1. Trang chủ
  2. » Giáo án - Bài giảng

Hinh hoc 8( soạn theo CKT)

155 320 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 155
Dung lượng 4,48 MB

Nội dung

Cho tứ giác lồi ABCD chứng minh rằng: đoạn thẳng MN nối trung điểm của 2 cạnh đối diện nhỏ hơn hoặc bằng nửa tổng 2 cạnh còn lạiGợi ý: Nối trung điểm đờng chéo.. + Kỹ năng: - Nhận biết h

Trang 1

Ngày giảng: 8A……… 8B……… 8C……… 8D………

Chơng I: Tứ giác

Tiết 1: Tứ giác

i- mục tiêu

+ Kiến thức: - HS nắm vững các định nghĩa về tứ giác, tứ giác lồi, các khái niệm : Hai

đỉnh kề nhau, hai cạnh kề nhau, hai cạnh đối nhau, điểm trong, điểm ngoài của tứ giác

& các tính chất của tứ giác Tổng bốn góc của tứ giác là 3600

+ Kỹ năng: HS tính đợc số đo của một góc khi biết ba góc còn lại, vẽ đợc tứ giác khi

biết số đo 4 cạnh & 1 đờng chéo

+ Thái độ: Rèn t duy suy luận ra đợc 4 góc ngoài của tứ giác là 3600

B) Kiểm tra bài cũ:( 5’)- GV: kiểm tra đồ dùng học tập của học sinh và nhắc nhở

dụng cụ học tập cần thiết: thớc kẻ, ê ke, com pa, thớc đo góc,…

-GV: Trong các hình trên mỗi hình gồm 4 đoạn

thẳng: AB, BC, CD & DA

Hình nào có 2 đoạn thẳng cùng nằm trên một ĐT

- Ta có H1 là tứ giác, hình 2 không phải là tứ giác

Vậy tứ giác là gì ?

- GV: Chốt lại & ghi định nghĩa

- GV: giải thích : 4 đoạn thẳng AB, BC, CD, DA

trong đó đoạn đầu của đoạn thẳng thứ nhất trùng

với điểm cuối của đoạn thẳng thứ 4

+ 4 đoạn thẳng AB, BC, CD, DA trong đó không

có bất cứ 2 đoạn thẳng nào cùng nằm trên 1 đờng

thẳng

+ Cách đọc tên tứ giác phải đọc hoặc viết theo thứ

1) Định nghĩa

BA

C D H1(c)

đờng thẳng.

Trang 2

tự các đoạn thẳng nh: ABCD, BCDA, ADBC …

+Các điểm A, B, C, D gọi là các đỉnh của tứ giác

+ Các đoạn thẳng AB, BC, CD, DA gọi là các cạnh

của tứ giác

* Hoạt động 2: (8 )Định nghĩa tứ giác lồi

-GV: Hãy lấy mép thớc kẻ lần lợt đặt trùng lên

mỗi cạch của tứ giác ở H1 rồi quan sát

- H1(a) luôn có hiện tợng gì xảy ra ?

- H1(b) (c) có hiện tợng gì xảy ra ?

- GV: Bất cứ đơng thẳng nào chứa 1 cạnh của hình

H1(a) cũng không phân chia tứ giác thành 2 phần

nằm ở 2 nửa mặt phẳng có bờ là đờng thẳng đó gọi

là tứ giác lồi

- Vậy tứ giác lồi là tứ giác nh thế nào ?

+ Trờng hợp H1(b) & H1 (c) không phải là tứ giác

lồi

* Hoạt động 3: (10 )Nêu các khái niệm cạnh kề

đối, góc kề, đối điểm trong , ngoài.

