Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 18 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
18
Dung lượng
1 MB
Nội dung
[...]... phát biểu đúng: 1 a .Tam thức f(x) = x2 + 3x + 3 có -3 a = ∆ > 0 ∀x ∈ R ……… 0 nên f(x) ….… -1< 0 b Tam thức f(x) = -x2 + 6 x – 9 có ∆ =…… và hệ số a =……… 0 nên f(x) < 0 ∀x ≠ 3 ….… c Tam thức f(x) = - 2x2 + 4x + 6 có ∆’ 16 > = …… 0, tam thức có -1 3 hai nghiệm x1 = … , x2 = … và có hệ số a = -2 < …… 0, nên f(x) ……… x f(x) ? -∞ -1 - 0 + 3 0 +∞ - Nêu các bước xét dấu một tam thức bậc hai... x ∈ (−∞; −1) ∪ (3 : +∞) + 0 +∞ + – + – Hđ nhóm Bảng xét dấu tam thức f(x) =ax2 + bx + c (a ≠ 0), ∆ = b2 – 4ac * TH1: ∆< 0 thì tam thức bậc hai f(x) vô nghiệm x +∞ -∞ f(x) cùng dấu với hệ số a * TH2: ∆ = 0 thì tam thức bậc hai f(x) có nghiệm kép x1 = x2 = -b/2a x f(x) -∞ +∞ -b/2a cùng dấu với hệ số a 0 cùng dấu với hệ số a * TH3: ∆ > 0 thì tam thức bậc hai f(x) có 2 nghiệm pb x1, x2 (x1 < x2) x f(x)... -2 < …… 0, nên f(x) ……… x f(x) ? -∞ -1 - 0 + 3 0 +∞ - Nêu các bước xét dấu một tam thức bậc hai 3 Áp dụng: a Xét dấu tam thức bậc hai: C¸c bíc xÐt dÊu tam thøc bËc 2 Bước 1 Xét dấu hệ số a, tính ∆, dấu của ∆ và tìm nghiệm (nếu có) Bước 2 Dựa vào định lí để kết luận Vd3: Xét dấu các tam thức bậc hai: a f ( x) = x 2 + 2 x + 5 b f ( x) = − x 2 − 4 x + 5 Giải a f(x) có ∆’ = - 4 < 0 và a = 1 > 0 nên f(x)... định lí về dấu tam thức bậc hai - Làm các bài tập 1, 2 SGK trang 105 - Xem trước mục II Bài tập làm thêm XIN CHÂN THÀNH CẢM ƠN QUÝ THẦY CÔ VÀ CÁC EM! Bài tập: Tìm các giá trị của m để biểu thức sau luôn dương: Gợi ý: f ( x) = (m − 2) x 2 −2(m − 3) x + m − 1 H1 Từ định lí hãy cho biết khi nào dấu của tam thức bậc hai không đổi với mọi x ? ∆ 0 ∆ < 0 H3 Từ định lí hãy cho biết khi nào dấu của tam thức bậc hai luôn âm với mọi x ? a < 0 ∆ < 0 Hđ nhóm Bài tập: Tìm các giá trị của m để biểu thức sau luôn dương: f ( x) = (m − 2) x 2 −2(m − 3) x + m − 1 Giải 1 * Với m = 2 thì biểu thức trở thành f ( x) = 2 x + 1 > 0 ⇔ x > − 2 Nên m = 2 không thỏa mãn * Với m ≠ 2 thì f(x) là tam thức bậc hai m > 2 7 Nên a > 0 ⇔ f ( x) > 0 ∀x ∈... 4 < 0 và a = 1 > 0 nên f(x) > 0, với mọi x b f(x) có hai nghiệm phân biệt x1 = -5 và x2 = 1, hệ số a = -1 < 0 Ta có bảng xét dấu: x f(x) -∞ -5 - 0 1 + 0 +∞ - 3 Áp dụng: b Xét dấu tích, thương của các tam thức bậc hai: ( x 2 − 2 x − 3)(− x 2 − 1) Vd4: Xét dấu biểu thức: f ( x) = 2x2 − 8x + 8 Giải 2 Ta có: x − 2 x − 3 = 0 ⇔ x = −1 ∨ x = 3 − x 2 − 1 có ∆ = - 4 < 0 và a = -1 < 0 2 x2 − 8x + 8 = 0 ⇔ x = . dấu biểu thức: