- Nắm vững kiến thức đã học: Định lí liên hệ giữa phép nhân và phép khai phương; quy tắc khai phương một tích; quy tắc nhân các căn bậc hai. - Xem kĩ các ví dụ và bài tập đã làm.[r]
(1)Trường THCS Tà Long – Giáo án đại số 9
Ngày soạn: ………… Tiết 4: LIÊN HỆ GIỮA PHÉP NHÂN
VÀ PHÉP KHAI PHƯƠNG A MỤC TIÊU:
Qua học, học sinh cần đạt yêu cầu tối thiểu sau đây:
I. Kiến thức:
- Nắm nội dung cách c/m định lý liên hệ phép nhân phép khai phương
II. Kỹ năng:
- Kỹ dùng quy tắc khai phương tích nhân thức bậc hai tính tốn biến đổi biểu thức
III. Thái độ:
- Rèn cho học sinh tính xác, cẩn thận - Rèn cho học sinh tư logic
B PHƯƠNG PHÁP GIẢNG DẠY:
- Nêu vấn đề - Hoạt động nhóm
C CHUẨN BỊ GIÁO CỤ I. Giáo viên: Sgk, giáo án
II. Học sinh: Sgk, dụng cụ học tập
D TIẾN TRÌNH BÀI DẠY:
I. Ổn định lớp – kiểm tra sĩ số:
- Lớp 9A: Tổng số: Vắng: - Lớp 9B: Tổng số: Vắng: II Kiểm tra cũ: (Không)
III. Nội dung mới:
1 Đặt vấn đề:
Để biến đổi biểu thức chứa thức bậc hai ,ta tìm công cụ để sử dụng làm tập dạng
2 Triển khai dạy:
HOẠT ĐỘNG THẦY VÀ TRÒ NỘI DUNG KIẾN THỨC
Hoạt động 1: GV: Yêu cầu HS làm ?1 sgk Tính so sánh:
25
16 16 25
HS: 16.25 400 20
16 25 4.520
16.25 = 16 25
GV: Tổng quát lên với hai số khơng âm a b ta có gì?
HS: Với hai số a b không âm, ta có: ab a b
GV: Đó nội dung định lí
1 Định lí
?1
20 400 25
16
16 25 4.520
16.25 = 16 25 * Định lí:
Với hai số a b khơng âm, ta có: ab a b
Chứng minh:
(2)Trường THCS Tà Long – Giáo án đại số 9
HS: Ghi nhớ phát biểu định lí sgk
GV: Hướng dẫn HS chứng minh
HS: Thực ghi nhớ
GV: Chú ý cho HS: Định lí mở rộng cho tích nhiều số khơng âm
HS: Lắng nghe ghi nhớ
Ta có: a bxác định không âm ( a b)2=( a)2( b)2ab
vậy a blà bậc hai số học ab Vậy ab a b(đpcm)
Ví dụ: 16.25 16 25 (= 4.5 = 20)
* Chú ý:
Định lí mở rộng cho tích nhiều số khơng âm:
a1.a2 an a1 a2 an
với a1, a2, …, an Hoạt động 2
GV: Từ định lí nêu quy tắc khai phương tích?
HS: Muốn khai phương số khơng âm,ta khai phương thừa số nhân kết với
GV: Áp dụng quy tắc tính: a) 49.1,44.25 ; b) 810.40
HS: Dựa vào quy tắc, hai HS đứng chổ trả lời hướng dẫn GV
GV: Tương tự, hai em lên bảng làm ?2
HS: Hai HS lên bảng thực hiện, HS khác làm vào ý nhận xét bạn:
a) 0,16.0,64.225 = 225 64 , 16 ,
= 0,4 0,8 15 = 4,8
b) 250.360 = 25.36.100 = 25 36 100 = 10
GV: Từ định lý phát biểu thành quy tắc nhân thức bậc hai?
HS: Muốn nhân bậc hai số không âm, ta nhân số dấu với khai phương kết
2 Áp dụng.
a) Quy tắc khai phương tích:
Muốn khai phương số khơng âm,ta khai phương thừa số nhân kết với
* Ví dụ :Tính a) 49.1,44.25
= 49 1,44 25
= 7.1,2.5 b) 810.40 = 810.40 = 81.4.100
= 81 100
= 9.2.10 = 180 ?2 Tính:
a) 0,16.0,64.225 = 225 64 , 16 ,
= 0,4 0,8 15 = 4,8
b) 250.360 = 25.36.100 = 25 36 100 = 10 = 300
b) Quy tắc nhân thức bậc hai:
Muốn nhân bậc hai số không âm, ta nhân số dấu với khai phương kết
(3)Trường THCS Tà Long – Giáo án đại số 9
GV: Hướng dẫn HS làm ví dụ Tính: 20
1,3 52 10
HS: 20= 5.20 100 10 1,3 52 10 13.13.4 26 GV: Tương tự, hai em lên bảng làm ?3
HS: Hai HS lên bảng thực hiện, HS khác làm vào ý nhận xét bạn
GV: Qua hai quy tắc, GV ý cho HS sử dụng quy tắc cho biểu thức
Ví dụ 2: Tính a) 20 Giải:
Ta có: 20= 5.20 100 10 b) 1,3 52 10 13.13.4 26
?3 Tính:
a) 75 3.75 3.3.25 = = 15 b) 20 72 4.9
= 20.72.4,9 = 2.10.2.36.49.10
= 10 = 120 * Chú ý:
Tổng quát, với A B hai biểu thức khơng âm ta có:
B A B
A
( A)2 A2 A
Hoạt động 3 GV: Hướng dẫn kĩ câu a
HS: Chú ý theo dõi
GV: Tương tự, làm câu b, c, d?
HS: Ba HS lên bảng thực hiện, HS khác làm vào ý nhận xét bạn
3 Ví dụ: Rút gọn:
a) 3a 27a(a0)
a a a a
a 27 81 9
3
với a0
b) 9a2.b4 9 a2 b4 3ab2
c) 3a 12a3
= 3a 12a3
= 36a4
= 6a2
d) 2a.32ab2 (a, b không âm)
= 2.32a b2
= 64a b2
= 8ab
IV. Củng cố
- Phát biểu định lí liên hệ phép nhân phép khai phương? - Phát biểu quy tắc khai phương tích?
- Phát biểu quy tắc nhân bậc hai? - Hướng dẫn lầm tập 17, 18 sgk
V. Dặn dò
- Nắm vững kiến thức học: Định lí liên hệ phép nhân phép khai phương; quy tắc khai phương tích; quy tắc nhân bậc hai
- Xem kĩ ví dụ tập làm - Làm tập 29, 30, 31 sgk
(4)Trường THCS Tà Long – Giáo án đại số 9 - Chuẩn bị cho tiết sau: “Luyện tập”