1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Chương 3 mặt phăng ppsx

34 159 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 34
Dung lượng 4,48 MB

Nội dung

3-1 ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ CHƯƠNG 3- MẶT PHẲNG 3.1- ĐỒ THỨC CỦA MẶT PHẲNG   Đồ thức mặt phẳng xác định cách:                         Ba điểm không thẳng hàng A, B, C Một điểm A đường thẳng không qua A   3-2 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗                    Hai đường thẳng song song ,  Hai đường thẳng cắt ,     3-3 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ 3.2- VẾT CỦA MẶT PHẲNG a) Định nghĩa      P1   Vết mp giao tuyến mặt phẳng với mphc Vết đứng 1P P giao P P1 Vết 2P P giao P P2 1P P   O b) Tính chất    Hình chiếu đứng 1P trùng 1P, hình chiếu 1P trùng Hình chiếu 2P trùng 2P, hình chiếu đứng 2P trùng   2P P2 1P W 2P = O , 1P // 2P   1P   O   2P 3-4 CHƯƠNG - MẶT PHẲNG Nhận xét: ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗   P1 M     1P Nếu đường thẳng nằm mp vết đường thẳng thuộc vết tên mp: P   Nếu nằm P có vết đứng M vết N     2P M 1P N 2P N P2 M1   1P     N1     2P N2 M2 3-5 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ 3.3- CÁC MẶT PHẲNG ĐẶC BIỆT   B1 P1 Mặt phẳng chiếu đứng C1 B   1Q a) Định nghĩa A1 Là mp Q vuông góc với mphc đứng P1 Q C   A b) Tính chất      2Q 2Q ⊥ P2 Điểm, hình phẳng nằm Q hình chiếu đứng nằm 1Q Góc =()= () A1 C1 B1   1Q     B2 A2   2Q C2 3-6 CHƯƠNG - MẶT PHẲNG Mặt phẳng chiếu ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗   P1 a) Định nghĩa A   1R Là mp R vuông góc với mphc P2 B A2 b) Tính chất    1R ⊥ R C   C2   B2 P2 2R Điểm, hình phẳng nằm R hình chiếu nằm 2R Góc=() = ()   1R B1 A1 C1     A2 C2 B2   2R 3-7 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ Mặt phẳng chiếu cạnh   P1   1K a) Định nghĩa Là mp K vuông góc với mphc cạnh P3   3K   b) Tính chất K  Điểm, hình phẳng nằm K hình chiếu cạnh nằm 3K =() = () 1K // 2K // P3   2K P2 z =() = ()   1K     3K       2K y 3-8 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ Mặt phẳng mặt   P1 C1 a) Định nghĩa Là mp A // P1 C   b) Tính chất   B1 A1 A A B   2A // 2A P2 Nếu hình phẳng G ⊂ A ∈ 2A , //= G C1 A1 B1     2A A2 B2 C2 3-9 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ Mặt phẳng   P1 a) Định nghĩa Là mp B // P2   1B B C   A b) Tính chất   B2 C2 1B // P2 Nếu hình phẳng (H) ⊂ B ∈ 1B, B A2   1B //= H) C1   A1 B1 B2 C2 A2 3-10 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ Mặt phẳng cạnh   a) Định nghĩa Là mp C song song với mphc cạnh P3 (Tự vẽ hình biểu diễn) b) Tính chất   1CL 2C ⊥ Nếu hình phẳng G ⊂ C G1, G2 thuộc đường dóng đứng; G3 //= G ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ CHƯƠNG - MẶT PHẲNG  Hai mặt phẳng song song   Hai mp song song mp chứa hai đt giao song song với mp Trường hợp dễ nhận biết mp song song trường hợp mp cho vết & mp chiếu cạnh  Khi vết tên đôi song song   1P   1Q  Xét mp P , Q cho vết Vì 1P //1Q 2P // 2Q   ⇒ P // Q   2Q   2P 3-19 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ Đường thẳng mặt phẳng vuông góc      ⊥ P ⇔ vuông góc với hai đường thẳng cắt , ⊂ P Cần chọn vị trí thích hợp ,   a) P mặt phẳng chiếu cạnh  Chọn đường đường mặt P   P Khi đó: ⊥ P ( ) ⇔ ⊥ ⊥               3-20 ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ CHƯƠNG - MẶT PHẲNG S1 Ví dụ 1: Qua điểm S vẽ đường thẳng vuông góc với   mp P nếu:   P (A, ) E1 F1   Trường hợp mp P (A, ): Vẽ đường mặt AE đường AF P với E, F∈ q ⇒ 1(S1)⊥ A1E1   A2 2(S2) ⊥ A2F2    A1 P(1P, 2P) Giải:       Trường hợp P (1P, 2P): Vì: 1P L , 2P L E2 S2 ⇒ 1(S1)⊥ 1P , 2(S2) ⊥ 2P F2     1P S1   S2   2P   3-21 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗     A1     1     A2     3-22 CHƯƠNG - MẶT PHẲNG  • Trường hợp P(1P, 2P): ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗   Gọi đường P, qua A có vết đứng M   1P ⇒ 2(A2) ⊥ ; 1(A1) //   M1 A1   • 1P (M1) ⊥ ; 2P //   M2   A2   2P   3-23 CHƯƠNG - MẶT PHẲNG b) P mặt phẳng chiếu cạnh  ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗   z   Đường thẳng đường cạnh có hình chiếu cạnh vuôngK góc với vết cạnh P Ví dụ: Qua điểm E, vẽ đường thẳng vuông góc với mp chiếu cạnh K cho vết E1 Giải:   Vì mp chiếu cạnh ⇒ đường thẳng đường cạnh EF  Xác định E3 3K   Trên phương qua E3 vuông góc với 3K , lấy điểm F3 Từ F3 ⇒ F1 , F2 E3 3K E3 F3 ⊥ 3K F1 F3   2K F2 E2 y 3-24 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ Hai mặt phẳng vuông góc   Q    Hai mp vuông góc mp chứa đường thẳng vuông góc với mp  Xét đường thẳng , mp P mp chiếu R:  ⊂ P (L 2P ) ⊥ R P ⇒P⊥ R     1R 1P   1≡   2R   ≡ 2P 3-25 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ Đường thẳng cắt mặt phẳng hai mặt phẳng cắt   a) Giao điểm đường thẳng mặt phẳng chiếu   Một hình chiếu giao điểm biết trước, thuộc hình chiếu suy biến mp chiếu (tính chất mp chiếu) Tìm hình chiếu lại nhờ vẽ điểm thuộc đường thẳng Ví dụ: Tìm giao E mp chiếu R (A, ) Giải: E ⇒ E2   E ∈ R ⇒ E2 ∈ 2R 1 A1 ⇒ E2 = × R (ở R ≡ 2)   E1   Từ E2 ⇒ E1 ∈     A2 E2 3-26 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ b) Giao điểm đường thẳng chiếu mặt phẳng     Một hình chiếu giao điểm biết trước, trùng với hình chiếu suy biến đường thẳng chiếu Tìm hình chiếu lại nhờ vẽ điểm thuộc mặt phẳng Ví dụ: Tìm giao A đường thẳng chiếu đứng mp P cho vết Giải: A1 L  Tìm A2 nhờ vẽ A ∈ P A1L Gắn A vào đường mặt P , có vết N Từ A1 ⇒ A2   1P ⇒ 1(A1) // 1P , 2(N2) //     N1       2P N2 A2   3-27 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ c) Giao tuyến mp chiếu mp thường  11     Biết trước hc giao (nằm hc suy biến mp chiếu) Tìm hc lại nhờ vẽ đường thẳng ⊂   mp thường Ví dụ: Tìm giao mp P (× ) mp chiếu R ⇒ 11 ∈ ; 1R   : 2≡ 2R Gọi 1, giao g với , Từ đó: 12= 22 ; 22= 22   1 21   21 ∈  1( 11; 21) 22     L   12   2R 3-28 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ d) Giao điểm đường thẳng thường mặt phẳng thường       Tìm A=P gồm bước: Q Dựng mp Q chứa   Tìm giao phụ = Q P Tìm A= Q gọi mp phụ trợ, thường chọn mp chiếu sau • • Là mp chiếu đứng (hoặc chiếu bằng) đường cạnh   Là mp chiếu cạnh đường cạnh A P 3-29 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ 11   Ví dụ: Tìm giao điểm A đường thẳng mp P () Giải:   Từ 11 21 ⇒ 12 A1 Mp phụ trợ Q() mp chiếu đứng cho vết ⇒ 1Q L 1, 2Q ⊥ PQ = (1,2) với 1= Q 2= Q ⇒ 11= 1Q 21= 1Q         L1 L1Q   21   22 2và 2(, )  22 A2=22 Từ A2⇒A1     A2 12     2Q   3-30 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ e) Giao tuyến hai mặt phẳng thường    Chưa biết trước hình chiếu giao tuyến  Cách tìm giao tuyến:  Tìm điểm chung A, B  Giao tuyến (A,B)  Có thể tìm A, B sau:  Trong mp định hai đường thẳng ,  Khi A, B giao điểm , với mp  Cách tìm A, B toán biết   Q     P B A 3-31 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗   A1   1P     1Q B1   A2     2P   2Q B2 3-32 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ BÀI TẬP ĐỀ NGHỊ VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG & MẶT PHẲNG Các bài: 18, 19, 20, 21, 22, 23, 24, 26 – Trang 23 ÷ 25 GIAO ĐIỂM CỦA ĐƯỜNG THẲNG VỚI MẶT PHẲNG & GIAO TUYẾN GIỮA HAI MẶT PHẲNG Các bài: 1, 2, 4, 6, 7, 9, 12, 14, 15 - Trang 30 ÷ 34 BÀI TOÁN VỀ GÓC & KHOẢNG CÁCH Các bài: 8, 9, 11, 12, 14, 15, 16, 17, 18, 19 – Trang 40 ÷ 43 - ... định E3 3K   Trên phương qua E3 vuông góc với 3K , lấy điểm F3 Từ F3 ⇒ F1 , F2 E3 3K E3 F3 ⊥ 3K F1 F3   2K F2 E2 y 3- 24 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ Hai mặt phẳng... E2   A2 B2 3- 14 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ 3. 5 ĐƯỜNG THẲNG ĐẶC BIỆT CỦA MẶT PHẲNG   P1   1P Đường mặt mặt phẳng   a) Định nghĩa   P      Là đường mặt nằm mp... 3- 18 CHƯƠNG - MẶT PHẲNG ∗ Nguyễn Thúc Tráng - Giảng viên HVKTQS ∗ B 3. 6 VỊ TRÍ TƯƠNG ĐỐI GIỮA ĐƯỜNG THẲNG VỚI MẶT   PHẲNG VÀ GIỮA HAI MẶT PHẲNG A1 C1 Đường thẳng song song với mặt phẳng hai mặt

Ngày đăng: 26/08/2017, 22:35

TỪ KHÓA LIÊN QUAN

w