GV: Vẽ H3 và giải thích khái niệm:

- Chia tứ giác thành 2∆ có cạnh là đờng chéo

- Tổng 4 góc tứ giác = tổng các góc của 2 ∆ABC

& ADC ⇒ Tổng các góc của tứ giác bằng 3600

+ hai đỉnh không kề nhau gọi là hai đỉnh đối nhau

+ Hai cạnh cùng xuất phát từ một

đỉnh gọi là hai cạnh kề nhau+ Hai cạnh không kề nhau gọi là hai cạnh đối nhau - Điểm nằm trong M, P điểm nằm ngoài N, Q

2/ Tổng các góc của một tứ giác ( HD4)

* Chú ý : T/c các đờng phân giác của tam giác cân

* HD bài 4: Dùng com pa & thớc thẳng chia khoảng cách vẽ tam giác có 1 cạnh là ờng chéo trớc rồi vẽ 2 cạch còn lại

đ-* Bài tập NC: ( Bài 2 sổ tay toán học)

Trang 3

Cho tứ giác lồi ABCD chứng minh rằng: đoạn thẳng MN nối trung điểm của 2 cạnh đối diện nhỏ hơn hoặc bằng nửa tổng 2 cạnh còn lại

(Gợi ý: Nối trung điểm đờng chéo)

Ngày giảng: 8A……… 8B……… 8C……… 8D………

Tiết 02 Hình thang

i- mục tiêu

+ Kiến thức: - HS nắm vững các định nghĩa về hình thang , hình thang vuông các khái

niệm : cạnh bên, đáy , đờng cao của hình thang

+ Kỹ năng: - Nhận biết hình thang hình thang vuông, tính đợc các góc còn lại của hình

thang khi biết một số yếu tố về góc

+ Thái độ: Rèn t duy suy luận, sáng tạo

B) Kiểm tra bài cũ: (6’)- GV: (dùng bảng phụ )

* HS1: Thế nào là tứ giác lồi ? Phát biểu ĐL về tổng 4 góc của 1 tứ giác ?

* HS 2: Góc ngoài của tứ giác là góc nh thế nào ?Tính tổng các góc ngoài của tứ giác

Hoạt động của giáo viên Hoạt động của học sinh

* Hoạt động 1:(5’) ( Giới thiệu hình thang)

- GV: Tứ giác có tính chất chung là

+ Tổng 4 góc trong là 3600

+ Tổng 4 góc ngoài là 3600

Ta sẽ nghiên cứu sâu hơn về tứ giác

- GV: đa ra hình ảnh cái thang & hỏi

+ Hình trên mô tả cái gì ?

+ Mỗi bậc của thang là một tứ giác, các tứ giác đó

có đặc điểm gì ? & giống nhau ở điểm nào ?

- GV: Chốt lại

+ Các tứ giác đó đều có 2 cạnh đối //

Ta gọi đó là hình thang ta sẽ nghiên cứu trong bài

hôm nay

1) Định nghĩa

Hình thang là tứ giác có hai

cạnh đối song song

A B

Trang 4

* Hoạt động 2: (5 )Định nghĩa hình thang

- GV: Em hãy nêu định nghĩa thế nào là hình

+ B2: Vẽ cạnh AD & BC & đơng cao AH

- GV: giới thiệu cạnh đáy, đờng cao …

* Hoạt động 3: (6 )Bài tập áp dụng

- GV: dùng bảng phụ hoặc đèn chiếu

- Qua đó em hình thang có tính chất gì ?

* Hoạt động 4: (10 )( Bài tập áp dụng)

GV: đa ra bài tập HS làm việc theo nhóm nhỏ

Cho hình thang ABCD có 2 đáy AB & CD biết:

- GV: qua bài 1 & bài 2 em có nhận xét gì ?

* Hoạt động 5:(3 ) Hình thang vuông

D H C

* Hình thang ABCD :+ Hai cạnh đối // là 2 đáy+ AB đáy nhỏ; CD đáy lớn+ Hai cạnh bên AD & BC+ Đờng cao AH

Trang 5

D C

D.Luyện tập - Củng cố :(7 )’ - GV: đa bài tập 7 ( Bằng bảng phụ) Tìm x, y ở hình 21

E- BT - H ớng dẫn về nhà :(2 )

- Học bài Làm các bài tập 6,8,9

- Trả lời các câu hỏi sau:+ Khi nào một tứ giác đợc gọi là hình thang

+ Khi nào một tứ giác đợc gọi là hình thang vuông

định nghĩa, các tính chất vào chứng minh, biết chứng minh 1 tứ giác là hình thang cân

+ Thái độ: Rèn t duy suy luận, sáng tạo

II CHUẩN Bị: - GV: com pa, thớc, tranh vẽ bảng phụ, thớc đo góc

- HS2: Phát biểu định nghĩa hình thang & nêu rõ các khái 120 0 y

niệm cạnh đáy, cạnh bên, đờng cao của hình thang

- HS3: Muốn chứng minh một tứ giác là hình thang

ta phải chứng minh nh thế nào? x 60 0

B C

Điểm: 8A……… 8B……… 8C……… 8D……… C- Bài mới:

Hoạt động của giáo viên Hoạt động của học sinh

Tứ giác ABCD ⇔ Tứ giác ABCD

là H thang cân AB // CD( Đáy AB; CD) àC = àDhoặc àA = àB

? 2 I

700 N

P Q

K 1100

700 T (c) M (d)

Trang 6

- GV: cho các nhóm CM & gợi ý

AD không // BC ta kéo dài nh thế nào ?

- Hãy giải thích vì sao AD = BC ?

* Hoạt động 3(7’) Giới thiệu địmh lí 2

- GV: Với hình vẽ sau 2 đoạn thẳng nào

GV: Muốn chứng minh AC = BD ta phải

chứng minh 2 tam giác nào bằng nhau ?

* Hoạt động 4: (6’) Giới thiệu các phơng

pháp nhận biết hình thang cân.

- GV: Muốn chứng minh 1 tứ giác là hình

thang cân ta có mấy cách để chứng minh ?

Chứng minh:

AD cắt BC ở O ( Giả sử AB < DC)ABCD là hình thang cân nên ^ ^

Từ (1) &(2) ⇒ OD - OA = OC - OB

Vậy AD = BCb) AD // BC khi đó AD = BC

Trang 7

+ Vẽ (C; Đủ lớn) cắt m tại B ( có cùng bán

D- Luyên tập - Củng cố:(5 )

GV: Dùng bảng phụ HS trả lời

a) Trong hình vẽ có những cặp đoạn thẳng nào bằng nhau ? Vì sao ?

b) Có những góc nào bằng nhau ? Vì sao ?

c) Có những tam giác nào bằng nhau ? Vì sao ?

+ Kiến thức: - HS nắm vững, củng cố các định nghĩa, các tính chất của hình thang,

các dấu hiệu nhận biết về hình thang cân

+ Kỹ năng: - Nhận biết hình thang hình thang cân, biết vẽ hình thang cân, biết sử dụng

định nghĩa, các tính chất vào chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau dựa vào dấu hiệu đã học Biết chứng minh 1 tứ giác là hình thang cân theo điều kiện cho trớc Rèn luyện cách phân tích xác định phơng hớng chứng minh

+ Thái độ: Rèn t duy suy luận, sáng tạo, tính cẩn thận

B- Kiểm tra bài cũ:( 5 )

- HS1: Phát biểu định nghĩa hình thang cân & các tính chất của nó ?

- HS2: Muốn CM 1 hình thang nào đó là hình thang cân thì ta phải CM thêm ĐK nào ?

- HS3: Muốn CM 1 tứ giác nào đó là hình thang cân thì ta phải CM nh thế nào ?

Điểm: 8A……… 8B……… 8C……… 8D………

C- Bài mới : (32’)

Hoạt động của giáo viên Hoạt động của học sinh

GV: Cho HS đọc kĩ đầu bài & ghi (gt) (kl)

- Ngoài ra ∆AED = ∆BFC theo

tr-ờng hợp nào ? vì sao ?

Trang 8

GV: Cho HS làm việc theo nhóm

-GV: Muốn chứng minh tứ giác BEDC là

2.Chữa bài 15/75 (sgk)

D 1 1 E

) (

B C a) ∆ ABC cân tại A (gt)

DE // BC Hay BDEC là hình thang (2)

Từ (1) & (2) ⇒BDEC là hình thang cân

3 Chữa bài 16/ 75 ∆ ABC cân tại A, BD & CE

GT Là các đờng phân giác

KL a) BEDC là hình thang cân b) DE = BE = DC

A Chứng minh a) ∆ ABC cân tại A

ta có:

AB = AC ; àB = àC E D (1)

Trang 9

Gv nhắc lại phơng pháp chứng minh, vẽ 1 tứ giác là hình thang cân.

- CM các đoạn thẳng bằng nhau, tính số đo các góc tứ giác qua chứng minh hình thang

- Kiến thức: H/s nắm vững đ/n đờng trung bình của tam giác, ND ĐL 1 và ĐL 2.

- Kỹ năng: H/s biết vẽ đờng trung bình của tam giác, vận dụng định lý để tính độ dài

đoạn thẳng, chứng minh 2 đoạn thẳng bằng nhau, 2 đờng thẳng song song

- Thái độ: H/s thấy đợc ứng dụng của ĐTB vào thực tế ⇒ yêu thích môn học.

II CHUẩN Bị:

GV: Bảng phụ - HS: Ôn lại phần tam giác ở lớp 7

III Tiến trình bài dạy

A.ổ

n định tổ chức :(1’)

B Kiểm tra bài cũ: (6’)- GV: ( Dùng bảng phụ hoặc đèn chiếu )

Các câu sau đây câu nào đúng , câu nào sai? hãy giải thích rõ hoặc chứng minh ?1- Hình thang có hai góc kề hai đáy bằng nhau là một hình thang cân?

2- Tứ giác có hai đờng chéo bằng nhau là hình thang cân ?

3- Tứ giác có hai góc kề 1 cạnh bù nhau và hai đờng chéo bằng nhau là HT cân

4- Tứ giác có hai góc kề 1 cạnh bằng nhau là hình thang cân

5- Tứ giác có hai góc kề 1 cạnh bù nhau và có hai góc đối bù nhau là hình thang cân

Đáp án: + 1- Đúng: theo đ/n; 2- Sai: HS vẽ hình minh hoạ 3- Đúng: Theo đ/lý

4- Sai: HS giải thích bằng hình vẽ 5- Đúng: theo t/c

Điểm: 8A……… 8B……… 8C……… 8D………

C- Bài mới:

Hoạt động của giáo viên Hoạt động của học sinh

* Hoạt động 1: (16’) Qua định lý hình thành

đ/n đờng trung bình của tam giác.

- GV: cho HS thực hiện bài tập ?1

+ Vẽ ∆ABC bất kì rồi lấy trung điểm D của AB

+ Qua D vẽ đờng thẳng // BC đờng thẳng này cắt

I Đ ờng trung bình của tam giác

Định lý 1: (sgk)

GT ∆ABC có: AD = DB

DE // BC

KL AE = EC

Trang 10

AC ở E

+ Bằng quan sát nêu dự đoán về vị trí của điểm E

trên canh AC

- GV: Nói & ghi GT, KL của đ/lí

- HS: ghi gt & kl của đ/lí

+ Để có thể khẳng định đợc E là điểm nh thế nào

trên cạnh AC ta chứng minh đ/ lí nh sau:

- GV: Làm thế nào để chứng minh đợc

AE = AC

- GV: Từ đ/lí 1 ta có D là trung điểm của AB

E là trung điểm của AC

Ta nói DE là đờng trung bình của ∆ABC

- GV: Bằng kiểm nghiệm thực tế hãy dùng thớc

đo góc đo số đo của góc ãADE& số đo của àB

Dùng thớc thẳng chia khoảng cách đo độ dài DE

& đoạn BC rồi nhận xét

- GV: Ta sẽ làm rõ điều này bằng chứng minh

toán học

A

D 1 E 1

B 1 C F

+ Qua E kẻ đờng thẳng // AB cắt

BC ở FHình thang DEFB có 2 cạnh bên // (

∆ADE = ∆EFC (gcg)⇒AE= EC

⇒ E là trung điểm của AC.

+ Kéo dài DE+ Kẻ CF // BD cắt DE tại F

A //

D 1 E F //

a) DE // BC

- Qua trung điểm D của AB vẽ ờng thẳng a // BC cắt AC tại A'

đ Theo đlý 1 : Ta có E' là trung

điểm của AC (gt), E cũng là trung

điểm của AC vậy E trùng với E'

⇒DE ≡DE' ⇒ DE // BC

b) DE = 1

2BCVẽ EF // AB (F∈ BC )

Trang 11

- GV: Cách 1 nh (sgk)

Cách 2 sử dụng định lí 1 để chứng minh

- GV: gợi ý cách chứng minh:

+ Muốn chứng minh DE // BC ta phải làm gì ?

+ Vẽ thêm đờng phụ để chứng minh định lý

- GV: Tính độ dài BC trên hình 33 Biết DE = 50

- GV: Để tính khoảng cách giữa 2 điểm B & C

ngời ta làm nh thế nào ?

+ Chọn điểm A để xác định AB, AC

+ Xác định trung điểm D & E

+ Đo độ dài đoạn DE

+ Dựa vào định lý

Theo đlí 1 ta lại có F là trung điểm của BC hay BF = 1

2BC Hình thang BDEF có 2 cạnh bên BD// EF⇒ 2

đáy DE = BF Vậy DE = BF = 1

2BC

II- á p dụng luyện tập

Để tính DE = 1

2BC , BC = 2DEBC= 2 DE= 2.50= 100

D- Luyên tập - Củng cố:(5 )

- GV: - Thế nào là đờng trung bình của tam giác

- Nêu tính chất đờng trung bình của tam giác

- Kiến thức: HS nắm vững Đ/n ĐTB của hình thang, nắm vững ND định lí 3, định lí 4

- Kỹ năng: Vận dụng ĐL tính độ dài các đoạn thẳng, CM các hệ thức về đoạn thẳng

Thấy đợc sự tơng quan giữa định nghĩa và ĐL về ĐTB trong tam giác và hình thang, sử dụng t/c đờng TB tam giác để CM các tính chất đờng TB hình thang

- Thái độ: Phát triển t duy lô gíc

II CHUẩN Bị:

- GV: Bảng phụ HS: Đờng TB tam giác, Đ/n, Định lí và bài tập

III Tiến trình bài dạy:

A Ôn định tổ chức:

B Kiểm tra bài cũ :

a Phát biểu ghi GT-KL ( có vẽ hình) định lí 1 và định lí 2 về đờng TB tam giác ?

b Phát biểu đ/n đờng TB tam giác ? Tính x trên hình vẽ sau

Trang 12

- HS lên bảng vẽ hình

HS còn lại vẽ vào vở

- Vẽ hình thang ABCD ( AB // CD) tìm trung

điểm E của AD, qua E kẻ Đờng thẳng a // với 2

luận: Nếu AE = ED & EF//DC thì ta có BF = FC

hay F là trung điểm của BC

- Tuy vậy để khẳng định điều này ta phải chứng

minh định lí sau:

- GV: Cho h/s làm việc theo nhóm nhỏ

- GV hỏi: Điểm I có phải là trung điểm AC

Ta nói đoạn EF là đờng TB của hình thang

- Em hãy nêu đ/n 1 cách tổng quát về đờng

TB của hình thang

- GV: Qua phần CM trên thấy đợc EI & IF còn là

đờng TB của tam giác nào?

- Muốn CM điều đó ta phải CM ntn?

- - Em nào trả lời đợc những câu hỏi trên?

+ Xét ