Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 21 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
21
Dung lượng
11,44 MB
Nội dung
Cập nhật đề thi http://toanhocbactrungnam.vn/ SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ CẦN THƠ KIỂM TRA HỌC KÌ II LỚP 12 GDTHPT Năm học: 2016 – 2017 Mơn: TỐN Thời gian làm bài: 90 phút (khơng kể thời gian giao đề) (50 câu trắc nghiệm) ĐỀ CHÍNH THỨC (Đề có 06 trang) Họ, tên thí sinh Số báo danh :………………………………………………… :………………………………………………… Mã đề thi 209 Câu 1: Trên mặt phẳng tọa độ, tìm tọa độ điểm M biểu diễn số phức z i A M 2; 1 B M 1; C M 1; D M 2;1 Câu 2: Giải phương trình z z tập số phức Câu 3: 7 A z ;z 2 2 B z 7 ;z 2 2 7 C z i; z i 2 2 D z 7 i; z i 2 2 Tính diện tích S hình phẳng giới hạn đồ thị hai hàm số y x x x y x2 x 1 A S Câu 4: 12 B S 12 C S D S Trong không gian Oxyz , viết phương trình tham số đường thẳng qua M 1; 1; vng góc với mặt phẳng : x y z x 2t A y 1 t z t Câu 5: Câu 7: Câu 8: B z 54 19i x t D y t z 1 2t C z 19 54i Trên mặt phẳng tọa độ, cho điểm M (như hình vẽ) điểm biểu diễn số phức z Tìm z A z 3 2i B z 2i C z 3i D z 3 2i Tính D z 54 19i y M 3 xe x dx x2 x e C A xe x dx C xe x dx xe x e x C B xe x dx xe x C D xe x dx xe x e x C O x Cho hai số phức z1 i z2 2i Tìm số phức z z1 z2 A z 5 4i Câu 9: x t C y 2t z 1 t Tìm số phức liên hợp số phức z 4i 5i 3i A z 54 19i Câu 6: x 2t B y 1 t z t B z 5i C z 3i D z 3 C D Tìm phần ảo số phức z 3i i A 2 B 3 TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 1/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ Câu 10: Trong không gian Oxyz , tìm tâm I bán kính R mặt cầu x y z x y A I 1; 1;0 R B I 1; 1;0 R C I 1;1;0 R D I 1;1;0 R Câu 11: Tìm phương trình bậc hai nhận hai số phức i i làm nghiệm A z z B z z C z z D z z Câu 12: Trong không gian với hệ tọa độ Oxyz , viết phương trình mặt cầu tâm I 2;10; 4 tiếp xúc với mặt phẳng Oxz 2 B x y 10 z 10 2 D x y 10 z 16 A x y 10 z 100 C x y 10 z 100 Câu 13: Trong không gian Oxyz , cho hai mặt 2 2 2 P : x y 3z phẳng Q : x y z Khẳng định sau đúng? A Khoảng cách hai mặt phẳng P Q B P Q cắt C P Q trùng D P Q song song với Câu 14: Tính thể tích V khối trịn xoay tạo thành quay hình phẳng giới hạn đồ thị hàm số y x x trục hoành quay quanh trục Ox 81 91 81 83 A V B V C V D V 10 10 10 10 Câu 15: Cho hàm số f x liên tục a; b , c a; b , k Khẳng định sai? c A b b f x dx f x dx f x dx a b c b B a a a 1 i 3i 18 B z i 5 f x dx f x dx a b b C kf x dx k f x dx a D b a f x dx f x dx a b Câu 16: Tìm số phức z , biết z 2 4i 18 A z i 5 C z 18 i 5 D z 18 i 5 Câu 17: Gọi S tập hợp nghiệm phương trình z z tập số phức Tìm S A S 2; B S 3; 2 C S 3; 2; 3; D S i 3; i 3; 2; x 1 t Câu 18: Trong không gian Oxyz , tìm tọa độ giao điểm M đường thẳng y t mặt phẳng z t 2x y z A M 2; 4; 1 B M 2; 4;1 TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập C M 2; 4; 1 D M 2; 4; 1 Trang 2/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ Câu 19: Cắt vật thể T hai mặt phẳng P Q vng góc với trục Ox x x Một mặt phẳng tùy ý vng góc với trục Ox điểm x 1 x cắt T theo thiết diện có diện tích x Tính thể tích V phần vật thể T giới hạn hai mặt phẳng P Q A V 28 B V 28 C V 14 C V 14 Câu 20: Câu 20: Tính sin xdx A sin xdx sin x C B sin xdx cos x C C sin xdx sin x C D sin xdx cos x C Câu 21: Cho tích phân I x x 1dx đặt t x Khẳng định sau đúng? 17 B I t dt 20 A I t dt 17 C I t dt 21 D I t dt C I 2e D I 2e e Câu 22: Tính tích phân I ln xdx A I e B I Câu 23: Tính diện tích S hình phẳng giới hạn đường parabol y x x , trục Ox đường thẳng x , x A S 16 B S C S 20 D S Câu 24: Tìm số phức liên hợp số phức z 2 3i là? A z 2 3i B z 3 2i C z 3i D z 3i Câu 25: Tính e x1dx A e x 1dx 2e x 1 C B e x 1dx e x1 C C e x 1dx e x C D e x1dx x 1 e C Câu 26: Trong khơng gian Oxyz , viết phương trình tham số đường thẳng qua hai điểm A 1; 1; B 3; 2;1 có phương trình x 4t A y 1 3t z t x 3t B y 3 2t z 1 t x 2t C y 1 t z 3t x t D y 3 t z 2t e Câu 27: Tính tích phân I x ln xdx A I 2e3 1 B I 2e3 1 C I 2e3 1 D I 2e3 1 Câu 28: Tính mơđun số phức z a bi A z a b B z a b C z a b D z a b TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 3/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ Câu 29: Trong không gian Oxyz , viế t phương trı̀ nh tham số củ a đườ ng thẳ ng qua điể mM 2;1; 3 x 1 y 1 z 1 x 2t B y t C z 3 3t và song song vớ iđườ ng thẳ ng x t A y t z 3 x 1 t y 1 t z 3t x 2t D y 1 t z 3t Câu 30: Trong không gian Oxyz , viế t phương trı̀ nh mă ̣ t cầ u có tâm là gố c to ̣ a đô O ̣ và bá n kı́ nh bằ ng3 A x y z B x y z x C x y z z D x y z y Câu 31: Trong không gian Oxyz , tìm toạ độ véctơ u i j k A u 1;2 1 B u 1; 2;1 C u 2;1; 1 D u 1;1;2 Câu 32: Tìm số thực x, y cho x y x y i 6i A x 3; y B x 1; y 4 C x 1; y D x 3; y 6 Câu 33: Trên mặt phẳng tọa độ, tập hợp điểm biểu diễn số phức z thõa mãn z i có phương trình A x y 1 B x y 2 C x 1 y D x y 1 Câu 34: Trong khơng gian Oxyz , viết phương trình đường thẳng giao tuyến hai mặt phẳng x y z x y 3z x 1 13t A y 4t z 7t x 13 t B y 4 2t z 7 t x 13t C y 4t z 7t x 13t D y 2 4t z 7t Câu 35: Hàm số F x x3 nguyên hàm hàm số dây? A f x x3 B f x x4 Câu 36: Trong không gian Oxyz , cho mặt cầu C f x x D f x 3x S : x y z 2mx y z m 8m m tham số thực) Tìm giá trị m để mặt cầu S có bán kính nhỏ A m B m C m D m Câu 37: Trong không gian Oxyz, cho hai điểm A 2;1; 2 , B 1; 0; 3 Viết phương trình mặt phẳng P qua điểm A cho khoảng cách từ điểm B đến mặt phẳng P lớn A x y z 17 B x y z C x y z D x y z x 2t x m y z 1 Câu 38: Trong không gian Oxyz, cho hai đường thẳng d : y t d : , m tham 2 z t số thực Tìm giá trị m để hai đường thẳng d d cắt A m 3 B m 1 C m D m TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 4/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ Câu 39: Cho số phức z có phần thực ba lần phần ảo z 10 Tính z Biết phần ảo z số âm B 10 A C 26 D Câu 40: Đặt S diện tích hình phẳng giới hạn đồ thị hàm số y x x đường thẳng y mx , (m 0) Tìm m cho S A m 3 B m 2 C m 1 D m 4 x 2t Câu 41: Trong không gian Oxyz , cho hai điểm A 1; 2; 2 , B 0;3; đường thẳng d : y 3t z t Viết phương trình mặt cầu có tâm thuộc d qua hai điểm A , B 2 B x 3 y 1 z 29 2 D x 3 y 1 z 29 A x 1 y z 3 25 C x 3 y 1 z 29 Câu 42: Cho số phức z m 3m m i , với 2 2 2 m Tính giá trị biểu thức P z 2016 2.z 2017 3.z 2018 , biết z số thực A P 6.22016 B P C P D P 17.2 2016 Câu 43: Giả sử vật từ trạng thái nghỉ t s chuyển động với vận tốc v t 5t t m /s Tính quãng đường vật dừng lại (kết làm tròn đến chữ số thập phân thứ hai) A 54,17 m B 104,17 m C 20,83 m D 29,17 m Câu 44: Trong không gian Oxyz , cho ba điểm A, B, C thuộc tia Ox, Oy, Oz (không trùng với gốc toạ độ) cho OA a, OB b, OC c Giả sử M điểm thuộc miền tam giác ABC có khoảng cách đến mặt OBC , OCA , OAB 1, 2, Tính tổng S a b c thể tích khối chóp O ABC đạt giá trị nhỏ A S 18 B S C S D S 24 Câu 45: Trong khơng gian Oxyz , viết phương trình tắc đường thẳng d đường vng góc x t x y 1 z chung hai đường thẳng chéo d1 : d : y t 1 1 z x 1 y z x y z 1 A B 1 1 1 2 x 1 y z x 1 y z C D 1 2 1 Câu 46: Tìm giá trị thực m để hàm số F x x 2m x x 10 nguyên hàm hàm số f x x 12 x với x A m B m TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập C m D m 9 Trang 5/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ Câu 47: Trên mặt phẳng tọa độ, tìm tọa độ điểm M biểu diễn số phức z thỏa mãn điều kiện i z 2i z i 11 A M ; 8 11 B M ; 8 11 C M ; 8 11 D M ; 8 Câu 48: Trong khơng gian Oxyz , viết phương trình mặt cầu có tâm I 1; 0;1 cắt mặt phẳng x y z 17 theo giao tuyến đường trịn có chu vi 16 2 B x 1 y z 1 100 2 D x 1 y z 1 64 A x 1 y z 1 81 C x 1 y z 1 10 Câu 49: Cho tích phân I A m 2 2 dx m Tìm điều kiện m để I 2x m B m C 1 m D m Câu 50: Cho H hình tam giác giới hạn đồ thị hàm số y x , trục Ox đường thẳng x m, m 1 Đặt V thể tích khối nón tròn xoay tạo thành quay H quanh trục Ox 3 B m Tìm giá trị m để V A m C m D m HẾT TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 6/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ ĐÁP ÁN A C B 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 B D A D C C C C A D C B B D C D D C B B A D 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 A A A B A A C D A D B A D C C B B C A D B D B A A HƯỚNG DẪN GIẢI Câu 1: Trên mặt phẳng tọa độ, tìm tọa độ điểm M biểu diễn số phức z i A M 2; 1 B M 1; C M 1; D M 2;1 Hướng dẫn giải Chọn A Vì z i M 2; 1 Câu 2: Giải phương trình z z tập số phức 7 A z ;z 2 2 B z 7 ;z 2 2 7 C z i; z i 2 2 D z 7 i; z i 2 2 Hướng dẫn giải Chọn C 7 Ta có z z z i; z i 2 2 Câu 3: Tính diện tích S hình phẳng giới hạn đồ thị hai hàm số y x x x y x2 x 1 A S 12 B S 12 C S D S Hướng dẫn giải Chọn B x Ta có x x x x x 1 x x x x 1 Khi S Câu 4: 1 x4 x3 x2 x x x dx x x x dx 12 3 Trong không gian Oxyz , viết phương trình tham số đường thẳng qua M 1; 1; vng góc với mặt phẳng : x y z x 2t A y 1 t z t x 2t B y 1 t z t x t C y 2t z 1 t x t D y t z 1 2t Hướng dẫn giải Chọn B Gọi đường thẳng cần tìm TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 7/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ đi qua M 1; 1; Từ giả thiết : VTCP n 2;1; 1 x 2t Vậy phương trình đường thẳng cần tìm y 1 t z t Câu 5: Tìm số phức liên hợp số phức z 4i 5i 3i A z 54 19i B z 54 19i C z 19 54i Hướng dẫn giải D z 54 19i Chọn D Ta có z 4i 5i 3i 54 19i z 54 19i Câu 6: Trên mặt phẳng tọa độ, cho điểm M (như hình vẽ) điểm biểu diễn số phức z Tìm z y M 3 A z 3 2i B z 2i x O C z 3i D z 3 2i Hướng dẫn giải Chọn A Vì M 3; nên z 3 2i Câu 7: Tính xe x dx x2 x e C A xe x dx C xe x dx xe x e x C B xe x dx xe x C D xe x dx xe x e x C Hướng dẫn giải Chọn D u x du dx Đặt Khi đó: x x d v e d x v e Câu 8: xe x dx xe x e x dx xe x e x C Cho hai số phức z1 i z2 2i Tìm số phức z z1 z2 A z 5 4i B z 5i C z 3i D z 3 Hướng dẫn giải Chọn C z z1 z2 i 1 2i 3i Câu 9: Tìm phần ảo số phức z 3i i A 2 B 3 C D Hướng dẫn giải Chọn C z 3i i 2i phần ảo z TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 8/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ Câu 10: Trong khơng gian Oxyz , tìm tâm I bán kính R mặt cầu x y z x y A I 1; 1;0 R B I 1; 1;0 R C I 1;1;0 R D I 1;1;0 R Hướng dẫn giải Chọn C Phương trình mặt cầu có dạng: x y z 2ax 2by 2cz d , với a b c d Khi đó: a , b , c , d 2 Vậy mặt cầu có tâm I 1;1;0 bán kính R a b c d Câu 11: Tìm phương trình bậc hai nhận hai số phức i i làm nghiệm A z z B z z C z z D z z Hướng dẫn giải Chọn C S Tổng tích hai số phức i i , nên hai số phức nghiệm P phương trình: z z Câu 12: Trong không gian với hệ tọa độ Oxyz , viết phương trình mặt cầu tâm I 2;10; 4 tiếp xúc với mặt phẳng Oxz 2 B x y 10 z 10 2 D x y 10 z 16 A x y 10 z 100 C x y 10 z 100 2 2 2 Hướng dẫn giải Chọn A Phương trình mặt phẳng Oxz là: y Bán kính mặt cầu R d I ; Oxz 10 2 Phương trình mặt cầu S : x y 10 z 100 Câu 13: Trong không gian Oxyz , cho hai mặt phẳng P : x y 3z Q : x y z Khẳng định sau đúng? A Khoảng cách hai mặt phẳng P Q B P Q cắt C P Q trùng D P Q song song với Hướng dẫn giải Chọn D 2 1 Ta có nên P Q song song với 4 1 TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 9/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ Câu 14: Tính thể tích V khối trịn xoay tạo thành quay hình phẳng giới hạn đồ thị hàm số y x x trục hoành quay quanh trục Ox A V 81 10 B V 91 10 C V 81 10 83 10 D V Hướng dẫn giải Chọn C Phương trình hồnh độ giao điểm đồ thị hàm số y x x trục hoành x 3x x x Thể tích V khối trịn xoay cần tìm 3 x5 x4 x3 81 V x x dx x x x dx 10 0 2 Câu 15: Cho hàm số f x liên tục a; b , c a; b , k Khẳng định sai? c A b b b f x dx f x dx f x dx a c b B a b C kf x dx k f x dx a D a a f x dx f x dx a b b a f x dx f x dx a b Hướng dẫn giải Chọn B Theo tính chất tích phân khẳng định A, C b a a b a a f x dx f x dx f x dx D b a a b b b f x dx f x dx f x dx f x dx 2 f x dx B sai b a a a 1 i 3i 18 B z i 5 Câu 16: Tìm số phức z , biết z 2 4i 18 A z i 5 C z 18 i 5 D z 18 i 5 Hướng dẫn giải Chọn B z 2 4i i 2 4i (3 i ) i 9 9i 18 18 i z i 3i 3i 3i 5 5 Câu 17: Gọi S tập hợp nghiệm phương trình z z tập số phức Tìm S C S B S 3; 2 A S 2; 3; 2; 3; D S i 3; i 3; 2; Hướng dẫn giải Chọn D Xét phương trình z z TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 10/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ z z2 t Đặt z t Phương trình cho trở thành t t t 3 z 3 z i Vậy tập nghiệm phương trình S i 3; i 3; 2; x 1 t Câu 18: Trong khơng gian Oxyz , tìm tọa độ giao điểm M đường thẳng y t mặt phẳng z t 2x y z A M 2; 4; 1 B M 2; 4;1 C M 2; 4; 1 D M 2; 4; 1 Hướng dẫn giải Chọn C x 1 t y 1 t Tọa độ giao điểm M thỏa mãn hệ phương trình: z t x y z 1 t t t 2t t 3 Vậy tọa độ điểm M M 2; 4; 1 Câu 19: Cắt vật thể T hai mặt phẳng P Q vng góc với trục Ox x x Một mặt phẳng tùy ý vng góc với trục Ox điểm x 1 x cắt T theo thiết diện có diện tích x Tính thể tích V phần vật thể T giới hạn hai mặt phẳng P Q A V 28 C V 14 B V 28 C V 14 Hướng dẫn giải Chọn D Ta có: V x dx x 14 Câu 20: Câu 20: Tính sin xdx A sin xdx sin x C B sin xdx cos x C C sin xdx sin x C D sin xdx cos x C Hướng dẫn giải Chọn D Câu 21: Cho tích phân I x x 1dx đặt t x Khẳng định sau đúng? 17 A I t dt 17 B I t dt 0 C I t dt 1 D I t dt Hướng dẫn giải Chọn C TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 11/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ Đặt t x , ta có: dt xdx dt xdx Đổi cận: x t ; x t 17 17 Vậy I t dt 21 e Câu 22: Tính tích phân I ln xdx A I e B I C I 2e D I 2e Hướng dẫn giải Chọn B e u ln x e du dx Đặt x Khi đó: I x ln x dx vdv dx v x Câu 23: Tính diện tích S hình phẳng giới hạn đường parabol y x x , trục Ox đường thẳng x , x A S 16 B S C S 20 D S Hướng dẫn giải Chọn B 2 x Ta có x x Khi S x x dx x x dx x 1 Câu 24: Tìm số phức liên hợp số phức z 2 3i là? A z 2 3i B z 3 2i C z 3i D z 3i Hướng dẫn giải Cho ̣ nA Vì số phức z a bi có số phức liên hợp z a bi Nên số phức z 2 3i có số phức liên hợp z 2 3i Câu 25: Tính e x1dx A e x 1dx 2e x 1 C B e x 1dx e x1 C C e x 1dx e x C D e x1dx x 1 e C Hướng dẫn giải Chọn D Áp dụng công thức nguyên hàm hàm số hợp e ax b dx Ta có e x1dx ax b e C a x 1 e C Câu 26: Trong khơng gian Oxyz , viết phương trình tham số đường thẳng qua hai điểm A 1; 1; B 3; 2;1 có phương trình TỐN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 12/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ x 4t A y 1 3t z t x 3t B y 3 2t z 1 t x 2t C y 1 t z 3t x t D y 3 t z 2t Hướng dẫn giải Chọn A Đường thẳng d qua hai điểm A 1; 1; B 3; 2;1 có vectơ phương AB 4;3; 1 x 4t Phương trình đường thẳng cần tìm y 1 3t z t e Câu 27: Tính tích phân I x ln xdx A I 2e3 1 B I 2e3 1 C I 2e3 1 D I 2e3 1 Hướng dẫn giải Chọn A du dx u ln x x Đặt dv x v x e e e e x3 x e3 e3 x3 e3 e3 2e3 I ln x dx x 2dx 3 x 3 9 9 1 1 Câu 28: Tính mơđun số phức z a bi A z a b B z a b C z a b D z a b Hướng dẫn giải Chọn A Đây công thức sách giáo khoa Câu 29: Trong không gian Oxyz , viế t phương trı̀ nh tham số củ a đườ ng thẳ ngđi qua điể m M 2;1; 3 x 1 y 1 z 1 x 2t B y t C z 3 3t và song song vớ i đườ ng thẳ ng x t A y t z 3 x 1 t y 1 t z 3t x 2t D y 1 t z 3t Hướng dẫn giải Cho ̣ nB TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 13/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ x 1 y 1 z có vec tơ chı̉ phương là a 2; 1;3 1 x 1 y 1 z Đườ ng thẳ ng qua M 2;1; 3 và song song vớ i đườ ng thẳ ng nên có vec tơ 1 chı̉ phương là a 2; 1;3 Đườ ng thẳ ng x 2t Vâ ̣ y phương trı̀ nh tham số đườ ng thẳ ng cầ n tı̀ m là:y t z 3 3t Câu 30: Trong không gian Oxyz , viế t phương trı̀ nh mă ̣ t cầ u có tâm là gố c to ̣ a đô O ̣ và bá n kı́ nh bằ ng3 A x y z B x y z x C x y z z D x y z y Hướng dẫn giải Cho ̣ nA Phương trı̀ nh mă ̣ t cầ u có tâm là gố c to ̣ a đô O ̣ 0;0;0 và có bá n kı́ nh ằbng có phương trı̀ nh 2 là : x y z 32 x y z Câu 31: Trong khơng gian Oxyz , tìm toạ độ véctơ u i j k A u 1;2 1 B u 1; 2;1 C u 2;1; 1 D u 1;1;2 Hướng dẫn giải Chọn A Ta có i 1;0;0 , j 0;1;0 , k 0;0;1 Nên u i j k 1;2; 1 Câu 32: Tìm số thực x, y cho x y x y i 6i A x 3; y B x 1; y 4 C x 1; y D x 3; y 6 Hướng dẫn giải Chọn C x y x 1 x y 6 y x y x y i 6i Câu 33: Trên mặt phẳng tọa độ, tập hợp điểm biểu diễn số phức z thõa mãn z i có phương trình A x y 1 B x y C x 1 y D x y 1 Hướng dẫn giải Chọn D Đặt z x yi với x, y Khi đó: z i x yi i x y 1 i x y 1 Câu 34: Trong không gian Oxyz , viết phương trình đường thẳng giao tuyến hai mặt phẳng x y z x y 3z TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 14/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ x 1 13t A y 4t z 7t x 13 t B y 4 2t z 7 t x 13t C y 4t z 7t x 13t D y 2 4t z 7t Hướng dẫn giải Chọn A Cách 1: Hai mặt phẳng cho có véc tơ pháp tuyến là: n1 2;3; , n2 1; 2;3 Giao tuyến cần tìm có véc tơ phương n1 ; n2 13; 4; 7 Cho z thay vào phương trình hai mặt phẳng cho ta hệ phương trình: 2 x y x 1 Vậy giao tuyến cần tìm qua điểm M 1; 2;1 phương trình x y 5 y x 1 13t tham số y 4t z 7t Cách 2: Cho z thay vào phương trình hai mặt phẳng ta tìm x 1; y Suy giao tuyến qua điểm M 1; 2;1 10 10 Tương tự, cho z ta tìm x , y Suy giao tuyến qua điểm N ; ; 7 7 13 Véc tơ phương giao tuyến MN ; ; 1 13; 4; 7 7 x 1 13t Vậy phương trình tham số giao tuyến cần tìm y 4t z 7t Câu 35: Hàm số F x x3 nguyên hàm hàm số dây? A f x x3 B f x x4 C f x x D f x 3x Hướng dẫn giải Chọn D Ta có f x dx F x C , f x F x C F x Mà F x x 3x Vậy f x 3x Câu 36: Trong không gian Oxyz , cho mặt cầu S : x y z 2mx y z m 8m m tham số thực) Tìm giá trị m để mặt cầu S có bán kính nhỏ A m B m C m D m Hướng dẫn giải Chọn B S 2 có tâm I m 3; , bán kính R m2 3 22 m2 8m = m R đạt giá trị nhỏ R m TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 15/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ Câu 37: Trong không gian Oxyz, cho hai điểm A 2;1; 2 , B 1; 0; 3 Viết phương trình mặt phẳng P qua điểm A cho khoảng cách từ điểm B đến mặt phẳng P lớn A x y z 17 B x y z C x y z D x y z Hướng dẫn giải Chọn A Ta có d B, P AB Do khoảng cách từ điểm B đến mặt phẳng P lớn d B , P AB Đẳng thức xảy AB P Như mặt phẳng P cần tìm mặt phẳng qua điểm A vng góc với AB Ta có BA 3;1; 5 véctơ pháp tuyến P Vậy phương trình mặt phẳng P : x y 1 z hay x y z 17 x 2t x m y z 1 Câu 38: Trong không gian Oxyz, cho hai đường thẳng d : y t d : , m tham 2 z t số thực Tìm giá trị m để hai đường thẳng d d cắt A m 3 B m 1 C m D m Hướng dẫn giải Chọn D x m 2t Ta có phương trình tham số d : y t z 2t 1 2t m 2t 2t 2t m t 1 Xét hệ phương trình : 2 t t t t 2 t t 2t t 2t m Hệ phương trình có nghiệm nên d d cắt Vậy m Câu 39: Cho số phức z có phần thực ba lần phần ảo z 10 Tính z Biết phần ảo z số âm B 10 A C 26 D Hướng dẫn giải Chọn C Gọi z x yi ( x, y R, y 0) x y x y Ta có: 2 z 10 x y 10 Suy ra: y y 10 y y 1 ( y 0) Suy ra: x 3 Do đó: z 3 i 5 i 26 TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 16/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ Câu 40: Đặt S diện tích hình phẳng giới hạn đồ thị hàm số y x x đường thẳng y mx , (m 0) Tìm m cho S A m 3 B m 2 C m 1 D m 4 Hướng dẫn giải Chọn C x Phương trình hồnh độ giao điểm: x x mx x x m x m Vì m nên m ; a 1 x m x 0, x 0; m 2 m S m x x mx dx m x3 m x x m x dx 0 2 m m m m m 1 Cách 2: 2 m S x x mx dx (*) Thay m từ đáp án vào phương trình (*) ta m 1 x 2t Câu 41: Trong không gian Oxyz , cho hai điểm A 1; 2; 2 , B 0;3; đường thẳng d : y 3t z t Viết phương trình mặt cầu có tâm thuộc d qua hai điểm A , B 2 B x 3 y 1 z 29 2 D x 3 y 1 z 29 A x 1 y z 3 25 C x 3 y 1 z 29 2 2 2 Hướng dẫn giải Cho ̣ n B Gọi mặt cầu S có tâm I , bán kính R Vì I d I 1 2t ; 3t ;3 t Vì hai điểm A , B thuộc S nên: IA IB R 2 2 2 IA2 IB 2t 3t 5 t 1 2t 1 3t 1 t 22t 22 t Suy ra: I 3; 1; R IA 29 2 Vậy: S : x 3 y 1 z 29 Câu 42: Cho số phức z m 3m m i , với m Tính giá trị biểu thức P z 2016 2.z 2017 3.z 2018 , biết z số thực A P 6.22016 B P C P D P 17.2 2016 Hướng dẫn giải Cho ̣ n B Vì số phức z m 3m m i số thực nên: m m TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 17/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ Suy ra: z 22 3.2 Khi đó: P z 2016 2.z 2017 3.z 2018 12016 2.12017 3.12018 Câu 43: Giả sử vật từ trạng thái nghỉ t s chuyển động với vận tốc v t 5t t m/s Tính quãng đường vật dừng lại (kết làm trịn đến chữ số thập phân thứ hai) A 54,17 m B 104,17 m C 20,83 m D 29,17 m Hướng dẫn giải Chọn C Khi vật dừng lại ta có v t 5t t t s 5 Vậy quãng đường vật S v t dt 5t t dt 0 125 m 20,833 m Câu 44: Trong không gian Oxyz , cho ba điểm A, B, C thuộc tia Ox, Oy, Oz (không trùng với gốc toạ độ) cho OA a, OB b, OC c Giả sử M điểm thuộc miền tam giác ABC có khoảng cách đến mặt OBC , OCA , OAB 1, 2, Tính tổng S a b c thể tích khối chóp O ABC đạt giá trị nhỏ A S 18 B S C S D S 24 Hướng dẫn giải Chọn A Từ đề có: d M , OBC MK 1; d M , OCA ME 2; d M , OAB MH Suy toạ độ điểm M 1; 2; 3 Phương trình mặt phẳng ABC có dạng: x y z 1 a b c 1 a b c Áp dụng bất đẳng thức Cơsi ta có: mà M ABC 3 6 33 33 33 (vì V abc ) a b c a b c abc 6V 6 Suy ra: 33 V 27 Đẳng thức xảy 6V a b c a b Vậy S a b c 18 c 1 Câu 45: Trong không gian Oxyz , viết phương trình tắc đường thẳng d đường vng góc x t x y 1 z chung hai đường thẳng chéo d1 : d : y t 1 1 z x 1 y z x y z 1 A B 1 1 1 2 TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 18/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ C x 1 y z 1 2 D x 1 y z 1 Hướng dẫn giải Chọn D u1 1; 1; 1 vectơ phương đường thẳng d1 u2 1;1;0 vectơ phương đường thẳng d A d1 A a 2; a 1; a B d B b; b;5 d có VTCP u u1 ; u2 1; 1; AB b a 1; b a 1; a 3 b a k b 1 Ta có: AB ku b a k a 1 a 2k k Suy ra: A 1; 2;3 Vậy phương trình tắc đường thẳng d : x 1 y z 1 Câu 46: Tìm giá trị thực m để hàm số F x x 2m x x 10 nguyên hàm hàm số f x x 12 x với x B m A m C m D m 9 Hướng dẫn giải Chọn B F x 3x 2m 3 x Ta có: F x f x 2 2m 3 12 m Câu 47: Trên mặt phẳng tọa độ, tìm tọa độ điểm M biểu diễn số phức z thỏa mãn điều kiện i z 2i z i 11 A M ; 8 11 B M ; 8 11 C M ; 8 11 D M ; 8 Hướng dẫn giải Chọn D Cách 1: Đặt z a bi z a bi a, b i z 2i z i i a bi 2i a bi i 2a b a 2b i 3a 2b 2a 3b 1 i TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 19/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ 11 a a b 2 a b b 11 Vậy: M ; 8 Cách 2: i z 2i z i i z 2i z i Dùng casio bấm: Mode (cmplx), ( + i ) X + - ( – i ) shift 2 X – i calc 11 Thay đáp án dạng x a bi ta thấy x i cho kết 8 Câu 48: Trong không gian Oxyz , viết phương trình mặt cầu có tâm I 1; 0;1 cắt mặt phẳng x y z 17 theo giao tuyến đường trịn có chu vi 16 2 B x 1 y z 1 100 2 D x 1 y z 1 64 A x 1 y z 1 81 C x 1 y z 1 10 2 2 Hướng dẫn giải Chọn B Áp dụng cơng thức SGK hình học 12 là: R d r Với R bán kính mặt cầu, d khoảng cách từ tâm đến mặt phẳng, r bán kính đường trịn giao tuyến 1 17 Ta có: 2 r 16 r , d d I , 6 12 22 22 Suy ra: R d r 82 62 100 dx m Tìm điều kiện m để I 2x m Câu 49: Cho tích phân I A m B m C 1 m D m Hướng dẫn giải Chọn A Ta có: I x m dx 2x m 1 1 2 m2 m2 Theo đề: I m m m m m m Câu 50: Cho H hình tam giác giới hạn đồ thị hàm số y x , trục Ox đường thẳng x m, m 1 Đặt V thể tích khối nón trịn xoay tạo thành quay H quanh trục Ox 3 B m Tìm giá trị m để V A m TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập C m D m Trang 20/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ Hướng dẫn giải Chọn A Phương trình hồnh độ giao điểm x x m Vậy thể tích khối trịn xoay bằng: V x 1 dx Theo đề: V x 1 3 m m 1 m 1 m TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 21/21 Mã đề 209 ... Trang 17/21 Mã đề 209 Cập nhật đề thi http://toanhocbactrungnam.vn/ Suy ra: z 22 3.2 Khi đó: P z 2016 2.z 2017 3.z 2018 120 16 2 .120 17 3 .120 18 Câu 43: Giả sử vật từ trạng thái... m i , với m Tính giá trị biểu thức P z 2016 2.z 2017 3.z 2018 , biết z số thực A P 6. 22016 B P C P D P 17.2 2016 Hướng dẫn giải Cho ̣ n B Vì số phức z m 3m ... i , với 2 2 2 m Tính giá trị biểu thức P z 2016 2.z 2017 3.z 2018 , biết z số thực A P 6. 22016 B P C P D P 17.2 2016 Câu 43: Giả sử vật từ trạng thái nghỉ t s