Trong quá trình giảng dạy môn toán ỏ THCS nói chung, môn số học nói riêng, việc hình thành tư duy cho các em để đi đến cách giải một bài toán là một việc tương đối khó khăn đặc biệt lại
Trang 1A ĐẶT VẤN ĐỀ
I LỜI MỞ ĐẦU
Trong chương trình phổ thông môn toán là môn học chiếm vị trí quan trọng Dạy toán tức là dạy phương pháp suy luận khoa học Học toán tức là rèn luyện khả năng tư duy logic Giải các bài toán là một phương tiện rât tốt giúp học sinh nắm vững tri thức, phát triển tư duy, hình thành các kĩ năng, kĩ xảo
Trong quá trình giảng dạy môn toán ỏ THCS nói chung, môn số học nói riêng, việc hình thành tư duy cho các em để đi đến cách giải một bài toán
là một việc tương đối khó khăn đặc biệt lại là các em học sinh ở đầu cấp Vì vậy làm thế nào, để khai thác triệt để các dữ kiện của bài toán, loại trừ các khả năng có thể xảy ra, từ đó đi đến vấn đề trọng tâm rồi chủ động đưa ra cách giải một cách đơn và đi đến kết quả
Một trong những phương pháp đó là “ Sử dụng phương pháp chặn”- là những công cụ hữu hiệu, góp phần tháo gỡ khó khăn trong việc giải toán Phương pháp này tuy đã được nhiều người sử dụng, song không chủ động, áp dụng chưa rộng, chưa hình thành tư duy phương pháp và kĩ năng cho học sinh dẫn đến học sinh còn gặp nhiều khó khăn trong việc giải bài tập, nhất là các bài tập về số học
Từ thực tế giảng dạy bồi tôi đã mạnh dạn làm chuyên đề này, góp một phần nhỏ vào việc bồi dưỡng học sinh giỏi
II THỰC TRẠNG CỦA VẤN ĐỀ NGHIÊN CỨU
1 Thực trạng:
Số học là môn học các em được học ở lớp 6 nhưng trong các đề thi học sinh giỏi cấp cụm, cấp huyện, cấp tỉnh luôn có mặt Khi giải toán số học, một khâu quan trọng thường có trong cách giải là phải tìm cách hạn chế các giá trị của biến để từ đó tìm ra kết quả Tuy nhiên với các em đầu cấp nếu không được sự hướng dẫn thì việc làm này sẽ không trở đường lối
Trang 22 Kết quả của thực trạng
Để đánh giá được khả năng giải toán và có phương án truyền đạt
phương pháp đến cho học sinh, tôi đã tiến hành kiểm tra 20 em học sinh khá giỏi khối lớp 6 trường THCS Lê Đình Kiên, thời gian làm bài là 45 phút
Bài 1 (4 điểm) Tìm số tự nhiên x lớn nhất sao cho 9x 45<
Bài 2 (4 điểm) : Tìm số có hai chữ số sao cho tỉ số giữa hai số đó với tổng các chữ số của nó có giá trị nhỏ nhất
Bài 3 (2 điểm) : Tìm các số tự nhiên x, y sao cho 1 1 1
x+ =y 3 Kết quả cụ thể :
Qua kiểm tra tôi thấy đa số học sinh không làm được bài 3
Từ thực trạng trên, để quá trình bồi dưỡng học sinh giỏi đạt kết quả tốt hơn tôi
đã nghiên cứu và tìm hiểu một lớp các bài toán, hướng dẫn các em học sinh sử dụng phương pháp “chặn” để giải sẽ có hiệu quả hơn
B GIẢI QUYẾT VẤN ĐỀ
Sử dụng phương pháp này giải quyết được phần lớn các bài tập số học
cơ bản và nâng cao Bản chất của vấn đề là: “Muốn tìm được số nào đó hay mệnh đề nào đó thỏa mãn tính chất hoặc điều kiện cho trước” thì ta phải giới hạn tính chất đã cho, phạm vi áp dụng, kết hợp nhiều tính chất khác nhau rồi loại bỏ các yếu tố phức tạp và có thể góp phần đưa ra kết quả
Cụ thể là : Tìm số a thỏa mãn tính chất nào đó, ta giả sử a m≥
Kết hợp với điều kiện bài toán ta tìm được a n≤ Từ đó ta tìm được a trong khoảng từ m đến n (m a n≤ ≤ ) Sau đó kết hợp các dữ kiện hoặc thử các trường hợp trong khoảng đó suy ra a chỉ nhận một số giá trị nào đó
