Biết khoảng cách từ tâm của đường tròn đến hai dây, có thể so sánh độ dài hai dây đó được không?... Liên hệ giữa dây và khoảng cách từ tâm đến dây.[r]
? Các hình biểu thị nội dung định lí nào? Em phát biểu định lí C A C D A O B O A I B C // Hình Hình AB > CD IC = ID // I D o B Hình AB CD D OK khoảng cách từ tâm O đến dây CD C K OH khoảng cách từ tâm O đến dây AB O D H A B Biết khoảng cách từ tâm đường tròn đến hai dây, so sánh độ dài hai dây khơng? §3 Liên hệ dây khoảng cách từ tâm đến dây Bài toán Cho AB CD hai dây (khác đường kính) đường tròn (O; R) Gọi OH, OK theo thứ tự khoảng cách từ O đến AB, CD Chứng minh OH2 + HB2 = OK2 + KD2 C K O H A D R B §3 Liên hệ dây khoảng cách từ tâm đến dây Bài tốn GT Đường trịn (O) , dây AB , AC khác đường kính OH AB , OK CD KL OH2 + HB2 = OK2 + KD2 (*) Phân tích C K cạnhởcủa tam Ta HO, thấyHB hệlàthức vế giác vuông nào? Chứng đẳng minh thức bài(*) tốn? có OK, KD cạnh tam liên quan định giácđến vng nàolí? ? O H A D R B §3 Liên hệ dây khoảng cách từ tâm đến dây Bài toán GT Đường trịn (O) , dây AB , AC khác đường kính OH AB , OK CD KL OH2 + HB2 = OK2 + KD2 Giải C Áp dụng định lý Pitago vào tam giác vuông OHB OKD có : OH HB OB R (1) OK KD OD R (2) K O Từ (1) (2) => OH2 + HB2 = OK2 + KD2 H A D R B ? Kết luận toán trên: OH2 + HB2 = OK2 + KD2 cịn khơng dây đường kính hai dây đường kính? C K A R H O C D B A R H K O B D H O OH 0 HB R HB2 = R2 = OK2 + KD2 H K O OH OK 0 HB2 = R2 = KD2 Chú ý: Kết luận toán dây đường kính hai dây đường kính §3 Liên hệ dây khoảng cách từ tâm đến dây Liên hệ dây khoảng cách từ tâm đến dây ?1 H·y sư dơng kÕt qu¶ OH HB OK K D (*) chøng minh: a)N Õu AB = CD th× OH = OK b) NÕu OH = OK th× AB = CD Phân tích C K D AB = CD => => AB CD ; KD ) HB = KD (Do HB = 2 HB2 = KD2 => OH2= OK2 => OH = OK O A H R B §3 Liên hệ dây khoảng cách từ tâm đến dây Liên hệ dây khoảng cách từ tâm đến dây ?1 H·y sư dơng kÕt qu¶ OH HB OK K D (*) chøng minh: a)N Õu AB = CD th× OH = OK b) NÕu OH = OK th× AB = CD Phân tích C K D < => AB = CD O AB CD ; KD ) HB = KD (Do HB = 2 HB2 = KD2 OH2= OK2 OH = OK A H R B HSTương Chứng minh phần a? tự ta có suy luận theoChứng chiều ngược HS minhlại phần b? A H O C a NÕu AB = CD H·y chøng minh OH = OK ? B R K D b NÕu OH = OK H·y chứng minh AB = CD ? Bài giải AB Ta cã OH AB AH = HB = OK CD CK = KD = CD Bµi gi¶i Ta cã OH AB OK CD AH = HB = CK = KD = AB CD ( Theo mối quan hệ đờng kính dây ) ( Theo mối quan hệ đờng kính dây ) Mà AB = CD ( gt ) Mà OH = OK ( gt) Suy HB = KD HB2 = KD2 Mặt khác OH2 + HB2 = OK2 + KD2 Nªn OH2 = OK2 OH=OK OH2 = OK2 Mặt khác OH2 + HB2 = OK2 + KD2 Nªn HB2 = KD2 HB =KD AB =CD c K O A NÕu AB = CD thì OH = OK D R B H NÕu OH = OK thì AB = CD Hãy phát biểu kết nói thành định lí? Trong mét ®êng tròn : a/ Hai dây cách tâm b/ Hai dây cách tâm AB = CD OH = OK §3 Liên hệ dây khoảng cách từ tâm đến dây Chú ý Trong hai đường O O' cm C A cm D B O A tròn, hai dây chưa cách tâm Trong hai đường tròn, hai dây cách tâm chưa O' B C D Định lí hai đường trịn khơng? Nếu cần thêm điều kiện ? §3 Liên hệ dây khoảng cách từ tâm đến dây Chú ý Trong hai đường tròn O O' cm C A cm D B O A khác nhau, hai dây chưa cách tâm Trong hai đường tròn khác nhau, hai dây cách tâm chưa O' B C D Định lí hai dây đường tròn hai đường trịn §3 Liên hệ dây khoảng cách từ tâm đến dây Liên hệ dây khoảng cách từ tâm đến dây ?2 Sử dụng kết OH HB OK K D (*) để so sánh a) OH OK, biết AB > CD Phân tích b) AB CD, biết OH < OK C AB > CD K O H A D R B Nếu AB > CD ta so sánh độ dài hai đoạn thẳng nào? §3 Liên hệ dây khoảng cách từ tâm đến dây Liên hệ dây khoảng cách từ tâm đến dây ?2 Sử dụng kết OH HB OK K D (*) để so sánh a) OH OK, biết AB > CD Phân tích b) AB CD, biết OH < OK C < => AB > CD K O A D R B < => < => < => H HB > KD HB2> KD2 OH2< OK2 OH < OK ?2 C a, NÕu AB > CD th× OH < OK: K XÐt (O; R) cã OH AB vµ OK CD 1 HB = (1) CD AB; KD = GT O H (Quan hệ vuông góc đờng kính dây) Vi AB > CD (gt) ….AB > CD (2) A HB… > KD Tõ (1) vµ (2) ta cã: HB ….2 >>… KD (3) Mµ: OH2 + HB2 = OK2 + KD2 (4) < OK2 OH < OK Tõ (3) vµ (4) ta cã: OH2 b, NÕu OH < OK th× AB > CD: OH < OK …………… OH2 < OK2 (5) Tõ (4) vµ (5) ta cã:……………… : HB2 > KD2 AB = CD OH =1OK HB > KD AB CD AB > CD …………… 2 D R B §3 Liên hệ dây khoảng cách từ tâm đến dây Liên hệ dây khoảng cách từ tâm đến dây * Định lí a) OH OK, biết AB > CD ) AB CD, biết OH < OK C K O H A D R B AB > CD OH < OK Trong hai dây đường tròn: a) Dây lớn gần tâm b) Dây gần tâm lớn Kết tốn ?2 nội dung định lí Trong câu sau câu , sai ? Các khẳng định Trong đờng tròn hai dây cách tâm Đáp án Đúng Trong hai dây đờng tròn dây nhỏ dây gần tâm Sai Hai dây khoảng cách từ tâm đến dây chúng Sai Trong dây đờng tròn dây gần tâm lớn §óng Củng cố – Luyện tập ?3 Cho tam giác ABC , O giao điểm đường trung trực tam giác; D, E, F theo thứ tự trung điểm cạnh AB, BC, AC Cho biết OD > OE, OE = OF ( Hình 69) Hãy so sánh độ A dài: a) BC AC; = x F b) AB AC D _ _ ∆ABC, O giao điểm ba x = đường trung trực /// /// C E AD = BD , BE = EC, AF = FC B OD > OE , OE = OF So sánh : Giao điểm điểm ba ba đường đường trung trung trực trực của a) BC AC Giao tamgiác giáccó cótính tínhchất chấtgì? gì?Nó Nócịn cịncó có b) AB AC tam têngọi gọikhác khácnhư nhưthế thếnào nào?? tên O GT KL Củng cố – Luyện tập ?3 GT KL A ∆ABC,O giao điểm ba đường trung trực = AD = BD , BE = EC, AF = FC D OD > OE , OE = OF = So sánh : a BC AC B b AB AC x _ _ F O /// E x /// Giải a) O giao điểm đường trung trực cạnh ∆ABC nên O tâm đường tròn ngoại tiếp ∆ ABC VớiKhi điềuđókiện đề bài, đểcủa so đường sánh hai dây BC BC AC trịn? Khi BC AC đường trịn? AC đường tròn (O) ta làm ? C ... Trong dây đờng tròn dây gần tâm lớn §óng Củng cố – Luyện tập ?3 Cho tam giác ABC , O giao điểm đường trung trực tam giác; D, E, F theo thứ tự trung điểm cạnh AB, BC, AC Cho biết OD > OE, OE =... trực của a) BC AC Giao tamgiác giáccó cótính tínhchất chấtgì? gì?Nó Nócịn cịncó có b) AB AC tam têngọi gọikhác khácnhư nhưthế thếnào nào?? tên O GT KL Củng cố – Luyện tập ?3 GT KL A ∆ABC,O giao... hệlàthức vế giác vuông nào? Chứng đẳng minh thức bài(*) tốn? có OK, KD cạnh tam liên quan định giácđến vng nàolí? ? O H A D R B ? ?3 Liên hệ dây khoảng cách từ tâm đến dây Bài tốn GT Đường trịn (O) ,