1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi học sinh giỏi môn Toán lớp 12 cấp quốc gia năm 2020-2021 - Sở GD&ĐT Kiên Giang

1 32 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 197,52 KB

Nội dung

Luyện tập với Đề thi học sinh giỏi môn Toán lớp 12 cấp quốc gia năm 2020-2021 - Sở GD&ĐT Kiên Giang giúp bạn hệ thống kiến thức đã học, làm quen với cấu trúc đề thi, đồng thời rèn luyện kỹ năng giải đề chính xác giúp bạn tự tin đạt kết quả cao trong kì thi sắp tới. Mời các bạn cùng tham khảo và tải về đề thi.

SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN ĐỘI TUYỂN DỰ THI HSG QUỐC GIA KIÊN GIANG NĂM HỌC 2020 - 2021 Mơn thi: TỐN ĐỀ THI CHÍNH THỨC Thời gian làm bài: 180 phút (không kể thời gian giao đề) Ngày thi: 29/09/2020 Bài (5,0 điểm) Cho dãy số  xn  xác định sau: x1  , xn 1  xn2  xn  với n  * a) Tìm số hạng tổng quát dãy số  xn    1   b) Tìm lim   n   x       1 1 x x x x x         1 2 n   Bài (5,0 điểm) Tìm tất hàm số liên tục f :    cho: f  x   10 f  x   f  x   30 x , x   Bài (5,0 điểm) Trên tập hợp số nguyên không âm, xét phương trình: x  2.3 y  x  y 1  1 1 a) Tìm tất cặp số ngun khơng âm  x; y  thỏa mãn 1 mà y  b) Chứng minh không tồn cặp số nguyên không âm  x; y  với y  thỏa mãn phương trình 1   Bài (5,0 điểm) Cho đường tròn  C1  điểm B thuộc  C1  Điểm A khác B cho đường thẳng AB tiếp tuyến  C1  Điểm C không thuộc  C1  cho đoạn thẳng AC cắt  C1  hai điểm phân biệt Gọi  C2  đường tròn tiếp xúc với AC C tiếp xúc với  C1  D (điểm B D khác phía so với bờ AC) Gọi I tâm đường tròn ngoại tiếp tam giác BCD  tiếp tuyến chung  C1  ,  C2  D a) Chứng minh điểm I cách hai đường thẳng AB  b) Chứng minh tâm đường tròn ngoại tiếp tam giác BCD nằm đường tròn ngoại tiếp tam giác ABC HẾT https://toanmath.com/ Ghi chú: + Thí sinh khơng sử dụng tài liệu máy tính cầm tay + Giám thị coi thi khơng giải thích thêm

Ngày đăng: 14/05/2021, 09:14

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w