... 0 x y z ∂ ∂ ∂ − + − + − = ∂ ∂ ∂ . . . Chương 1 Chương 1 : Đạo hàm và vi phân của hàm nhiều biến : Đạo hàm và vi phân của hàm nhiều biến KHÔNG GIAN R n 1) Chuẩn và khoảng cách (mêtric) trong ... '' , '' , Chú ý : Cho hàm n biến ( ) 1 2 n u f x x x= , , , Đạo hàm riêng theo biến x i là đạo hàm của hàm theo biến x i nếu coi các biến khác là hằng số. Ký hiệu i u x ∂ ∂ ... tự, ta có đạo hàm riêng theo biến y tại ( ) o o x y, . Ký hiệu ( ) o o f x y y ∂ ∂ , hoặc ( ) y o o f x y' , Chú ý : Đạo hàm riêng theo biến x (y) là đạo hàm của hàm đã cho theo biến x...
Ngày tải lên: 25/06/2013, 01:27
Phép tính vi phân hàm một biến
... 8 Ph´ep t´ınh vi phˆan h`am mˆo . t biˆe ´ n 8.1 D - a . oh`am 61 8.1.1 D - a . o h`am cˆa ´ p1 61 8.1.2 D - a . o h`am cˆa ´ pcao 62 8.2 Viphˆan 75 8.2.1 Vi phˆan cˆa ´ p1 75 8.2.2 Vi phˆan cˆa ´ pcao ... f (x). H`am f(x) kha ’ vi nˆe ´ un´oc´od a . o h`am f (x)h˜u . uha . n. H`am f(x) kha ’ vi liˆen tu . c nˆe ´ ud a . o h`am f (x)tˆo ` nta . i v`a liˆen tu . c. Nˆe ´ u h`am f(x) kha ’ vi th`ı n´o liˆen ... 73 liˆen tu . c v`a kha ’ vi ta . idiˆe ’ m x = x 0 ? (D S. a =3x 2 0 , b = −2x 3 0 ). 54. X´ac d i . nh α v`a β dˆe ’ c´ac h`am sau: a) liˆen tu . c kh˘a ´ pno . i; b) kha ’ vi kh˘a ´ pno . inˆe ´ u 1)...
Ngày tải lên: 29/09/2013, 16:20
Chương 1: ĐẠO HÀM VÀ VI PHÂN HÀM NHIỀU BIẾN pptx
... thức tổng qt cho vi phân cấp cao d n f = d(d n-1 f ) Vi phân cấp n là vi phân của vi phân cấp (n – 1). (Chỉ áp dụng khi f là biểu thức đơn giản theo x, y (thường là hợp của 1 hàm sơ cấp với 1 ... 0 ( , ) ( , ) ( , ) x y df x y f x y dx f x y dy ′ ′ = + Vi phân của hàm 2 biến thường vi t dạng: Các công thức tính vi phân: như hàm 1 biến 2 ( ) , ( ) , ( . ) d f df R d f g df dg d f g gdf ... (0,0) xy x y f x y x y x y ≠ = + = Nội dung 1 .Đạo hàm riêng cấp 1 của z = f(x,y) 2 .Đạo hàm riêng cấp cao của z = f(x,y) 3.Sự khả vi và vi phân. Ví dụ ( , ) x y z f x y e + = = ( ) x y dz...
Ngày tải lên: 08/03/2014, 20:20
Phép tính vi phân hàm nhiều biến.pdf
... f 2 (x, y), . . . , f p (x, y)) Các hàm f 1 , f 2 , . . . , f p : A × B → R được gọi là hàm thành phần của f. Mỗi hàm thành phần là một hàm số thực theo n + p biến số thực (x, y) = (x 1 , x 2 , ... 0: Cho f có đạo hàm riêng ∂f ∂x , ∂f ∂y liên tục trong lân cận của (x 0 , y 0 ). Giả sử: f(x 0 , y 0 ) = 0 và ∂f ∂y (x 0 , y 0 ) = 0 Khi đó, có khoảng mở I chứa x 0 , hàm y : I → R khả vi liên tục ... có đạo hàm riêng liên tục trong lân cận của (x 0 , y 0 , z 0 ) Giả sử f (x 0 , y 0 , z 0 ) = 0 và ∂f ∂z (x 0 , y 0 , z 0 ) = 0 Khi đó có tập mở D ⊂ R 2 , (x 0 , y 0 ) ∈ D, hàm z : D → R có đạo...
