1. Trang chủ
  2. » Giáo Dục - Đào Tạo

LUYEN THI DH TICH PHAN CO LOI GIAI CHI TIET

26 331 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 611,83 KB

Nội dung

Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com TÍCH PHÂN I.CÁC PHƢƠNG PHÁP TÍNH TÍCH PHÂN Tính tích phân định nghĩa ,tính chất bảng nguyên hàm 2.Phƣơng pháp tích phân phần Định lí Nếu u(x) v(x) hàm số có đạo hàm liên tục  a; b  thì: b  b b  u ( x)v ' ( x)dx   u ( x)v( x)   v( x)u ' ( x)dx a a a b hay b  udv  uv a   vdu b a a Áp dụng công thức ta có qui tắc công thức tích phân phần sau:  Bước 1: Viết f(x)dx dạng udv  uv dx cách chọn phần thích hợp ' f(x) làm u(x) phần lại dv  v ( x)dx '  Bước 2: Tính du  u dx v  ' b  Bước 3: Tính   dv  v ' ( x)dx b   b vdu  vu ' dx uv a a a  Bước 5: Áp dụng công thức  ln x dx (ĐH-KB-2009) (x  1) Ví dụ 5: a)Tính tích phân I    ln x dx ln x dx  3  dx 2 (x  1) (x  1) (x  1) 1 3 I dx 3 I1  3  (x  1) (x  1) 3  ln x dx (x  1) I2   Đặt u = lnx  du  dv  dx x 1 dx Chọn v  x 1 (x  1) I2   3 ln x dx ln dx dx ln 3       ln x  1 x(x  1) x x 1 Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com Vậy : I  (1  ln 3)  ln e b) Tính  x ln xdx dx  du   u  ln x x Giải: Đặt   dv  xdx v  x  e e e x2 e2 x e e2  x ln xdx  ln x  xdx    1 2 4 1   Ví dụ 6: Tính tích phân sau:   a)  ln x dx x5 b)  x cos xdx  x c) xe dx d) 0  e x cos xdx dx  du  u  ln x   x Do đó: Giải: a) Đặt   1 dv  dx  v   x5  4x4 ln x ln x dx ln   15  4ln dx           1 x5 x 4 1 x5 64  x  256 2 u  x du  dx  Do đó: dv  cos xdx v  sin x   b) Đặt        u  x du  dx  Do đó:  x x dv  e dx v  e    x cos xdx   x sin x   sin xdx   cos x   2 0 c)Đặt    xe x dx  xe x   e x dx  e  e x  e   e  1  Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com u  e x du  e x dx  d) Đặt  dv  cos xdx v  sin x     2   e cos xdx  e sin x  e x sin xdx 0 x x u1  e x du1  e x dx  Đặt  dv  sin xdx  v1   cos x        e x cos xdx  e  e x cos x  e x cos xdx 0    e 1  e cos xdx  e   e cos xdx  0   x  x *Cách đặt u dv phương pháp tích phân phần b  b P( x)e x dx a  b P( x)ln xdx a  b  P( x)cos xdx e x cos xdx a a u P(x) lnx P(x) ex dv e x dx P(x)dx cosxdx cosxdx Chú ý: Điều quan trọng sử dụng công thức tích phân phần làm để chọn u dv  v dx thích hợp biểu thức dấu tích phân f(x)dx Nói chung nên chọn ' u phần f(x) mà lấy đạo hàm đơn giản, chọn dv  v dx phần f(x)dx ' vi phân hàm số biết có nguyên hàm dễ tìm Có ba dạng tích phân thường áp dụng tích phân phần: Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com   Nếu tính tích phân  P( x)Q( x)dx mà P(x)là đa thức chứa x Q(x)  ax hàm số: e , cos ax, sin ax ta thường đặt ' du  P ( x)dx  u  P( x)    dv  Q( x)dx v  Q( x)dx     Nếu tính tích phân  P( x)Q( x)dx mà P(x) đa thức x Q(x) hàm số  du  Q '  x  dx u  Q ( x )   ln(ax) ta đặt   dv  P( x)dx v  P( x)dx      Nếu tính tích phân I   e ax cos bxdx   J  eax sin bxdx  du  aeax dx u  e  ta đặt   dv  cos bxdx v  sin bx  b ax du  aeax dx u  e  đặt   dv  sin bxdx v   cos bx  b ax Trong trường hợp này, ta phải tính tích phân phần hai lần sau trở thành tích phân ban đầu Từ suy kết tích phân cần tính Phƣơng pháp đổi biến số b Bài toán: Tính I   f ( x)dx , a *Phương pháp đổi biến dạng I Định lí Nếu 1) Hàm x  u (t ) có đạo hàm liên tục đoạn  ; 2) Hàm hợp f (u (t )) xác định  ; 3) u( )  a, u (  )  b ,  ,  , Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com  b I   f ( x)dx   f (u (t ))u ' (t )dt  a Ví dụ Hãy tính tích phân sau: I a ) Tính tích phân    cos  x  cos x.dx (ĐH-KA-2009)   b) I  x x  5dx c) J   sin x  1 cos xdx   0 Giải: a) I =  cos5 x.dx   cos x.dx    12 1   Ta có: I2 =  cos x.dx   (1  cos2x).dx =  x  sin 2x   2 20 0   0 Mặt khác xét I1 =  cos5 x.dx   cos4 x.cosx.dx   1  2sin x  sin x   =  (1  sin x) d(sin x)   sin x  5  15 2 Vậy I = I1 – I2 =    15  b) Ta có d x   3x dx  I   x 5  d  x3  5 d  x3  5 1 ( x  5) x3   d ( x3  5)   30 1   10 6  x dx 1 1  ( x3  5) x3  Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com   1  c) Ta có J  (sin x  1)d (sin x)   sin x  sin x   5 0  Ví dụ Hãy tính tích sau: a)   x dx b)  dx  x     Khi x = t = Khi x  t  ;  2  Từ x  2sin t  dx  2cos tdt Giải: a) Đặt x  2sin t , t     x dx    2    4sin t 2cos tdt  cos tdt   0     ;  Khi x  t  , x  t   2 dt Ta có: x  tan t  dx  cos2 t    4 dx dt  b) Đặt x  tan t , t       x    tan t cos t   dt  t 04  2 Chú ý: Trong thực tế gặp dạng tích phân dạng tổng quát như: Nếu hàm số dấu tích phân có chứa dạng a  x , a  x x  a (trong a số dương) mà cách biến đổi khác nên đổi sang hàm số lượng giác để làm thức, cụ thể là:  Với    a  x , đặt x  a sin t , t    ;   2 x  a cos t , t   0;    Với    a  x , đặt x  a tan t , t    ;   2 x  acott , t   0;  Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com x  a , đặt x   Với x  a    , t    ;  \ 0 sin t  2 a   ; t   0;  \   cos t 2 *Phương pháp đổi biến dạng II Định lí : Nếu hàm số u  u ( x) đơn điệu có đạo hàm liên tục đoạn  a; b  cho f ( x)dx  g (u( x))u ' ( x)dx  g (u )du I  b u (b) a u(a)  f ( x)dx   g (u)du Ví dụ 3: Tính I   x x  5dx Giải: Đặt u ( x)  x  Tacó u(0)  5, u(1)  6    2 10 Từ được: I  udu  u u  6  5  6 5 35 9 Ví dụ 4: Hãy tính tích phân sau phương pháp đổi biến dạng II: e2 a)   x  1  dx b) x ln x e dx d)  2 dx (2 x  1)2 e)  cos(3x   c)  4x  dx x2  x  2 )dx 3 Giải: a) Đặt u  x  x  u  Khi x  u  Ta có du  2dx  dx   du Do đó:  u6  (3  1) = 60  x  1 dx  u du  21 12 12 b)Đặt u  ln x Khi x  e u  Khi x  e u  Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com e  dx Ta có du   x e  dx du   ln u  ln  ln1  ln x ln x u c)Đặt u  x  x  Khi x  u  Khi x  u  Ta có du  (2 x  1)dx Do đó:  3 4x  2du dx   2ln u  2(ln  ln1)  2ln x2  x  u  d)Đặt u  x  Khi x  u  Khi x  u  Ta có du  2dx  dx   e)Đặt u  3x  du Do đó:  dx du 1      (  1)  (2 x  1)2 u 2u 3 2   2 4 Khi x  u  , x  u  3 3 Ta có du  3dx  dx  2   du Do đó: 4 4 cos(3x  2 1  4  )dx  cos udu  sin u   sin  sin   3 3 3 3  1 3     3 2  3.Phƣơng pháp tích phân phần Định lí Nếu u(x) v(x) hàm số có đạo hàm liên tục  a; b  thì: b  b b  u ( x)v ( x)dx   u ( x)v( x)   v( x)u ' ( x)dx a a a ' b hay b  udv  uv a   vdu a b a Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com Áp dụng công thức ta có qui tắc công thức tích phân phần sau:  Bước 1: Viết f(x)dx dạng udv  uv dx cách chọn phần thích hợp ' f(x) làm u(x) phần lại dv  v ( x)dx '  Bước 2: Tính du  u dx v  ' b  Bước 3: Tính   dv  v ' ( x)dx b   b vdu  vu ' dx uv a a a  Bước 5: Áp dụng công thức  ln x dx (ĐH-KB-2009) (x  1) Ví dụ 5: a)Tính tích phân I    ln x dx ln x dx  3  dx 2 (x  1) (x  1) (x  1) 1 3 I dx 3 I1  3  (x  1) (x  1) 3  ln x dx (x  1) I2   Đặt u = lnx  du  dv  dx x 1 dx Chọn v  x 1 (x  1) 3 3 ln x dx ln dx dx ln 3 I2         ln x  1 x(x  1) x x 1 4 Vậy : I  (1  ln 3)  ln e b) Tính  x ln xdx dx  du   u  ln x x Giải: Đặt   dv  xdx v  x  e e e x2 e2 x e e2  x ln xdx  ln x  xdx    1 2 4 1   Ví dụ 6: Tính tích phân sau: Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 10   a)  ln x dx x5 b)   x c) xe dx x cos xdx d) 0  e x cos xdx dx  du  u  ln x   x Giải: a) Đặt  Do đó:   1  dv dx  v   x5  4x4 ln x ln x dx ln   15  4ln 1 x5 dx   x4  1 x5   64    x4   256 2 u  x du  dx Do đó:  dv  cos xdx v  sin x b) Đặt          x cos xdx   x sin x   sin xdx   cos x   2 0 u  x du  dx Do đó:   x x dv  e dx v  e   c)Đặt   xe x dx  xe x   e x dx  e  e x  e   e  1  u  e x du  e x dx  d) Đặt  dv  cos xdx  v  sin x     2   e cos xdx  e sin x  e x sin xdx 0 x x u1  e x du1  e x dx  Đặt  dv1  sin xdx v1   cos x        e cos xdx  e  e cos x  e x cos xdx 0 x x Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 12 du  aeax dx u  e  ta đặt   dv  cos bxdx v  sin bx  b ax du  aeax dx u  e  đặt   dv  sin bxdx v   cos bx  b ax hoctoan capba.com Trong trường hợp này, ta phải tính tích phân phần hai lần sau trở thành tích phân ban đầu Từ suy kết tích phân cần tính II.TÍCH PHÂN MỘT SỐ HÀM SỐ THƢỜNG GẶP Tích phân hàm số phân thức a)Tính tích phân dạng tổng quát sau:  I   dx ax  bx  c  a  0 (trong ax  bx  c  với x   ;   ) Xét   b2  4ac  +)Nếu   I   a x  b  dx    tính  2a    dx , +)Nếu   I  a   x  x1  x  x2  (trong x1  I  b   b   ) ; x2  2a 2a x  x1  ln a  x1  x2  x  x2    dx  +) Nếu   I  ax bx c       dx 2  b      a  x       a a       Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 13 Đặt x  b    tgt  dx   tg 2t  dt , ta tính I 2  2a 4a a  b) Tính tích phân: I    (trong f ( x)  mx  n dx, ax  bx  c  a  0 mx  n liên tục đoạn  ;   ) ax  bx  c +) Bằng phương pháp đồng hệ số, ta tìm A B cho: mx  n A(2ax  b) B   ax  bx  c ax  bx  c ax  bx  c  +)Ta có I=     Tích phân    Tích phân  mx  n A(2ax  b) B dx  dx   ax  bx  c  ax  bx  c dx ax  bx  c   A(2ax  b) dx = Aln ax  bx  c ax  bx  c   dx tính ax  bx  c b c) Tính tích phân I   a P( x) dx với P(x) Q(x) đa thức x Q( x)  Nếu bậc P(x) lớn bậc Q(x) dùng phép chia đa thức  Nếu bậc P(x) nhỏ bậc Q(x) xét trường hợp: + Khi Q(x) có nghiệm đơn 1 , , , n đặt An A1 A2 P( x)     Q( x) x  1 x   x  n   + Khi Q( x)   x    x  px  q ,   p  4q  đặt 2 P( x) A Bx  C   Q( x) x   x  px  q Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 14 + Khi Q( x)   x    x    với    đặt A P( x) B C    Q( x) x   x    x    Ví dụ Tính tích phân:  x  11 dx x2  5x  Giải: Cách 1.Bằng phương pháp đồng hệ số ta tìm A, B cho: A  x  5 x  11 B   , x  x2  5x  x2  5x  x2  5x   Ax   A  B  x  11  , x  x2  5x  x2  5x  \ 3; 2 \ 3; 2 2 A  A    5 A  B  11  B  Vậy  x  5 x  11   , x  x2  5x  x  5x  x  5x  Do  \ 3; 2 x  11 2x  dx dx  dx  x2  5x  x2  5x  x2  5x  0  2ln x  x    x2  ln  ln x3 Cách Vì x  x    x   x  3 nên ta tính tích phân cách: Tìm A, B cho: x  11 A B   , x  x2  5x  x  x   \ 3; 2  A  B  x  A  B , x  x  11  x2  5x  x2  5x  A  B  A    3 A  B  11  B  \ 3; 2 Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 15 Vậy x  11   , x  x2  5x  x  x  Do  \ 3; 2 x  11 dx dx dx   x2  5x  x2 x3   3ln x  Ví dụ 8:Tính tích phân:   1  ln x   ln 0 dx x  x 1 Giải: Do   dx dx  x2  x   1 x   2  Đặt x  3     tan t , t   ;   dx   tan t  dt  2 6 3  Vậy  dx  x2  x     t dt  tan   33 dt  t  3  (1  tan t )  Ví dụ Tính tích phân:  x3 dx x2  Giải:  2 x x   dx  x    dx  xdx  x2  x       xdx x2  1 x2 1   ln x    ln 2 0 Tích phân hàm lƣợng giác     Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 16 2.1.Dạng 1: Biến đổi tích phân Ví dụ 10: Hãy tính tích phân sau:  a) J   sin 2x sin xdx ;    b) K   cos x(sin x  cos x)dx ;   4sin x c) M  dx  cos x Giải a) J    2     1 1 cos5 xdx  cos9 xdx  sin x  sin x   18  45   10     2 2  b) Ta có cos x(sin x  cos x)  cos x  sin x  cos x 4 2   2sin x cos x        cos x 1  sin 2 x   cos x 1  1  cos x    cos x  cos x cos x      cos x   cos5 x  cos3x      2 2     1 K  cos x(sin x  cos x)dx  cos xdx  cos5 xdx  co3xdx 40 80 80    1 1 11  sin x  sin x  sin x     40 24 40 24 15 0 4sin x 4sin x sin x 4(1  cos x)sin x    4(1  cos x)sin x c)  cos x  cos x  cos x  M  Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 17 2.2.Dạng 2: Đổi biến số để hữu tỉ hóa tích phân hàm lượng giác 2.2.1.Tính I   dx asinx  b cos x  c Phƣơng pháp: Đặt t  tan x 2dt  dx  1 t2 1 t2 2t Ta có: sin x  cos x  1 t2 1 t2 I  dx  asinx  b cos x  c  2dt biết cách tính  c  b  t  2at  b  c Ví dụ 11 Tính  Giải: Đặt t  tg x 1 x 2dt  dt  1  tan  dx   dx 2 2 1 t2  dx 4cos x  3sin x  2dt dx dt 1 t2   1 t2 2t cos x  3sin x  t  3t  3 3 1 t2 1 t2   x tan  t 1  ln  C  ln C x t2 tan  2 2.2.2 Tính I   dx a sin x  b sin x cos x  c cos x  d Phƣơng pháp: I   dx  a  d  sin x  b sin x cos x   c  d  cos x dx cos x   a  d  tan x  b tan x   c  d   Đặt t  tgx  dt  dx I  cos2 x  dt tính  a  d  t  bt   c  d  Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 18 Ví dụ 12 Tính: I   dx sin x  2sin x cos x  3cos x dx dx cos x Giải:Ta có I   sin x  2sin x cos x  3cos x tg x  2tgx    Đặt t  tgx  dt  I   Tính I  dt  t  2t    dx cos2 x dt t 1 tgx   ln  C  ln  C 2.2.3 t  t  t  tgx     m sin x  n cos x  p dx a sin x  b cos x  c Phƣơng pháp: +)Tìm A, B, C cho: m sin x  n cos x  p  A  a sin x  b cos x  c   B  a cos x  b sin x   C , x +) Vậy I   m sin x  n cos x  p dx = a sin x  b cos x  c = A dx  B  a cos x  b sin x dx dx  C  a sin x  b cos x  c a sin x  b cos x  c Tích phân  dx Tích phân a cos x  b sin x  a sin x  b cos x  c dx  ln a sin x  b cos x  c  C tính dx Tích phân  a sin x  b cos x  c tính Ví dụ 13 Tính: I   cos x  2sin x dx 4cos x  3sin x Giải: Bằng cách cân hệ số bất định, tìm A B cho: cos x  2sin x  A  4cos x  3sin x   B  4sin x  3cos x  , x cos x  2sin x   A  3B  cos x   A  4B  sin x, x Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 19  A    A  3B    3 A  B  B     4sin x  3cos x  I   dx  x  ln 4cos x  3sin x  C 5  5 4cos x  3sin x   2.3.Dạng 3: Đổi biến số để đưa tích phân hàm lượng giác đơn giản (Xem ví dụ 17, 20, 21) 2.4.Chú ý: Nguyên hàm dạng  R sin x,cos x  dx , với R sin x,cos x  hàm hữu tỉ theo sinx, cosx Để tính nguyên hàm ta đổi biến số đa dạng tích phân hàm hữu tỉ mà ta biết cách tính tích phân  Trường hợp chung: Đặt t  tan x 2dt  dx  1 t2 2t 1 t2 ;cos x  Ta có sin x  1 t2 1 t2  Những trường hợp đặc biệt: +) Nếu R  sin x,cos x  hàm số chẵn với sinx cosx nghĩa R   sin x,  cos x   R sin x,cos x  đặt t  tgx t  cot gx , sau đưa tích phân dạng hữu tỉ theo biến t +) Nếu R  sin x,cos x  hàm số lẻ sinx nghĩa là: R   sin x,cos x    R sin x,cos x  đặt t  cos x +) Nếu R  sin x,cos x  hàm số lẻ cosx nghĩa là: R  sin x,  cos x    R sin x,cos x  đặt t  sin x 3.Tích phân hàm vô tỉ 3.1 Dạng 1: Biến đổi tích phân vô tỉ Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 20 Ví dụ 14 Tính tích phân: I   dx x 1  x Giải I  dx  x 1  x   Ví dụ 15:Tính tích phân  x Giải:  x  3 2 1 2 x   x dx   x  1  x   2  3 0 x3dx  x2 x3dx  x2   ( x3  x  x )dx  2 1 15 3.2.Dạng 2: Biến đổi tích phân hàm lượng giác (xem ví dụ 2) 3.3Dạng 3: Biến đổi làm Gồm: Đổi biến số t toàn thức Viết biểu thức dạng bình phương I   x  x dx Ví dụ 15:Tính Giải: I x  x dx   x  x xdx 0 2 2 Đặt t=  x  t   x  x   t Ta có: xdx=-tdt, Khi x= t =1,khi x = t =0 Vậy  t3 t5  2 I    (1  t )t dt        15 4.Tích phân chứa dấu giá trị tuyệt đối Phƣơng pháp:Chúng ta phải phá dấu giá trị tuyệt đối  Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 21 Ví dụ 16: Tính J   x  dx 2 Giải: Lập bảng xét dấu x  đoạn  2;2 x -2 x2  Do I   + 1 x  dx  2 -1  x  1 dx  2 - +  1  x  dx    x 1  1 dx x3   x3  x3  1  2    x   x      x   1  3  2  1 III.TÍCH PHÂN MỘT SỐ HÀM ĐẶC BIỆT 1.Cho hàm số y  f ( x) liên tục lẻ đoạn  a; a  Khi a  f ( x)dx  I a  Ví dụ 17: Chứng minh I    xdx   sin x    Giải: Đặt x  t  dx  dt Khi x= t = - , x    Do : I=  tdt    sin t  I  Suy : 2I = Ta I    xdx   sin x   t   Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 22 2.Cho hàm số y  f ( x) liên tục chẵn đoạn  a; a  Khi I a a a  f ( x)dx  2 f ( x)dx Chứng minh : Ta có I  a a a a  f ( x)dx   f ( x)dx   f ( x)dx (1) Ta tính J   f ( x)dx cách đặt x  t 0  t  a   dx  dt a J  0 a a a a 0  f ( x)dx   f (t )dt   f (t )dt   f ( x)dx (2) Thay (2) vào (1) ta I  a a a  f ( x)dx  2 f ( x)dx  Ví dụ 18: Tính tích phân: I    Giải: x  cos x dx  sin x     2 x  cos x dx  Ta có I   sin x      x dx   sin x    cos x dx  sin x   x Do f1 ( x)  hàm số lẻ  sin x f ( x)       ;  nên   2     x dx   sin x       ;  nên ta có: cos x hàm số chẵn  sin x    cos x cos x d (sin x) dx  dx  2 2  sin x  sin x (sin x  2)  sin x      Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 23  sin x  Vậy I   ln  ln sin x  2 3.Cho hàm số y  f ( x) liên tục chẵn đoạn   :   Khi   f ( x) I   x dx   f ( x)dx a 1   Chứng minh: Đặt t= -x  dt= - dx at  Ta có f(x) = f(-t)= f(t); a +1= a +1= at x -t Khi x= -  t =  ; x =  t =-   Vậy   f ( x) a t f (t ) at   I   x dx   t dt   f (t )dt t a 1 a 1 a 1       f (t )   f (t )dt   t dt   f ( x)dx  I a       f ( x) I   x dx   f ( x)dx a 1   Suy  x4 dx Ví dụ 19 : Tính tích phân: I  x  1 Giải:Đặt t= -x  dt= - dx Khi x= - t = ; x =1 t =-1 Vậy 1 x4 t4 2t dt   t t dt I x dx    t 1 1 1 1 1 1` 1 t4   t dt   t dt   x dx  I 1 1 1 1 Suy x5 I   x dx  1  1 Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 24     Khi 4.Cho f(x) liên tục đoạn 0;   2 0  f (sin x)dx   f (cos x)dx Chứng minh: Đặt t    x  dx  dt Khi x = t   , x   t =  Do 0     2 0  f (sin x)dx   f (sin(  t )dt   f (cos t )dt   f (cos x)dx Nhận xét : Bằng cách làm tương tự ta có công thức   *Nếu f(x) liên tục  0;1    xf (sin x)dx   f (sin x)dx  2  *Nếu f(x) liên tục  0;1   2   xf (cos x)dx     f (cos x)dx   sin n x  Ví dụ 20:Chứng minh: I= dx  n n sin x  cos x  Giải : Tương tự ta có: I=   sin n x cos n x dx  dx =J n n  sin n x  cos n x sin x cos x    +) Vậy I+J=   sin n x cos n x  dx  dx  sin n x  cos n x sin n x  cos n x 2  Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 25  Vậy I=  sin n x   dx sin n x  cos n x   x sin x dx  cos x Ví dụ 21: Tính tích phân: Giải: Đặt x    t   t     dx   dt   t  sin   t  dt x sin x Khi dx   2  cos x  cos   t          sin t   cos t  dt     sin x   cos x  t sin t dt  cos t  dx   x sin x dx  cos x  x sin x  sin x 2 dx  dx 2  cos x  cos x 0     x sin x  sin x 2 Vậy dx  dx  2  cos x  cos x 0   BÀI TẬP ĐỀ NGHỊ Bài 1.Tính tích phân sau  a) I   2 sin x cos x  sin x ( ĐH-KA-2006) dx b) I   x sin x dx 0  c) I   sin x  sin x  cos x (ĐH-KA-2005) dx  d ) I   (2 x  1) cos x.dx 0  sin x cos x e) I   dx  cos x (ĐH-KB-2005)  x dx  cos x f )I   Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 26  sin x  cos x g )I    sin x   dx  cos x i) I   dx (sin x  cos x  ) Bài 2.Tính tích phân sau a) I  x  2x3  k ) I   x tan x.dx dx b) I  e) I   x x  1dx dx 1 x ( x  1)  1 1  dx x2  x  d )I    dx x2 1 2x  c) I   dx x   g )I  cos x  cos x   tan x h) I   dx 1 x  x f )I  dx x x2  h) I    x   x  dx 3 Bài Tính tích phân sau a) I   ( x  1)e dx x dx c) I   x 1 e x e x e) I   dx ( x  ) 0 g ) I   x(e x  x  1)dx 1 ln(  x) dx x b) I   x3  d )I   ln x.dx x e f ) I   ln( x  x).dx  h) I   (e sin x  cos x) cos x.dx [...]... 2sin 2 x cos 2 x   1  1   1  3  cos x 1  sin 2 2 x   cos x 1  1  cos 4 x    cos x  cos x cos 4 x 4  2   4  4 3 1  cos x   cos5 x  cos3x  4 8     2 2 2 2     3 1 1 K  cos x(sin 4 x  cos 4 x)dx  cos xdx  cos5 xdx  co3 xdx 40 80 80 0    3 1 1 3 1 1 11  sin x 2  sin 5 x 2  sin 3 x 2     4 40 24 4 40 24 15 0 0 0 4sin 3 x 4sin 2 x sin x 4(1  cos 2 x)sin... b cos x  c   B  a cos x  b sin x   C , x +) Vậy I   m sin x  n cos x  p dx = a sin x  b cos x  c = A dx  B  a cos x  b sin x dx dx  C  a sin x  b cos x  c a sin x  b cos x  c Tích phân  dx Tích phân a cos x  b sin x  a sin x  b cos x  c dx  ln a sin x  b cos x  c  C tính được dx Tích phân  a sin x  b cos x  c tính được Ví dụ 13 Tính: I   cos x  2sin x dx 4cos... www.toanmath.com 18 Ví dụ 12 Tính: I   dx sin 2 x  2sin x cos x  3cos 2 x dx dx cos 2 x Giải:Ta có I   sin 2 x  2sin x cos x  3cos 2 x tg 2 x  2tgx  3   Đặt t  tgx  dt  I   Tính I  dt  t 2  2t  3   dx cos2 x dt 1 t 1 1 tgx  1  ln  C  ln  C 2.2.3 t  1 t  3 4 t  3 4 tgx  3    m sin x  n cos x  p dx a sin x  b cos x  c Phƣơng pháp: +)Tìm A, B, C sao cho: m sin x  n cos... www.toanmath.com 16 2.1.Dạng 1: Biến đổi về tích phân cơ bản Ví dụ 10: Hãy tính các tích phân sau:  2 a) J   sin 2x sin 7 xdx ;   2  2 b) K   cos x(sin 4 x  cos 4 x)dx ; 0  2  4sin 3 x c) M  dx 1  cos x 0 Giải a) J    2 2     1 1 1 1 4 cos5 xdx  cos9 xdx  sin 5 x 2  sin 9 x 2   18  45 2  2  10     2 2 2 2  b) Ta có cos x(sin x  cos x)  cos x  sin x  cos x 4 4 2... cosx nghĩa là R   sin x,  cos x   R sin x,cos x  thì đặt t  tgx hoặc t  cot gx , sau đó đưa tích phân về dạng hữu tỉ theo biến t +) Nếu R  sin x,cos x  là hàm số lẻ đối với sinx nghĩa là: R   sin x,cos x    R sin x,cos x  thì đặt t  cos x +) Nếu R  sin x,cos x  là hàm số lẻ đối với cosx nghĩa là: R  sin x,  cos x    R sin x,cos x  thì đặt t  sin x 3.Tích phân hàm vô tỉ... 0;1 thì   2   xf (cos x)dx     f (cos x)dx   sin n x  Ví dụ 20:Chứng minh: I= dx  n n sin x  cos x 4 0 2  Giải : Tương tự như trên ta có: I=   2 sin n x cos n x dx  dx =J n n  sin n x  cos n x sin x cos x 0  0 2   2 +) Vậy I+J=  0  sin n x cos n x  dx  dx  sin n x  cos n x sin n x  cos n x 2 0 2  Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 25  2 Vậy I=  0 sin... dx sin n x  cos n x 4   x sin x dx 2 1  cos x 0 Ví dụ 21: Tính tích phân: Giải: Đặt x    t  0  t     dx   dt   t  sin   t  dt x sin x Khi đó dx   2 2 1  cos x 1  cos   t  0   0       sin t  1  cos t  2 dt  0    sin x  1  cos x 2 0  t sin t dt 2 1  cos t 0  dx   x sin x dx 2 1  cos x 0  x sin x  sin x 2 dx  dx 2 2 1  cos x 1  cos x 0 0  ... hệ số bất định, tìm A và B sao cho: cos x  2sin x  A  4cos x  3sin x   B  4sin x  3cos x  , x cos x  2sin x   4 A  3B  cos x   3 A  4B  sin x, x Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 19 2  A    4 A  3B  1 5   3 A  4 B  2 B   1  5 2 1  2 1 4sin x  3cos x  I   dx  x  ln 4cos x  3sin x  C 5 5  5 5 4cos x  3sin x   2.3.Dạng 3: Đổi biến... 2 2 1  cos x 2 1  cos x 4 0 0   BÀI TẬP ĐỀ NGHỊ Bài 1.Tính các tích phân sau  2 a) I   2 sin 2 x cos 2 x  4 sin 2 x ( ĐH-KA-2006) dx b) I   x sin x dx 0 0  2 c) I   sin 2 x  sin x 1  3 cos x (ĐH-KA-2005) dx  2 d ) I   (2 x  1) cos 2 x.dx 0 0  2 sin 2 x cos x e) I   dx 1  cos x 0 (ĐH-KB-2005)  4 x dx 1  cos 2 x 0 f )I   Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com 26... 2 1 t2  dx 4cos x  3sin x  5 2dt dx dt 1 t2   1 t2 2t cos x  3sin x  3 t 2  3t  2 3 3 1 t2 1 t2   x tan  1 t 1 2  ln  C  ln C x t2 tan  2 2 2.2.2 Tính I   dx a sin x  b sin x cos x  c cos 2 x  d 2 Phƣơng pháp: I   dx  a  d  sin x  b sin x cos x   c  d  cos 2 x 2 dx 2 cos x  2  a  d  tan x  b tan x   c  d   Đặt t  tgx  dt  dx I  cos2 x  dt đã

Ngày đăng: 07/09/2016, 10:00

TỪ KHÓA LIÊN QUAN

w