1. Trang chủ
  2. » Giáo án - Bài giảng

tam giác đồng dạng 1

6 380 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 1,46 MB

Nội dung

KÍNH CHÀO QUÝ THẦY CÔ GIÁO VỀ DỰ TIẾT HỌC HÔM NAY ! Người thực hiện: Phan Lệ Thuỷ Trường THCS PHAN THÚC DUYỆN KIỂM TRA BÀI CŨ M N MN // BC ⇒ ∆ AMN ∆ ABC S (theo Đlí về tam giác đồng dạng) + ∆ A’B’C’ ∆ ABC nếu: và S BC CB AC CA AB BA CCBBAA '''''' ˆˆ , ˆˆ , ˆˆ == ′ = ′ = ′ = 1) Định nghĩa hai tam giác đồng dạng ? A B C A’ B’ C’ Hình 1 + ∆ A’B’C’ và ∆ ABC có: BC CB AC CA AB BA '''''' == 2) Cho hình vẽ sau: A B C Hình 2 ⇒ ∆ A’B’C’ có đồng dạng với ∆ ABC không ? A B C 4 6 8 A’ B’ C’ 2 3 4 Tiết 42: TRƯỜNG HỢP ĐỒNG DẠNG THỨ NHẤT A B C M N Hình 2 2 1 8 4 6 3 4 2'''''' =       ==== BC CB AC CA AB BA ⇒ ∆ A’B’C’ có đồng dạng với ∆ ABC không ? Dựng ∆ AMN trên các cạnh AB, AC như hình 2 sao cho ∆ AMN = ∆ A’B’C’: Trên các cạnh AB và AC của ∆ ABC lần lượt lấy hai điểm M, N sao cho AM = A’B’ = 2cm; AN = A’C’ = 3cm. M N A B C 4 6 8 2 3 A’ B’ C’ 2 3 4 M N Trên các cạnh AB và AC của ∆ ABC lần lượt lấy hai điểm M, N sao cho AM = A’B’ = 2cm; AN = A’C’ = 3cm. + Ta có: AM = A’B’ = 2cm (M ∈ AB) và AN = A’C’ = 3cm (N ∈ AC) + Nên: + Do đó: MN // BC (theo Đlí đảo Ta-lét) 2 1 === BC MN AC AN AB AM + Vậy MN = 4cm + Theo hệ quả Ta-lét, ta có: 2 1 82 1 =⇔=⇒ MN BC MN + Theo chứng minh trên, ta có: ∆ AMN ∆ ABC (vì MN // BC) S + Suy ra: ∆ AMN = ∆ A’B’C’ (c.c.c) + Vậy: ∆ A’B’C’ ∆ ABC S 4 ⇒ ∆ AMN ∆ A’B’C’ S AM AB AN AC = 1 2 = Tính MN ? Không cần đo góc cũng có cách nhận biết được hai tam giác đồng dạng với nhau. A B C A’ B’ C’ Tiết 42: TRƯỜNG HỢP ĐỒNG DẠNG THỨ NHẤT 1. Định lí: Nếu Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì thì hai tam giác đó đồng dạng. BC CB AC CA AB BA CBAABC '''''' ''', == ∆∆ ∆ A’B’C’ ∆ ABC S GT KL Chứng minh: M N + Trên tia AB đặt AM = A’B’ (1) và từ M vẽ đường thẳng MN // BC )2( BC MN AC AN AB AM == )3( '''''' BC CB AC CA AB BA == + Từ (1), (2), (3) suy ra: AN = A’C’, MN = B’C’ + Nên: ∆ AMN = ∆ A’B’C’ (c.c.c) (vì AM = A’B’ , AN = A’C’, MN = B’C’) Mà: ∆ AMN ∆ ABC (vì MN // BC) S + Vậy: ∆ A’B’C’ ∆ ABC (Đpcm) S Theo hệ quả của Đlí Ta-lét, ta có: và GT: ⇒ ∆ AMN ∆ A’B’C’ S (SGK) 2. Áp dụng: Tìm các cặp tam giác đồng dạng trong hình dưới đây. ?2 A B C 4 6 8 D E F 2 3 4 I K H 4 5 6 Hình 34 a) b) c) + Ta có: ∆ ABC ∆ DFE, vì: S       ===== 2 4 8 3 6 2 4 EF BC DE AC DF AB ⇒ ∆ ABC và ∆ IKH không đồng dạng nhau. KH BC IH AC IK AB KH BC IH AC IK AB ≠≠⇒          == = == 4 3 6 8 ; 5 6 ;1 4 4 Nên: ∆ DFE và ∆ IKH cũng không đồng dạng nhau. + Xét ∆ ABC và ∆ IKH, có: + Mà: ∆ ABC ∆ DFE S Bài tập 29/SGK: Cho hai tam giác ABC và A’B’C’ có kích thước như trong hình dưới đây. A B C 4 A’ B’ C’ 6 9 12 Hình 35 8 6 a) ∆ ABC và ∆ A’B’C’ có đồng dạng với nhau không ? Vì sao ? b) Tính tỉ số chu vi của hai tam giác đó. 2 3 '''''' . 2 3 8 12 '' ; 2 3 6 9 '' ; 2 3 4 6 '' ===⇒          == == == CB BC CA AC BA AB CB BC CA AC BA AB Vậy ∆ ABC ∆ A’B’C’ S a) ∆ ABC và ∆ A’B’C’ có: Giải: b) Theo câu a, ta có tỉ số chu vi của ∆ ABC và ∆ A’B’C’ là: 2 3 '''''''''''' = ++ ++ === CBCABA BCACAB CB BC CA AC BA AB (theo t/c dãy tỉ số bằng nhau) Khi hai tam giác đồng dạng thì tỉ số chu vi của hai tam giác và tỉ số đồng dạng của chúng như thế nào với nhau ? 1. Nêu trường hợp đồng dạng thứ nhất của tam giác. - Giống: Đều xét đến điều kiện ba cạnh. - Khác nhau: + Trường hợp bằng nhau thứ nhất: Ba cạnh của tam giác này bằng ba cạnh của tam giác kia. + Trường hợp đồng dạng thứ nhất: Ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia. 2. Nêu sự giống và khác nhau giữa trường hợp bằng nhau thứ nhất của hai tam giác với trường hợp đồng dạng thứ nhất của hai tam giác. + Về nhà học thuộc định lí về trường hợp đồng dạng thứ nhất. + Làm BT: Bài: 30, 31/ SGK/ Tr 75. Bài: 29  33/ SBT/ Tr 71; 72. A B C 6 8 A’ B’ C’ 3 4 60 0 60 0 + Cho hình vẽ sau:  Chuẩn bị ?1 bài mới:”Trường hợp đồng dạng thứ hai”. XIN CHÂN THÀNH CẢM ƠN QUÝ THẦY CÔ GIÁO CÙNG TẤT CẢ CÁC EM HỌC SINH THÂN MẾN! . tam giác đồng dạng thì tỉ số chu vi của hai tam giác và tỉ số đồng dạng của chúng như thế nào với nhau ? 1. Nêu trường hợp đồng dạng thứ nhất của tam giác. . Ba cạnh của tam giác này bằng ba cạnh của tam giác kia. + Trường hợp đồng dạng thứ nhất: Ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia. 2.

Ngày đăng: 17/07/2013, 01:25

TỪ KHÓA LIÊN QUAN

w