Ngày tải lên: 04/08/2012, 14:24
Phép tính vi phân hàm nhiều biến (tt).pdf
... đó ∂f ∂x i : D → R biến x ∈ D thành ∂f ∂x i (x) là hàm số thực theo n biến số thực và được gọi là hàm đạo hàm riêng của f theo biến x i . Ta có thể đề cập đến đạo hàm riêng của hàm ∂f ∂x i theo biến x j ∂ ∂x j ∂f ∂x i (x) ... tháng 12 năm 2004 Phép Tính Vi Phân Của Hàm Nhiều Biến (tt) 5 Công thức Taylor 5.1 Đạo hàm riêng bậc cao Định nghĩa 1 Cho D là tập mở trong R n , f : D → R. Giả sử đạo hàm riêng ∂f ∂x i (x), i = 1, ... − ∂f ∂x i (x) t ≡ ∂ 2 f ∂x i ∂x j (x) và gọi là đạo hàm riêng bậc hai của f theo biến x i , x j , theo thứ tự, tại x. Tổng quát, khi thay đổi thứ tự lấy đạo hàm riêng thì giá trị của đạo hàm sẽ thay đổi. Thí dụ: Cho f(x,...
Ngày tải lên: 04/08/2012, 14:24
Ôn thi thạc sĩ toán học tài liệu hướng dẫn phép tính vi phân hàm nhiều biến
... f 2 (x, y), . . . , f p (x, y)) Các hàm f 1 , f 2 , . . . , f p : A × B → R được gọi là hàm thành phần của f. Mỗi hàm thành phần là một hàm số thực theo n + p biến số thực (x, y) = (x 1 , x 2 , ... bằng 1). Với x ∈ D, đạo hàm riêng của f tại x theo biến x i , ký hiệu ∂f ∂x i (x), định bởi: ∂f ∂x i (x) = lim t→0 (x + te i ) − f(x) t (nếu giới hạn tồn tại, hữu hạn) 2. Sự khả vi: Cho D là tập ... vi tại x thì f liên tục tại x. Điều kiện đủ: Nếu các đạo hàm riêng ∂f ∂x i , i = 1, 2, . . . , n liên tục tại x thì f khả vi tại x Ghi chú: Hàm f(x, y) = xy x 2 + y 2 , x 2 + y 2 > 0 0 ,...
Ngày tải lên: 21/06/2013, 09:54
Nhắc lại giới hạn, đạo hàm, vi phân
... 2 2 u' (cotgu)'(1cotgu).u' sinu - ==-+ 3. Vi phân: Cho hàm số y = f(x) xác định trên khoảng (a ; b) và có đạo hàm tại x(a;b)Ỵ . Cho số gia Dx tại x sao cho xx(a;b)+DỴ . Ta gọi tích y’.Dx (hoặc f’(x).Dx) là vi phân của hàm số ... 2 x12x3 lnC. 2122x3 - -+ + Bài 11. Tìm họ nguyên hàm của các hàm số: Trần Só Tùng Tích phân Trang 1 Nhắc lại Giới hạn – Đạo hàm – Vi phân 1. Các giới hạn đặc biệt: a) ® = x0 sinx lim1 x ... Trần Só Tùng Tích phân Trang 5 · Đạo hàm bên trái của hàm số tại điểm x 0 = 0. 20 x0x0 F(x)F(0)xx1e F'(0)limlim1. x0x - ®® -++- === - · Đạo hàm bên phải của hàm số tại điểm x 0 ...
Ngày tải lên: 27/08/2013, 13:41
Phép tính vi phân hàm nhiều biến
... nhau: ∂ 2 f ∂x∂y = ∂ 2 f ∂y∂x · C ´ AC V ´ IDU . 126 Chu . o . ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n 9.2.1 Vi phˆan cˆa ´ p1 Gia ’ su . ’ h`am w = f(x, y) kha ’ vi ta . id iˆe ’ m M(x, y), t´u . cl`ata . id ´o s ... d ˆo ´ iv´o . i ∆x v`a ∆y cu ’ asˆo ´ gia ∆f) D 1 ∆x + D 2 ∆y d u . o . . cgo . il`avi phˆan (hay vi phˆan to`an phˆa ` n ≡ hay vi phˆan th´u . nhˆa ´ t) cu ’ a h`am w = f(x, y)v`ad u . o . . ck´yhiˆe . ul`adf ... 0. 9.2.2 ´ Ap du . ng vi phˆan dˆe ’ t´ınh gˆa ` nd´ung Dˆo ´ iv´o . i∆x v`a ∆y d u ’ b´e ta c´o thˆe ’ thay xˆa ´ pxı ’ sˆo ´ gia ∆f(M)bo . ’ ivi phˆan df (M), t´u . cl`a ∆f(M) ≈ df (M) 9.2. Vi phˆan cu ’ a...
Ngày tải lên: 29/09/2013, 16:20
Giới hạn đạo hàm- vi phân- tích phân
... F(x) là một nguyên hàm của hàm số f(x) trên khoảng (a ; b) thì : a/ Với mọi hằng số C, F(x) + C cũng là một nguyên hàm của hàm số f(x) trên khoảng đó. b/ Ngược lại, mọi nguyên hàm của hàm số ... 2 2 u' (cotgu)'(1cotgu).u' sinu - ==-+ 3. Vi phân: Cho hàm số y = f(x) xác định trên khoảng (a ; b) và có đạo hàm tại x(a;b)Ỵ . Cho số gia Dx tại x sao cho xx(a;b)+DỴ . Ta gọi tích y’.Dx (hoặc f’(x).Dx) là vi phân của hàm số ... + ëû ịị Tích phân Trần Só Tùng Trang 14 Vấn đề 4: XÁC ĐỊNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ Phương pháp đổi biến số được sử dụng khá phổ biến trong vi c tính các tích phân bất định....
Ngày tải lên: 06/11/2013, 11:15
Tài liệu Ôn tập giới hạn-đạo hàm-vi phân ppt
... Ôn tập giới hạn -đạo hàm- vi phân Tích phân Trần Só Tùng Trang 6 Ví dụ 3: Xác định a , b để hàm số: 2 xkhix1 F(x) axbkhix1 ì £ = í +> ỵ là một nguyên hàm của hàm số: 2xkhix1 f(x) 2khix1 £ ì = í > ỵ ... 2 2 u' (cotgu)'(1cotgu).u' sinu - ==-+ 3. Vi phân: Cho hàm số y = f(x) xác định trên khoảng (a ; b) và có đạo hàm tại x(a;b)Ỵ . Cho số gia Dx tại x sao cho xx(a;b)+DỴ . Ta gọi tích y’.Dx (hoặc f’(x).Dx) là vi phân của hàm số ... nguyên hàm của hàm số f(x). Ví dụ 1: Tìm nguyên hàm hàm số: sinx f(x). sinxcosx = - Giải: Chọn hàm số phụ: cosx g(x) sinxcosx = - Gọi F(x) và G(x) theo thứ tự là nguyên hàm của các hàm...
Ngày tải lên: 13/12/2013, 23:15
Phép tính vi phân hàm nhiều biến
... k k k k f x y k k k k = = → + − = = → + + . 4. Tính các đạo hàm hàm riêng cấp 1 và vi phân toàn phần của các hàm sau đây a) 3 3 3z x y xy= + − b) 2 2 2 2 x y z x y − = + c) sin y x z ... t t t t f f x f y g t t t ′ ′ ′ ′ ′ = + = − ÷ + + + 8. Tính các đạo hàm hàm riêng và vi phân cấp 2 của các hàm sau đây a) 2 ln( )z x y= + b) 2 2z xy y= + c) arctg 1 x y z xy + = − d) 2 ... ) : 6 , 0,6AB y x x= − ∈ . Ta có hàm một biến ( ) ( ) 2 3 2 4 2 12 :z x y x y x x z x= − − = − = ( ) 2 6 24 0 4 0,6 x z x x x ′ = − = ⇔ = ∈ Trên AB, hàm số có một điểm tới hạn ( ) 2 2,4M và...
Ngày tải lên: 16/01/2014, 17:16
bài toán biên dạng tuần hoàn cho phương trình vi phân hàm bậc nhất phi tuyến
... 0but bu (2.31) Lấy tích phân biểu thức (2.22) từ 1 đến m t , ta có phương trình vi phân hàm phi tuyến để nghiên cứu các điều kiện đủ cho vi c tồn tại và duy nhất nghiệm của ... ,;Kab AB Tập các hàm :, f ab A B, ,, n ARB Rn thoả điều kiện Carathèodory, nghĩa là : Hàm ,:, f xab B đo được với mỗi x A Hàm ,: f tAB liên ... đó ta suy ra () ( )() () 0 ut ut qt . Do hàm qt ta chọn là hàm dương bất kì nên ta phải có () ( )() () 0ut ut qt hay u(t) là hàm tăng ngặt theo t hay ub ua . Lại do...
Ngày tải lên: 19/02/2014, 10:15
Bạn có muốn tìm thêm với từ khóa: