1. Trang chủ
  2. » Giáo Dục - Đào Tạo

slide bài giảng đại số giải tích 11 tiết 40 dãy số tiếp theo

12 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 728,5 KB

Nội dung

Tập thể lớp BÀI 11: Tìm giới hạn dãy số (un ) sau: a )un = −2n3 + 3n + Giải b)un = 3n + 5n3 − 7n a) lim un = lim( −2n + 3n + 5) = lim n ( −2 + + ) n n lim n = +∞ ,lim( − + + ) = −2 < Vì: n n lim( − n + 3n + 5) = −∞ Nên: b) lim un = lim 3n + 5n − n = lim n + − n n Vì: lim n = +∞,lim + − = > n n Nên: lim 3n + 5n3 − 7n = +∞ BÀI 12: Tìm giới hạn dãy số (un ) sau: −2n3 + 3n − a)un = 3n − n − n − 5n + b)un = n + 12 Giải − + − 3 −2n + 3n − n n a ) lim un = lim = lim 3n − − n n lim(−2 + n − n3 ) = −2 < lim( − ) = n n − > n n − n + 3n − nên lim = −∞ 3n − n2 − − 5+ n n n n + 12 n − n − 5n + b) lim un = lim = lim n + 12 1− − 5+ n n n = lim 12 + n n 12 Vì: lim − − + = > ,lim + = n n n n n Và: Nên: 12 + >0 n n n − n − 5n + lim = +∞ n + 12 BÀI 13: Tìm giới hạn sau: b) lim( n − 3sin 2n + 5) Giải cos n a ) lim(2n + cos n) = lim n(2 + ) n cos n )=2>0 Vì: lim n = +∞,lim(2 + n nên: lim(2n + cos n) = +∞ 1 3sin n b) lim( n − 3sin 2n + 5) = lim n ( − + 2) 2 n n a) lim(2n + cos n) Vì: lim n = +∞,lim( − 3sin2 n + 52 ) = > n nên: lim( n − 3sin 2n + 5) = +∞ n BÀI 14: chứng minh rằng: q>1 lim q n = +∞ Giải n ta được: < p < Do đó: lim p = q n p Vì: > với n nên từ suy ra: lim n = +∞ p Vì q>1 nên đặt : p = Tức là: lim 1 = +∞ ⇔ lim = +∞ ⇔ lim q n = +∞ n ( ) q qn 3n + a ) lim n −1 BÀI 15: Tìm giới hạn sau: 1 1+ n 1+ n 3n + a) lim n = lim n = lim n 2 −1 ( ) − n − n n 3 3 Vì: lim(1 + n ) = > ,lim(( ) n − 1n ) = 3 n Và: ( ) − 3n > Giải n Nên: lim + = +∞ 2n − b) lim(2 n − 3n ) 3n + a ) lim n −1 BÀI 15: Tìm giới hạn sau: Giải n 2 n n n n n b) lim(2 − ) = lim3 ( n − 1) = lim (( ) − 1) 3 Vì: lim 3n = +∞ n Và: lim(( ) − 1) = −1 < Nên: lim(2n − 3n ) = −∞ b) lim(2 n − 3n ) n + 4n − a ) lim , 3n + n + BÀI 16: Tìm giới hạn sau: 2n + 3n − c) lim , 2n − n + Giải n + n − 3n − b) lim , 4n + 6n + 3n − 2.5n d ) lim n + 3.5 − a ) lim n n n 3+ + n n + Vì:lim( + − ) = 0, lim(3 + + ) = n n n n n n + 4n − =0 nên lim 3n + n + 1+ − − 5 4 n + n − 3n − + + >0 n n n b) lim = lim n n n 4n + 6n + + 3+ n n n nên n5 + n − 3n − = +∞ Vì:lim(1 + − − ) = 1, lim( + + ) = lim 4n + 6n + n n n n n n 3 − + − 4 2n + 3n − 2 n n n n c) lim = lim = lim = 3 2n − n + 2 n (2 − + ) 2− + n n n n n2 + 3n n −2 ( ) −2 n n n − 2.5 5 d ) lim = lim = lim = − 7 + 3.5n + + 5n 5n BÀI 17: Tìm giới hạn sau: a) lim(3n3 − n + 11) c) lim + 2n − n3 b) lim 2n − n + n + d ) lim 2.3n − n + KQ a ) lim(3n3 − n + 11) = +∞ b) lim 2n − n + n + = +∞ c) lim + 2n − n3 = −∞ d ) lim 2.3n − n + = +∞ TiẾT HỌC KẾT THÚC XIN CÁM ƠN Q THẦY CƠ ...BÀI 11: Tìm giới hạn dãy số (un ) sau: a )un = −2n3 + 3n + Giải b)un = 3n + 5n3 − 7n a) lim un = lim( −2n + 3n + 5) = lim n (... n = +∞,lim + − = > n n Nên: lim 3n + 5n3 − 7n = +∞ BÀI 12: Tìm giới hạn dãy số (un ) sau: −2n3 + 3n − a)un = 3n − n − n − 5n + b)un = n + 12 Giải − + − 3 −2n + 3n − n n a ) lim un = lim = lim... lim = lim = − 7 + 3.5n + + 5n 5n BÀI 17: Tìm giới hạn sau: a) lim(3n3 − n + 11) c) lim + 2n − n3 b) lim 2n − n + n + d ) lim 2.3n − n + KQ a ) lim(3n3 − n + 11) = +∞ b) lim 2n − n + n + = +∞

Ngày đăng: 27/02/2021, 17:02

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN