IV.4 Kĩ thuật thiết kế IMC (Internal Model Controller)

Một phần của tài liệu (LUẬN văn THẠC sĩ) NGHIÊN cứu PHƯƠNG PHÁP CHỈNH ĐỊNH bộ điều KHIỂN PID CHO các hệ THỐNG có TRỄ vận tải (dựa TRÊN lý THUYẾT HERMITE BIEHLER) (Trang 122 - 131)

Cấu trúc IMC là rất phổ biến trong các ứng dụng điều khiển quá trình và đặc biệt thích hợp với các hệ thống cĩ thể ổn định vịng hở.

Nguyên lý IMC là một phương pháp chung cĩ thể được áp dụng để thiết kế các bộ điều khiển PID. Đối tượng được điều khiển

G (s ) = k

1+Ts

chuẩn là:

k

p

trong đĩλ là một số dương, nhỏ. Bằng cách chonλ thích hợp, bộ điều khiển PID cĩ thể cĩ sự thỏa hiệp tốt giữa khả năng và tính bền vững. Giá trị của λ được khuyến nghị thỏa mãnλ> 0.2T vàλ> 0.25L.

Chúng ta sẽ bắt đầu phân tích tính bền vững bởi tham số kp . Biểu diễn của kp

theoτ như sau: kp

Vì đối tượng là cĩ thể ổn định vịng hở ta cĩτ > 0 k

p

> 0 . Với các giá trị khác nhau của tham số λ

, chúng ta vẽ đồ thị của k

λ

L

phép của các giá trị kp

theo λ

. Chúng ta cũng nhìn thấy từ biểu thức của kp L

hơn k với mọiτ> 0. Chúng ta kết luận rằng với bất kì upp

IMC đưa ra giá trị kp ổn định.

Tiếp theo chúng ta biễu diễn các tham số k

⎛k = 1 k = 1 ⎜ i kL⎝1 82

Tiếp theo chúng ta xét hai trường hợp: Trường hợp 1:τ

gian (ki , kd ) được thể hiện trong các hình III.14a) hoặc III.14b). Vì dàng cĩ 0

d

nằm trong tập ổn định các giá trị kd ở Hình IV.2.

Hình

Tiếp theo ta sẽ tìm các giá trị củaτ sao cho ki

trong đĩ x1 =

2+τ

2(1+λ L)

Bằng cách cố định λ

L tại các giá trị 0.1, 0.25, 0.5, 1, Hình IV.15 là đồ thị của

kLk

i

1

Trường hợp 2:

biểu diễn trong hình III.14c). Chúng ta so sánh kd

1 < kp < kupp . Tập ổn định được

k

với b2 = −

trong đĩ z2 > z1 là nghiệm của phương trình

khoảng (0,π) . Bằng cách vẽ các đồ thị nhau của λ

, ta cĩ thể thấy k < b với tất cả

L

Khảo sát các giá trị củaτ sao cho IV.16 là các đồ thị của 0.2kLx

cá các đồ thị này chúng ta cĩ thể tìm thấy dải các giá trịτ sao cho ki ∈(0.2x1, 0. 8x1 ) . λ

Các phân tích trên cho phép kết luận rằng tính bền vững của bộ điều khiển IMC khơng chỉ phụ thuộc vào L

mà cịn phụ thuộc vào λ

. Các giá trị sau đây củaτ

T L

đảm bảo một biên ổn định của các tham số với bộ điều khiển:

λ L 0.1 0.25 0.5 1 IV.5 Kết luận

Chương IV đã phân tích một số phương pháp chỉnh định bộ điều khiển PID. Các nghiên cứu đã cho phép chúng ta xác định các điều kiện theo đĩ mỗi kĩ thuật điều chỉnh cung cấp một biên của các tham số ổn định được đánh giá là tốt trong khơng gian các tham số của bộ điều khiển. Theo đĩ chúng ta sẽ tránh được các trường hợp khơng mong muốn điển hình là các tham số của bộ điều khiển PID cĩ nguy cơ tiến tới sự khơng ổn định.

85

Một phần của tài liệu (LUẬN văn THẠC sĩ) NGHIÊN cứu PHƯƠNG PHÁP CHỈNH ĐỊNH bộ điều KHIỂN PID CHO các hệ THỐNG có TRỄ vận tải (dựa TRÊN lý THUYẾT HERMITE BIEHLER) (Trang 122 - 131)

Tải bản đầy đủ (DOCX)

(135 trang)
w