Trang 3Các bài toán ở chuyên đề này thường được phân ở hai dạng chính:
- Dạng thứ nhất: Dựa vào đề bài ra ta có thể giới hạn ngay các khả năng xảy
ra, kết hợp nhiều yếu tố khác rồi cho kết quả
- Dạng thứ hai: Sử dụng các tính chất đã có của các số, nhưng có thể không
nói đến ở đề bài toán Kết hợp nhận xét, đánh giá các khả năng xảy ra rồi
“ chặn”, từ đó đi đến lời giải và cho kết quả Trong trường hợp này nhiều khi chúng ta phải linh động, bởi vì xuất phát điểm của lời giải không cố định bắt đầu từ đâu, không theo một công thức hay quy luật nào đó
Sau đây là một số bài tập áp dụng được phân thành các thể loại, trong
đó đã phân thành hai dạng đã nói ở trên
I
THỂ LOẠI TOÁN VỀ TÌM SỐ
(Ở thÓ lo¹i n y chñ yÕu lµ c¸c bµi to¸n ë dà ạng 1)
Bài 1: Tìm a, b biết a,b∈{23;35;138;17;41} và 90<a-b<100
Lời giải:
Vì 90 < a-b <100 , cộng mỗi vế với b ta có 90+b <a < 100+b
Đặt A={23;35;138;17;41} Do b A∈ nên b 17≥ ⇒ >a 90 17 107+ =
Mà a A∈ ⇒ =a 138
Ta có 90 b a+ < ⇒90 b 138+ < ⇒ <b 48
và 100 b a+ > ⇒100 b 138+ > ⇒ >b 38
Suy ra 38 < b < 48 ⇒ =b 41
Vậy a 138, b 41= =
Bài 2: Cho biết a,b B∈ ={17;18;35;43;96} và 50 a b 60< − < Hãy tìm a, b
Lời giải:
Tương tự bài trên ta có: 50 b a 60 b+ < < + Do b > 0
a 50
a 96
a B
≥
Trang 450 b 96 b 46
36 b 46
+ < ⇒ <
⇒ + > ⇒ > ⇒ < <
Mà b B∈ ⇒ =b 43
Lời bình: Ở các bài toán trên, các em học sinh có thể tính nhẩm rồi cũng có
thể đi đến kết quả, hoặc thử các trường hợp trong A, B cũng cho kết quả Cơ
sở ở đây là hình thành kỹ năng trong giải toán ở chuyên đề này
Bài 3: a) Tìm số tự nhiên lớn nhất x sao cho 6x 37<
b) Tìm số tự nhiên nhỏ nhất y sao cho 37 6y>
Lời giải:
a/ Nếu x>6 thì 6.x >37 không thỏa mãn đề bài
Suy ra x∈{0;1;2;3;4;5;6}
Mà x là số tự nhiên lớn nhất cần tìm Vây x=6
b) Ta có : 6.6=36<37 nên y = 6 không thõa mãn đề bài Suy ra y= 7 ; 8; 9; Nhưng y là số tự nhiên nhỏ nhất cần tìm Vậy y = 7
Bài 4: Tìm a, b, c sao cho a6.4bc 17064 (1)=
Lời giải:
Ta có : 400 4bc 499≤ ≤
Nếu a 2≤ ⇒26.499 12974 17064= <
Nếu a 4≥ ⇒46.499 1840 17064= >
Từ trên suy ra 2< a < 4 ⇒ =a 3
Khi đó, từ (1)⇒4bc 17064 : 36 474= = ⇒ =b 7,c 4=
Vậy a = 3, b = 7, c = 4
Bài 5: Tìm a N∈ biết rằng ( ) ( )a 2
aa a 1− = −a 1 − Lời giải:
Ta có: Vế trái là một số có 4 chữ số nên vế phải cũng là một số có 4 chữ số
a 6≤ ⇒ −a 1 − ≥ =5 625 ( Không thỏa mãn đề bài )
a 8≥ ⇒ −a 1 − ≥7 =117649 ( Không thỏa mãn đề bài )
Trang 5Vì vậy ta có 6 a 8< < ⇒ =a 7 Khi đó ta có 7776 6= 5
Lời bình: Từ các bài toán 1,2,3,4, các em học sinh khá có khi không gặp
vướng mắc gì Còn ở bài này rõ ràng phải giới hạn ngay ( nhiều khi giáo viên cần gợi ý ) a có thể nhận giá trị rất lớn hoặc rất nhỏ được không? Khi đó điều
gì sẽ xảy ra Vì vậy chúng ta có ngay giới hạn của a không quá lớn hoặc quá nhỏ Bởi vì vế trái là số có 4 chữ số, vế phải là một lũy thừa Lũy thừa có thể vượt quá 4 chữ số cho nên ta cần giới hạn điều kiện của a Có thể coi đây là một “ kinh nghiệm ” trong việc giải toán này
Bài 6: Người ta viết thêm số 0 vào giữa hai chữ số của một số có hai chữ số, sau đó lập tỉ số giữa số mới này và số đã cho Hỏi giá trị là số nguyên nhỏ nhất của tỉ số này là bao nhiêu?
Lời giải:
Gọi số có hai chữ số đã cho là ab Trong đó a,b N,1 a 9;0 b 9∈ ≤ ≤ ≤ ≤
Khi viết thêm số 0 vào giữa ta được số a0b
Đặt a0b k
ab = ta phải tìm giá trị nguyên nhỏ nhất của k
Ta có:
b
a
+
Giá trị nhỏ nhất của k đạt được khi
90 b 10 a + đạt giá trị nhỏ nhất
Tức là b
a có giá trị lớn nhất.
Phân số b
a đạt giá trị lớn nhất khi giá trị của a nhỏ nhất và giá trị của b lớn
nhất ⇒ =b 9;a 1= Khi đó k 514
19
⇒ = Vậy giá trị nguyên nhỏ nhất của tỉ số là 5
Trang 6Dạng 2: Khi các em đọc đề bài thì khó định hướng để đưa được ra lời giải
theo phương pháp này (tất nhiên có bài dùng phương pháp giải khác) Vì vậy nhiệm vụ quan trọng của chúng ta là làm thế nào để đưa các em đi đúng quỹ đạo của lời giải Ở đây chúng ta phải dùng đến các tính chất về số mà các em phải hoàn toàn nắm vững Sau đó nhận xét, đánh giá những khía cạnh trong bài toán phải thật sự sát với ý tưởng của lời giải, khi đó các em dễ nhập cuộc với bài giải Phương pháp chặn lúc này sẽ phát huy tác dụng một cách tích cực hơn Sau đây là một số bài toán
Bài 1: Tìm số a thỏa mãn : a chia 4 dư 3, a chia 9 dư 5 Hỏi a chia cho 36 có
số dư là bao nhiêu?
Lời giải
Ta viết a dưới dạng a 36q r 0 r 35= + ( ≤ < )
Theo tính chất chia hết của một tổng ta có : 36q 4; 36q 9M M
Suy ra r chia 4 dư 3, r chia 9 dư 5 hay r 9k 5 k N= + ( ∈ )
Mà 0 9k 5 36≤ + < ⇒9k 31 k 0;1;2;3< ⇒ =
Thử các giá trị của k ta được k=2 thì r 23= thỏa mãn đề bài
Vậy a chia 36 dư 23
Lưu ý: bài này các em học sinh có thể làm theo cách khác
Bài 2: Tìm số có hai chữ số biết rằng số đó gấp 6 lần tổng các chữ số của nó, tích các chữ số của nó ít hơn số đó viết theo thứ tự ngược lại là 25 đơn vị
Lời giải Gọi số đó là ab với a,b N,1 a 9;0 b 9∈ ≤ ≤ ≤ ≤
Theo bài ra ta có
( ) ( )
( )
b 2
ab 2
M M
M M
Trang 7Suy ra 10 ab 98 0 a b 17 a b 9
ab 25 ba
< + ≤
ab 6.9 54
Thử lại ta được số cần tìm là 54
Bài 3: Tìm số tự nhiên khác 0 nhỏ hơn 60 có nhiều ước số nhất
Lời giải Gọi số tự nhiên đó là n với n 0≠ Khi phân tích số n ra các thừa số nguyên tô,
ta xét 4 trường hợp sau:
TH1: n chứa một thừa số nguyên tố: n 2 Ta có :2= x 5 <60 2< ⇒ =6 n 25 có 6 ước số
TH2: n chứa 2 thừa số nguyên tố : n 2 3 Ta có :2 3 60 2 3= x y 4 < < 4 2
4
n 2 3
⇒ = có 10 ước
TH3: n chứa 3 thừa số nguyên tố: n 2 3 5 Ta có :2.3.5 60 2 3.5= x y z < < 2
n 2.3.5
⇒ = có 8 ước số
TH4: n có 4 thừa số nguyên tố trở lên Trường hợp này không xảy ra vì khi đó tích của chúng lớn hơn 60
Vậy n = 48 là số thỏa mãn yêu cầu bài toán
Bài 4: Tìm 2 số tự nhiên a và b biết rằng:
( )
a +b =1530;BCNN a;b =297 và a b>
Lời giải
Cách 1:
Ta có : BCNN a;b( ) =927 3 11= 3 và a b> ⇒a2 >b2
Vì a2 +b2 =10530 ⇒5215 a< <2 10530⇒73 a 103< <
Suy ra dạng phân tích ra thừa số nguyên tố của số a chứa 3 112
Lại có 10530 không chia hết cho 11 nên b không chia hết cho 11
{ 2 3}
b 3;3 ;3
⇒ ∈
Lần lượt thử với các giá trị trên ta được b 3= =3 27 thỏa mãn đề bài
Trang 8Khi đó a 99=
Vậy a=99, b=27
Cách 2:
Lập luận như trên ta suy ra được a 9; b 9M M⇒ =a 9k,b 9h k;h N,k h= ( ∈ > )
2
65 k 130 8 k 12 k 9;10;11
>
Với k 9= ⇒h2 =49⇒ =h 7 Thay vào ta thấy không thỏa mãn đề bài
Với k 10= ⇒h2 =30 vô lí
Với k 11= ⇒h2 = ⇒ =9 h 3 Thỏa mãn đề bài ra
Vậy a=99, b=27
Lời bình:
Cách 1: tuy ngắn gọn nhưng ít được sử dụng rộng rãi, bởi vì có khi phải thử nhiều trường hợp thì rất mất thời gian cho việc tính toán mà hiệu quả lại không cao, không mang tính khoa học bộ môn rõ rệt
Cách 2: Nếu các em không nghĩ ngay đến việc sử dụng kết quả trong việc tìm BCNN của hai số thì rất khó có thể tìm ra cách giải, rất mất thời gian hoặc dài dòng mới cho kết quả
Bài 5: Tìm số tự nhiên n biết tổng các chữ số của nó là n2 −2011n 4+
Lời giải:
Gọi S n là tổng các chữ số của n Ta có : ( ) 0 S n≤ ( ) ≤n *( )
+ Nếu n 0= ⇒S n( ) = ≠5 0 loại
+ Nếu 1 n 2011≤ ≤
S n =n −2011n 4 n+ = − −n 2010n 2010 2006+ − = n 1 n 2010− − −2006 Suy ra S n( ) <0 loại
+ Nếu n 2011> ⇒S n( ) =n n 2011( − ) + >4 n Mâu thuẫn với (*)
Trang 9+ Nếu n 2011= ⇒S n( ) =20112 −2011.2011 4 5 2 0 1 1+ = = + + + thỏa mãn Vậy số đó là 2011
II THỂ LOẠI TOÁN VỀ SỐ NGUYÊN TỐ
Bài 1 (D1) Tìm tất cả các số tự nhiên k sao cho dãy số
k 1,k 2,k 3, ,k 10+ + + + chứa nhiều số nguyên tố nhất
Lời giải + Với k = 1 thì dãy trên có 5 số nguyên tố là 2,3,5,7,11
+ Với k = 0 thì dãy trên có 4 số nguyên tố là 2,3,5,7
+ Với k 2≥ thì các số của dãy trên đều không nhỏ hơn 3 và trong 10 số đó có
5 số chẵn là hợp số và 5 số lẻ liên tiếp trong các số lẻ này có ít nhất một số khác 3 mà chia hết cho 3 Do đó số các số nguyên tố không vượt quá 4
Vậy k = 1 thì dãy chứa nhiều số nguyên tố nhất
Bài 2 (D1): Tìm tất cả bộ ba các số nguyên tố liên tiếp sao cho tổng bình phương của 3 số đó cũng là số nguyên tố
Lời giải Gọi 3 số nguyên tố liên tiếp cần tìm là p, q, r
Ta có p2 +q2 + =r2 A là số nguyên tố
Giả sử p < q < r
Do p, q, r là các số nguyên tố nên A p= 2 +q2 + >r2 3
Nếu p, q, r đều không chia hết cho 3 khi đó p ;q ;r khi chia cho 3 dư 1.2 2 2
A 3
⇒ M mà A > 3 nên A là hợp số trái với giả thiết (Loại)
Vậy p 3M vì p nguyên tố nên p 3= ⇒ =q 5;r 7=
Khi đó A 3= + +2 52 72 =83 là số nguyên tố
Bài 3 (D1): Tìm tất cả các số nguyên tố p để 2p +p2 cũng là số nguyên tố
Lời giải:
Nếu p = 2 thì A 2= p +p2 =22+22 =8 là hợp số
Trang 10Nếu p 3> mà p nguyên tố nên p là số lẻ.
Ta có A 2= p +p2 =(2p + +1) (p2 −1)
Vì p là số lẻ nên 2p +1 3 và p 3M 2M⇒A 3M Lại có A > 3 nên A là hợp số
Nếu p = 3 thì A 2= + =3 32 17 là số nguyên tố
Vậy chỉ tìm được một số nguyên tố p = 3 thỏa mãn yêu cầu bài toán
Bài 4 (D2): Tìm mọi số nguyên tố x, y thỏa mãn x2 −2y2 =1
Lời giải
Ta có: x2 −2y2 = ⇒1 x2 − =1 2y2 ⇒(x 1 x 1− ) ( + =) 2y2 (1)
Xét tổng (x 1− +) (x 1+ =) 2x là số chẵn ⇒ −x 1;x 1+ cùng tính chẵn, lẻ
Từ (1) ⇒ −x 1;x 1+ cùng là số chẵn
⇒(x 1 x 1 4− ) ( + )M⇒2y 42M⇒y 22M⇒y 2M
Mà y là số nguyên tố ⇒ =y 2 Khi đó x2 = +1 2.22 = ⇒ =9 x 3
Vậy x 3, y 2= =
III.THỂ LOẠI TOÁN VỀ SỐ CHÍNH PHƯƠNG
Bài 1 (D1): Hãy tìm số bị chia, số chia và thương trong phép chia sau đây: abcd : dcba q= biết rằng cả 3 số đều là số chính phương và các chữ số khác nhau
Lời giải
Do abcd dcba≠ ⇒ < <1 q 10 mà q là số chính phương nên q∈{ }4;9
Mặt khác abcd;dcba đều là các số chính phương nên a,d A∈ ={1;4;5;6;9} (vì a,d 0≠ )
Nếu d 3 thì dcba.q 3000.4 12000 abcd≥ > = > (Loại)
Vậy d 3 mà d A< ∈ ⇒ =d 1
Ta xét 1cba.q abc1= mà q = 4 hoặc 9 a A∈ ⇒ =q 9 và a = 9.
Nếu c 2≥ ⇒1cba.9 1200.9 10800 abc1> = > (Loại)
Trang 11Vậy ta có c < 2 ⇒ =c 0 vì c d≠
abcd 9b01 10b9.9 9b01 9 b 9
⇒ = = ⇒ M⇒ = (Theo dấu hiệu chia hết cho 9) Vậy các số đó là 9081:1089=9 , mỗi số đều là số chính phương
Bài 2(D1): Tìm số tự nhiên có 2 chữ số biết rằng 2n 1 và 3n 1+ + đều là các
số chính phương
Lời giải
Vì n là số có 2 chữ số nên 10 n 99≤ ≤ ⇒20 2n 198≤ ≤ ⇒21 2n 1 199≤ + ≤
Vì 2n+1 là số lẻ nên trong khoảng trên có các số lẻ là số chính phương là 25,81,121,169 Tương ứng với n=12,40,60,84
Khi đó 3n+1 nhận các giá trị tương ứng là : 37, 121, 181, 253 trong các số này chỉ có số 121 là số chính phương
Vậy n=40 là số cần tìm
Bài 3 (D2): Cho số tự nhiên n và d là ước của 2n Chứng minh rằng 2 2n2 +d không thể là số chính phương
Lời giải Theo bài ra ta có d là ước của 2n 2 ( ) 2
k
Giả sử 2n2 +d là số chính phương, khi đó
2
k
2 2
Mặt khác ta có : 2 2 2( 2 ) 2( )2
n k <n k +2k <n k 1+ ( )2 2( 2 ) 2( )2
Ta có ( )2 ( ) 2
nk và n k 1 + là hai số chính phương liên tiếp ⇒n k2( 2 +2k)
không thể là số chính phương
Mà ( )2
ak là số chính phương Suy ra vô lý
Vậy 2n2 +d không là số chính phương
Trang 12IV MỘT SỐ BÀI TẬP Ở THỂ LOẠI PHÂN SỐ
Bài 1 (D1) Tìm 2 số nguyên dương khác nhau sao cho tổng nghịch đảo của
chúng bằng 1
2.
Lời giải Gọi 2 số nguyên dương phân biệt là a và b
Không làm mất tính tổng quát của bài toán, giả sử a < b
Theo bài ra ta có
a 4
a + = ⇒ + < + ⇒ < ⇒ <b 2 a b a a 2 a (1) Lại có 1 1 1 1 1 a 2
a + = ⇒ < ⇒ >b 2 a 2 (2)
Từ (1),(2) suy ra 2 a 4< < ⇒ =a 3
b 6
b = − = − = ⇒ =2 a 2 3 6
Vậy ( ) ( ) ( )a;b = 3;6 ; 6;3
Bài 2 (D1) Cho a, b, c là 3 số nguyên dương khác nhau sắp xếp theo thứ tự tăng dần có tổng nghịch đảo của chúng là một số nguyên Tìm a, b, c
Lời giải
Ta phải tìm a, b, c sao cho a b c và 1 1 1 n n N( )
1 1
2 2
⇒ < + + = ⇒ =
a < = < + + = ⇒ < < ⇒ =a a a a
Như vậy 1 1 1
b c+ = 2 (1)
Giải (1) tương tự bài 1
Vậy a 2,b 3,c 6= = =
Bài 3 (D1) Tìm 3 số nguyên dương biết tổng nghịch đảo của chúng bằng 1
Trang 13Lời bình: Bài toán này tương tự như bài 2, nhưng bài này các số cần tìm chưa
được được “sắp xếp” Ta có thể bắt trước bài 2 để giải bài này
Lời giải Gọi 3 số nguyên dương đó là a, b, c
Không mất tính tổng quát của bài toán, giả sử a b c 1 1 1
≤ ≤ ⇒ ≥ ≥
Theo bài ra ta có 1 1 1 1 (1)
⇒ ≤ + + = ⇒ ≤a 3 (2)
Từ (1) ⇒ >a 1(3)
Từ (2),(3)⇒ =a 2;3
Với a = 2 ta có 1 1 1 1 1 2 b 4
b c+ = − = ≤ ⇒ ≤2 2 b Kết hợp với b > 2 (Vì 1 1 1
b c+ = 2) ⇒ < ≤ ⇒ =2 b 4 b 3,4
= ⇒ = − = ⇒ =
= ⇒ = − = ⇒ =
Trường hợp a 3 1 1 1 1 2 2 b 3
= ⇒ + = − = ≤ ⇒ ≤
Vì b a≥ ⇒ ≥b 3 Suy ra b = 3
Vậy cặp (x; y;z nhận là ) (2;4;4 ; 2;3;6 ; 3;3;3 Và các hoán vị x, y, z ta có) ( ) ( ) các cặp (4;4;2 ; 4;2;4 ; 2;6;3 ; 3;2;6 ; 3;6;2 ; 6;2;3 ; 6;3; 2) ( ) ( ) ( ) ( ) ( ) ( )
Bài 4(D1) Cho biết x y z t≤ ≤ ≤ Tìm x, y, z, t biết 1 1 1 1 1
x + + + =y z t
Lời bình : Bài toán 4 là trường hợp có chứa 4 biến nên trong cách giải phải
dùng nhiều đến phương pháp chặn, trong đó cách làm tương tự như bài 3 Để làm bài những bài tập dạng này ta cần phải sử dụng nhiều đến các tính chất khác ngoài các phép tính toán thông thường, bước đầu làm quen với tính chất bất đẳng thức số Thiết nghĩ ở bài 3, bài 4 các em có thể nghĩ ngay đến việc