Tính chất ba phân giác của tam giác

Một phần của tài liệu toan hinh 7 (Trang 109 - 112)

III. Đáp án và biểu điểm:

2. Tính chất ba phân giác của tam giác

(15') ?1

a) Định lí: SGK b) Bài tốn

GT ∆ABC, I là giao của 2 phân giác BE, CF

KL . AI là phân giác BACã . IK = IH = IL

CM: SGK

IV. Củng cố: (6')

- Phát biểu định lí.

- Cách vẽ 3 tia phân giác của tam giác. - Làm bài tập 36-SGK:

I cách đều DE, DF → I thuộc phân giác DEFã , tơng tự I thuộc tia phân giác ã ,ã DEF DFE 109 Năm học 2010 - 2011 B C A H K L I B C A M E F

V. H ớng dẫn học ở nhà: (2') - Làm bài tập 37, 38-tr72 SGK HD38: Kẻ tia IO a) ã 0 0 0 180 62 0 0 0 180 180 59 120 2 KOL = − −  = − =     b) KIOã =310

c) Cĩ vì I thuộc phân giác gĩc I

Tuần: 31. Ngày soạn: /4/

06

Tiết: 58. Ngày dạy: /4/

06

luyện tập

A. Mục tiêu:

- Ơn luyện về phân giác của tam giác. - Rèn luyện kĩ năng vẽ phân giác. - Học sinh tích cực làm bài tập.

B. Chuẩn bị:

- Thớc thẳng, com pa.

C. Các hoạt động dạy học:

I. Tổ chức lớp: (1')

II. Kiểm tra bài cũ: (4')

- Học sinh 1: vẽ 3 phân giác của ∆ABC (dùng thớc 2 lề) - Học sinh 2: phát biểu về phân giác trong tam giác cân. - Phát biểu tính chất về phân giác trong tam giác.

III. Tiến trình bài giảng:

Hoạt động của thày, trị Ghi bảng

- Yêu cầu học sinh làm bài tập 39

- Học sinh vẽ hình ghi GT, KL vào vở.

? Hai tam giác bằng nhau theo trờng hợp nào.

- HS: c.g.c

- Yêu cầu 1 học sinh lên bảng chứng minh.

Bài tập 39 (10')

B C

A

D

GT ∆ABC cân ở A, AD là phân giác. KL a) ∆ABD = ∆ACD b) DBCã DCBã CM a) Xét ∆ABD và ∆ACD cĩ: AB = AC (vì ∆ABC cân ở A) ã ã BAD CAD= (GT) 110 Năm học 2010 - 2011

- HD học sinh tìm cách CM: CBD DCBã = ã , sau đĩ 1 học sinh lên bảng CM.

- Yêu cầu học sinh làm bài tập 41 - Học sinh vẽ hình ghi GT, KL vào vở.

? Muốn chứng minh G cách đều 3 cạnh ta cần chứng minh điều gì.

- Học sinh: G là giao của 3 phân giác của tam giác ABC.

- 1 học sinh chứng minh, giáo viên ghi trên bảng.

- Yêu cầu học sinh làm bài tập 42

- Giáo viên hớng dẫn học sinh CM.

AD là cạnh chung

→ ∆ABD = ∆ACD (c.g.c)

b) → ABD ACDã = ã

mặt khác ABCã = ãACB (cân ở A)

ã ã ã ã ABD DBC+ = ACD DBC+ → CBD DCBã = ã Bài tập 41 (10') G P M N A B C

GT G là trọng tâm của ∆ABC đều KL G cách đều 3 cạnh của ∆ABC

CM:

Do G là trọng tâm của tam giác đều → G là

giao điểm của 3 đờng phân giác, tức là g cách đều 3 cạnh của tam giác ABC

Bài tập 42

B C

A

GT ∆ABC, AD vừa là phân giác vừa là trung tuyến

KL ∆ABC cân ở A

IV. Củng cố: (1')

- Đợc phép sử dụng định lí bài tập 42 để giải tốn. - Phơng pháp chứng minh 1 tia là phân giác của 1 gĩc.

V. H ớng dẫn học ở nhà: (2') - Về nhà làm bài tập 43 (SGK) - Bài tập 48, 49 (SBT-tr29) 111 Năm học 2010 - 2011

Tuần: 32. Ngày soạn:18/4/ 06

Tiết: 59. Ngày dạy: 25/4/

06

tính chất đờng trung trực của tam giác

A. Mục tiêu:

- Chứng minh đợc hai định lí về tính chất đặc trng của đờng trung trực của một đoạn thẳng dới sự hớng dẫn của giáo viên.

- Biết cách vẽ một trung trực của đoạn thẳng và trung điểm của đoạn thẳng nh một ứng dụng của hai định lí trên.

- Biết dùng định lí để chứng minh các định lí sau và giải bài tập.

B. Chuẩn bị:

- Thớc thẳng, com pa, một mảnh giấy.

C. Các hoạt động dạy học:

I. Tổ chức lớp: (1')

II. Kiểm tra bài cũ: (4')

III. Tiến trình bài giảng:

Hoạt động của thày, trị Ghi bảng

- Giáo viên hớng dẫn học sinh gấp giấy - Học sinh thực hiện theo

- Lấy M trên trung trực của AB. Hãy so sánh MA, MB qua gấp giấy.

- Học sinh: MA = MB

? Hãy phát biểu nhận xét qua kết quả đĩ. - Học sinh: điểm nằm trên trung trực của một đoạn thẳng thì cách đều 2 đầu mút của đoạnn thẳng đĩ.

- Giáo viên: đĩ chính là định lí thuận. - Giáo viên vẽ hình nhanh.

- Học sinh ghi GT, KL

- Sau đĩ học sinh chứng minh . M thuộc AB

. M khơng thuộc AB (∆MIA = ∆MIB)

Xét điểm M với MA = MB, vậy M cĩ

Một phần của tài liệu toan hinh 7 (Trang 109 - 112)

Tải bản đầy đủ (DOC)

(124 trang)
w