lên bảng trình bày câu trả lời - Các học sinh khác nhận xét, bổ sung để hoàn thiện câu trả lời *) Đánh giá, nhận xét, tổng hợp: - GV đánh giá thái độ làm việc, phương án trả lời học sinh, ghi nhận tổng hợp kết - Dẫn dắt vào 2.HOẠT ĐỘNG 2: HÌNH THÀNH KIẾN THỨC MỚI I ĐƯỜNG TIỆM CẬN NGANG a) Mục tiêu: Hình thành khái niệmđường tiệm cận ngang biết áp dụng tìm đường tiệm cận ngang b) Nội dung: GV yêu cầu HS giải toán rút định nghĩa, đọc SGK áp dụng làm ví dụ 2 x H1: Bài tốn Cho hàm số y  có đồ thị  C  x 1 Nhận xét khoảng cách từ điểm M  x; y    C  đến đường thẳng  : y  1 x   ? H2:Định nghĩa H3: Chú ý H4 Cách tìm tiệm cận ngang H5.Ví dụ Tìm tiệm cận ngang đồ thị hàm số: a) y  2x 1 x 1 b) y  x 1 c) y  x2  x2  x  x2  x  d) y  x7 c) Sản phẩm: I ĐƯỜNG TIỆM CẬN NGANG Định nghĩa Cho hàm số y  f  x  xác định khoảng vô hạn Đường thẳng y  y0 tiệm cận ngang đồ thị hàm số y  f  x  điều kiện sau thoả mãn: lim f ( x)  y0 , lim f ( x)  y0 x x Chú ý: Nếu lim f ( x)  lim f ( x)  y0 ta viết chung lim f ( x)  y0 x x x  Cách tìm tiệm cận ngang Nếu tính lim f ( x)  y0 lim f ( x)  y0 đường thẳng y  y0 TCN đồ thị x hàm số y  f  x  x Ví dụ 1: Tìm tiệm cận ngang đồ thị hàm số: a) y  x 1 2x 1 x2  x  b) y  c) y  d) y  x 1 x7 x 1 x  x 1 ĐS : a) TCN: b) TCN: c) TCN: d) TCN: y2 y0 y 1 y0 d) Tổ chức thực Chuyển giao Thực - GV dẫn dắt từ tốn để hình thành khái niệm đường tiệm cận ngang - HS thực toán rút định nghĩa đường tiệm cận ngang + Tính khoảng cách từ M đến  ? d  M ;    y  + Nhận xét khoảng cách x   ? dần tới + Hình thành định nghĩa đường tiệm cận ngang - HS thảo luận theo nhóm thực nhiệm vụ - GV theo dõi, hỗ trợ , hướng dẫn nhóm Báo cáo thảo luận Đánh giá, nhận xét, tổng hợp - HS nêu định nghĩa tiệm cận ngang thực VD1 - GV gọi HS lên bảng trình bày lời giải cho VD1 - HS khác theo dõi, nhận xét, hoàn thiện sản phẩm - GV nhận xét thái độ làm việc, phương án trả lời học sinh, ghi nhận tuyên dương học sinh có câu trả lời tốt Động viên học sinh cịn lại tích cực, cố gắng hoạt động học - Chốt kiến thức:Nếu tính lim f ( x)  y0 lim f ( x)  y0 x x đường thẳng y  y0 TCN đồ thị hàm số y  f  x  II ĐƯỜNG TIỆM CẬN ĐỨNG a) Mục tiêu: Hình thành khái niệmđường tiệm cận đứng biết áp dụng tìm đường tiệm cận đứng b) Nội dung: GV yêu cầu HS giải toán rút định nghĩa, đọc SGK áp dụng làm ví dụ 2 x H1: Bài tốn.Cho hàm số y  có đồ thị  C  Nhận xét khoảng cách từ điểm x 1 M  x; y    C  đến đường thẳng  : x  x  1 ? H2:Định nghĩa H3: Cách tìm tiệm cận đứng H4.Ví dụ Tìm tiệm cận đứng đồ thị hàm số: x2  x  x 1 2x 1 b) y  c) y  d) y  x 1 x7 x3 x2  x c) Sản phẩm: II ĐƯỜNG TIỆM CẬN ĐỨNG Định nghĩa Cho hàm số y  f  x  xác định khoảng vô hạn Đường thẳng x  x0 gọi tiệm a) y  cận đứng đồ thị hàm số y  f  x  điều kiện sau thoả mãn: lim f ( x)   lim f ( x)   lim f ( x)   lim f ( x)   x x0 x x0 x x0 x x0  Cách tìm tiệm cận đứng Nếu tìm lim f ( x)   lim f ( x)   , lim f ( x)   , x x0 x x0 x x0 lim f ( x)   đường thẳng x  x0 TCĐ đồ thị hàm số y  f  x  x x0 Ví dụ 2: Tìm tiệm cận đứng đồ thị hàm số: x2  x  x 1 2x 1 a) y  b) y  c) y  d) y  x 1 x3 x7 x  3x ĐS: a) TCĐ: x  b) TCĐ: x  c) TCĐ: x  0; x  d) TCĐ: x  7 d) Tổ chức thực Chuyển giao - GV dẫn dắt từ toán để hình thành khái niệm đường tiệm cận đứng - HS thực tốn + Tính khoảng cách từ M đến  ? d  M ;    x  + Nhận xét khoảng cách x  1 ? dần tới + Hình thành định nghĩa đường tiệm cận đứng - HS thảo luận theo nhóm thực nhiệm vụ Thực - GV theo dõi, hỗ trợ , hướng dẫn nhóm - HS nêu định nghĩa tiệm cận đứng thực VD2 Báo cáo thảo luận - GV gọi HS lên bảng trình bày lời giải cho VD2 - HS khác theo dõi, nhận xét, hoàn thiện sản phẩm - GV nhận xét thái độ làm việc, phương án trả lời học sinh, ghi nhận tuyên dương học sinh có câu trả lời tốt Động viên học sinh cịn lại tích cực, cố gắng hoạt động học Đánh giá, nhận xét, - Chốt kiến thức: Nếu tìm lim f ( x)   lim f ( x)   , x x0 x x0 tổng hợp lim f ( x)   ,hoặc lim f ( x)   đường thẳng x  x0 x x0 x x0 TCĐ đồ thị hàm số y  f  x  HOẠT ĐỘNG 3: LUYỆN TẬP a) Mục tiêu: HS biết áp dụng kiến thức tính giới hạn, định nghĩa tiệm cận đứng, tiệm cận ngang vào tập cụ thể b) Nội dung: PHIẾU HỌC TẬP 2 x  2020 Câu 1.Tiệm cận ngang đồ thị hàm số y  x  2019 A x  2 B x  2019 C y  2 D y  2019 x2 Câu Đường tiệm cận đứng đồ thị hàm số y  có phương trình x 1 A y  B x  2 C y  1 D x  Câu 3.Tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số y  B A C 2 x2  5x  x2  D Câu 4.Tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số y  A C B Câu 5.Tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số A Câu Cho hàm số y  A B x2 x2  C 4x   x2 1 D x2  x 1 là: 2x  D Số đường tiệm cận đồ thị hàm số là: B C x  3x  Câu Số đường tiệm cân đồ thi hàm số y  là: x  2x  D A B C x  3x  Câu Số đường tiệm cân đồ thi hàm số y  là: x  2x  A B C Câu Cho hàm số y  f  x  có bảng biến thiên hình D Tổng số tiệm cận ngang tiệm cận đứng đồ thị hàm số y  A B Câu 10.Cho hàm số y  f  x  xác định liên tục Hỏi đồ thị hàm số y  D f  x  1 C D , có bảng biến thiên sau: có tất đường tiệm cận (tiệm cận đứng f  x  tiệm cận ngang)? A.5 B C D Câu 11.Cho hàm số f  x  có bảng biến thiên hình vẽ Khẳng định khẳng định A Đồ thị hàm số y  f  x  có tiệm cận ngang có tiệm cận đứng B Đồ thị hàm số y  f  x  khơng có tiệm cận ngang có tiệm cận đứng C Đồ thị hàm số y  f  x  có tiệm cận ngang khơng có tiệm cận đứng D.Đồ thị hàm số y  f  x  có hai tiệm cận ngang có tiệm cận đứng mx  với tham số m  Giao điểm hai đường tiệm cận đồ thị x  2m hàm số cho thuộc đường thẳng có phương trình đây? A y  x B x  y  C x  y  D x  y  Câu 12 Cho hàm số y  Câu 13.Cho hàm số y  f  x  có bảng biến thiên sau: Tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số y  f  x  A B C Câu 14.Có tất số nguyên m để đồ thị hàm số y  tiệm cận ngang tiệm cận đứng 3? A 11 B D x 1 có tổng số x  2mx  2m2  25 2 D x 3 Câu 15.Có giá trị tham số m thỏa mãn đồ thị hàm số y  có hai x  xm đường tiệm cận? A Một B Bốn C.Hai D Ba Câu 16.Cho hàm số bậc ba y  f  x  có đồ thị đường cong hình bên Đồ thị hàm số  x  1  x2  1 g  x  f  x  f  x C có tất đường tiệm cận đứng? A B C D c) Sản phẩm: học sinh thể bảng nhóm kết làm ĐÁP ÁN – LỜI GIẢI PHIẾU HỌC TẬP 2 x  2020 Câu 1.Tiệm cận ngang đồ thị hàm số y  x  2019 A x  2 B x  2019 C y  2 D y  2019 Lời giải 2020 2  2 x  2020 x  2  lim Ta có lim x  x  2019 x  2019 1 x Ta suy tiệm cận ngang đồ thị hàm số cho đường thẳng y  2 x2 Câu Đường tiệm cận đứng đồ thị hàm số y  có phương trình x 1 A y  B x  2 C y  1 D x  Lời giải Tập xác định hàm số D  \ 1 Ta có lim y  lim x 1 x 1 x2   nên đồ thị hàm số có đường tiệm cận đứng x  x 1 x2   kết luận x 1 x 1 x  x2  5x  Câu 3.Tổng số đường tiệm cận đứng tiệm cận ngang đồ thị hàm số y  x2  A B C D Hoặc tính lim y  lim Lời giải x  5x  2 x  5x    y  đường tiệm cận ngang  lim Ta có: lim x x   x2  x 4 ĐK: x    x  2  x  1 x    lim x    x  2 x2  5x  lim  lim đường tiệm cận x 2 x 2  x   x   x 2 x  x2  4 đứng  x  1 x    lim x    x2  5x  lim  lim x 2 x 2  x   x   x 2 x  x2  2 lim x 2  x  1 x    lim x    x2  5x   lim x 2  x  x 2  x   x   x 4 Do ta có: x  2 đường tiệm cận đứng đồ thị hàm số Vậy đồ thị hàm số có tổng số đường tiệm cận đứng tiệm cận ngang Câu 4.Tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số y  A B C Lời giải 4x   x2 1 D 4x     y  tiệm cận ngang Ta có: lim x  x2 1 Ta có: x    x  1 ĐKXĐ: x   4x   4x    lim  lim   x  không x  x  x 1  x  1 x  1 ( x   3)  x  1 ( x   3) tiệm cận đứng lim x 1 lim 4x    lim   x 1 x 1  x  1 ( x   3) lim 4x    lim   x 1 x 1  x  1 ( x   3) x 1 x 1 Do ta có: x  1 tiệm cận đứng đồ thị hàm số Vậy đồ thị hàm số có tổng số tiệm cận đứng tiệm cận ngang Câu 5.Tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số A B Tiệm cận đứng: Ta có: x    x   C Lời giải: x2  x 1 là: 2x  D lim  3 x     2 x2  x    ; lim  3 2x  x       2 x2  x     x   đường tiệm cận đứng 2x  Tiệm cận ngang: lim x2  x  1   y  đường tiệm cận ngang 2x  2 lim x2  x  1    y   đường tiệm cận ngang 2x  2 x  x  Câu Cho hàm số y  x2 x2  Số đường tiệm cận đồ thị hàm số là: A B C Lời giải: D Chọn C Tiệm cận đứng: Ta có: x    x  3 x2 x2    x  đường tiệm cận đứng   ; lim 2 x 3 x  x 3 x  x2 x2    x  3 đường tiệm cận đứng lim   ; lim x ( 3) x  x ( 3) x  lim     Tiệm cận ngang: x2   y   y  đường tiệm cận ngang x  x  lim Câu Số đường tiệm cân đồ thi hàm số y  A B x  3x  là: x2  x  C Lời giải: D Chọn A Tiệm cận đứng: Ta có: x  x   0; x Hàm số khơng có tiệm cận đứng Tiệm cận ngang: x  3x  lim   y   y  đường tiệm cận ngang x  x  x  x  3x  Câu Số đường tiệm cân đồ thi hàm số y  là: x  2x  A B C Lời giải: Chọn C Tiệm cận đứng:  x  1 Ta có: x  x      x3 x  3x  2 x  3x    lim    x  TCĐ ; x 3 x  x  x 3 x  x  x  3x  2 x  3x  lim   ; lim    x  1 TCĐ x ( 1) x ( 1) x  2x  x  2x  lim    Tiệm cận ngang:  D x  3x  lim   y  TCN x  x  x  Câu 9.Cho hàm số y  f  x  có bảng biến thiên hình Tổng số tiệm cận ngang tiệm cận đứng đồ thị hàm số y  A f  x  1 B C D Lời giải Số tiệm cận đứng đồ thị hàm số y  số nghiệm thực phương f  x  1 trình f  x     f  x   Mà số nghiệm thực phương trình f  x   y  f  x  với đường thẳng y  số giao điểm đồ thị hàm số Dựa vào bảng biến thiên ta thấy đường thẳng y  điểm phân biệt Vậy đồ thị hàm số y  Lại có lim x  cắt đồ thị hàm số y  f ( x) 2 có tiệm cận đứng f  x  1   đồ thị hàm số có tiệm cận ngang y  f  x  1 Vậy tổng số tiệm cận ngang tiệm cận đứng đồ thị hàm số y  Câu 10.Cho hàm số y  f  x  xác định liên tục Hỏi đồ thị hàm số y  tiệm cận ngang)? A.5 Ta có: f  x  1 , có bảng biến thiên sau: có tất đường tiệm cận (tiệm cận đứng f  x  B C Lời giải D lim f  x    lim x  x  y 1 có tiệm ngang   Đồ thị hàm số y  f  x  f  x  lim f  x     lim x  x  1 có tiệm ngang   Đồ thị hàm số y  f  x  f  x  y  Xét phương trình f ( x)    f  x   2 1 Dựa vào bảng biến thiên, 1 có nghiệm x1  1 , x2   0;  , x3   2;   có tiệm cận đứng x  1 , x  x2 , x  x3 f ( x)  Vậy đồ thị hàm số có tất tiệm cận Câu 11.Cho hàm số f  x  có bảng biến thiên hình vẽ Khẳng định khẳng định Suy đồ thị hàm số y  A Đồ thị hàm số y  f  x  có tiệm cận ngang có tiệm cận đứng B Đồ thị hàm số y  f  x  khơng có tiệm cận ngang có tiệm cận đứng C Đồ thị hàm số y  f  x  có tiệm cận ngang khơng có tiệm cận đứng D.Đồ thị hàm số y  f  x  có hai tiệm cận ngang có tiệm cận đứng Lời giải Ta có: lim y  1 nên đường thẳng y  1 tiệm cận ngang đồ thị hàm số x  lim y  nên đường thẳng y  tiệm cận ngang đồ thị hàm số x  lim y   , lim y   nên đường thẳng x  tiệm cận đứng đồ thị hàm số x 1 x 1 Vậy đồ thị hàm số y  f  x  có hai tiệm cận ngang có tiệm cận đứng mx  với tham số m  Giao điểm hai đường tiệm cận đồ thị x  2m hàm số cho thuộc đường thẳng có phương trình đây? A y  x B x  y  C x  y  D x  y  Lời giải 2m  mx   x  2m Vậy với m  đồ thị hàm số y  Ta có: y  ln có x  2m  x  2m  Câu 12 Cho hàm số y  đường tiệm cận đứng x  2m đường tiệm cận ngang y  m Suy giao hai đường tiệm cận I  2m ; m  đồ thị hàm số thuộc đường thẳng: x  2y  Câu 13.Cho hàm số y  f  x  có bảng biến thiên sau: Tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số y  f  x  A B C D Lời giải Do lim y  5, lim y  1, lim y   nên đồ thị hàm số có hai tiệm cận ngang đường x  x  x 2 thẳng y  5, y  tiệm cận đứng đường thẳng x  Câu 14 Có tất số nguyên m để đồ thị hàm số y  tiệm cận ngang tiệm cận đứng 3? A 11 B x2 1 có tổng số x  2mx  2m2  25 D C Lời giải Điều kiện x  2mx  2m2  25  x 1 x2  lim  Ta có lim 2 x  x  2mx  2m  25 x  2m 2m  25 1  x x2 1 2 x 1 x lim  lim  x  x  2mx  2m  25 x  2m 2m  25 1  x x2 Suy y  tiệm cận ngang đồ thị hàm số u cầu tốn trở thành tìm điều kiện m để đồ thị hàm số x2 1 có tiệm cận đứng  x  2mx  2m2  25  phải có hai y 2 x  2mx  2m  25 nghiệm phân biệt khác 1  '  m   2m  25    5  m       2m  2m  25    m  3, m  4   2m  2m  25   m  3, m   Do m nên m  2;  1; 0; 1; 2 1 Vậy có giá trị m thỏa yêu cầu tốn Câu 15.Có giá trị tham số m thỏa mãn đồ thị hàm số y  đường tiệm cận? A Một B Bốn C.Hai Lời giải x 3 có hai x  xm D Ba x 3  x  x  x  x  m Đồ thị hàm số có đường tiệm cận ngang y  Ta có: lim y  lim Để đồ thị hàm số có hai đường tiệm cận phương trình x  x  m  phải có nghiệm kép có hai nghiệm phân biệt có nghiệm x   m    1  4m      m     m        Tức là:     m     2   3   m   3   m   m      m  Vậy có hai giá trị tham số m để đồ thị hàm số cho có hai đường tiệm cận Vậy có giá trị nguyên tham số m để đồ thị hàm số có hai tiệm cận đứng Câu 16.Cho hàm số bậc ba y  f  x  có đồ thị đường cong hình bên Đồ thị hàm số  x  1  x2  1 g  x  f  x  f  x A có tất đường tiệm cận đứng? C Lời giải B D  f  x   1 Ta có: f  x   f  x      f  x     Dựa vào đồ thị hàm số, ta thấy: y y=2 x -1 O +) Phương trình 1 có nghiệm x1  a  1 (nghiệm đơn) x2  (nghiệm kép)  f  x    x  a  x  1 +) Phương trình   có nghiệm x3  b   a ;  1 , x4  x5  c   f  x    x  b x  x  c  x  1  x  1 x  1  x  1  x 1 Do g  x     f  x   f  x     x  a  x  1  x  b  x  x  c   x  a  x  b  x  x  c   đồ thị hàm số y  g  x  có đường tiệm cận đứng d) Tổ chức thực GV: Chia lớp thành nhóm Phát phiếu học tập Chuyển giao HS:Nhận nhiệm vụ, GV: điều hành, quan sát, hỗ trợ Thực HS: nhóm tự phân cơng nhóm trưởng, hợp tác thảo luận thực nhiệm vụ Ghi kết vào bảng nhóm Đại diện nhóm trình bày kết thảo luận Báo cáo thảo luận Các nhóm khác theo dõi, nhận xét, đưa ý kiến phản biện để làm rõ vấn đề GV nhận xét thái độ làm việc, phương án trả lời nhóm học sinh, ghi Đánh giá, nhận xét, nhận tuyên dương nhóm học sinh có câu trả lời tốt Hướng dẫn HS chuẩn bị cho nhiệm vụ tổng hợp HOẠT ĐỘNG 4: VẬN DỤNG a)Mục tiêu: Giải số toán tiệm cận mở rộng, nâng cao b) Nội dung PHIẾU HỌC TẬP 2018 Vận dụng 1:Cho hàm số g  x   với h  x   mx  nx3  px  qx  m , n , p , q   h  x  m  m Hàm số y  h  x  có đồ thị hình vẽ bên Tìm giá trị m nguyên để số tiệm cận đứng đồ thị hàm số g  x  A 11 B 10 C D 20 Vận dụng 2: Trong mặt phẳng tọa độ Oxy, tổng khoảng cách từ gốc tọa độ đến tất đường tiệm cận đồ thị hàm số y  log A 2x  x 1 B C D x2 , cho tổng x2 khoảng cách từ M đến hai đường tiệm cận đồ thị hàm số nhỏ Tọa độ điểm M là: A  4;3  B  0; 1 C 1; 3 D  3;5  Vận dụng 3: Cho M điểm có hồnh độ dương thuộc đồ thị hàm số y  Vận dụng 4: Cho hàm số bậc ba: f x ax bx cx d có đồ thị đường cong hình bên Đồ thị hàm số g  x   x  3x   x  có tất đường tiệm cận đứng? ( x  1)  f  x   f  x   A B C D c) Sản phẩm: Sản phẩm trình bày nhóm học sinh ĐÁP ÁN PHIẾU HỌC TẬP 2018 Vận dụng 1:Cho hàm số g  x   với h  x   mx  nx3  px  qx  m , n , p , q   h  x  m  m Hàm số y  h  x  có đồ thị hình vẽ bên Tìm giá trị m nguyên để số tiệm cận đứng đồ thị hàm số g  x  A 11 B 10 C Lời giải D 20  x  1  Ta có h  x   4mx3  3nx  px  q Từ đồ thị ta có h  x     x   m    x   5  Suy h  x   4m  x  1  x    x  3  4mx3  13mx  2mx  15m 4  13 Suy h  x   mx  mx3  mx  15mx  C Từ đề ta có C  13 Vậy h  x   mx  mx3  mx  15mx 13 Xét h  x   m2  m   m  x  x3  x  15x   x  1  13 Xét hàm số f  x   x  x3  x  15x   f   x   x3  13x  x  15    x   x   Bảng biến thiên Để đồ thị hàm số g  x  có đường tiệm cận đứng  phương trình h  x   m2  m  có nghiệm phân biệt  phương trình m  x  13 x  x  15x  có nghiệm phân biệt 35  m  1 Do m nguyên nên m  11;  10; ;  2 Vậy có 10 số nguyên m thỏa mãn yêu cầu toán Vận dụng 2: Trong mặt phẳng tọa độ Oxy, tổng khoảng cách từ gốc tọa độ đến tất đường tiệm Từ bảng biến thiên kết hợp thêm điều kiện m  ta có  cận đồ thị hàm số y  log A 2x  x 1 B C D Lờigiải x  2x  0 Điều kiện: x   x 1  Ta xét: 2x    lim  log x      x1  2x    log  lim  x        x     Từ suy tiệm cận đứng  d1  : x   ;  d  : x  2x   2x     lim  log x    lim  log x     x   x  Từ suy tiệm cận ngang  d3  : y  Ta có: T  d  O, d1   d  O, d   d  O, d3    11  2 Vận dụng 3: x2 , cho tổng khoảng x2 cách từ M đến hai đường tiệm cận đồ thị hàm số nhỏ Tọa độ điểm M là: Cho M điểm có hồnh độ dương thuộc đồ thị hàm số y  A  4;3  B  0; 1 C 1; 3 Lời giải D  3;5  Vì M điểm có hồnh độ dương thuộc đồ thị hàm số y  x2  a2 nên M  a;  (với x2  a2 a ) Hai đường tiệm cận đồ thị hàm số : 1 : x  Δ : y Suy : d1  d M ;1   a  d  d M ;2   a2 4 1   a2 a2 a2 Vây tổng khoàng cách từ M đến hai đường tiệm cận là: 4 d  d1  d  a    a2  a2 a2 Áp dụng bất đẳng thức Cauchy ta có a   Dấu xảy : a   4  a2 4 a2 a2  a2 a  4   a  2     a2 a   a   2 Mà a   a  Vậy M  4;3 Vận dụng 4: Cho hàm số bậc ba: f x Đồ thị hàm số g  x   A ax x bx cx d có đồ thị đường cong hình bên  3x   x  có tất đường tiệm cận đứng? ( x  1)  f  x   f  x   B C D Lời giải Điều kiện x  Dựa vào đồ thị ta thấy f  x   a  x  a '  x   với a '   0;1 x   f  x     x  b '  1;2   x  c '  Do f  x   f  x   a  x  a '  x    x  1 x  b '  x  c '  Do đó: g  x   x 1 a  x  1 x  a '  x   x  b '  x  c '  Do điều kiện x  nên đồ thị hàm số g  x  có đường tiệm cận đứng x  2; x  b; x  c d) Tổ chức thực GV: Chia lớp thành nhóm Phát phiếu học tập Chuyển giao HS:Nhận nhiệm vụ, Các nhóm HS thực tìm tịi, nghiên cứu làm nhà Thực Chú ý: Việc tìm giới hạn để tìm tiệm cận sử dụng máy tính cầm tay HS cử đại diện nhóm trình bày sản phẩm Báo cáo thảo luận Các nhóm khác theo dõi, nhận xét, đưa ý kiến phản biện để làm rõ vấn đề GV nhận xét thái độ làm việc, phương án trả lời nhóm học sinh, ghi nhận tuyên dương nhóm học sinh có câu trả lời tốt Đánh giá, nhận xét, - Chốt kiến thức tổng thể học tổng hợp - Hướng dẫn HS nhà tự xây dựng tổng quan kiến thức học sơ đồ tư Ngày tháng năm 2021 TTCM ký duyệt ... f  x  khơng có tiệm cận ngang có tiệm cận đứng C Đồ thị hàm số y  f  x  có tiệm cận ngang khơng có tiệm cận đứng D.Đồ thị hàm số y  f  x  có hai tiệm cận ngang có tiệm cận đứng mx  với...  x   x 4 Do ta có: x  2 đường tiệm cận đứng đồ thị hàm số Vậy đồ thị hàm số có tổng số đường tiệm cận đứng tiệm cận ngang Câu 4.Tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số y  A... 1 Do ta có: x  1 tiệm cận đứng đồ thị hàm số Vậy đồ thị hàm số có tổng số tiệm cận đứng tiệm cận ngang Câu 5.Tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số A B Tiệm cận đứng: Ta có: x 

Ngày đăng: 16/11/2022, 22:20

w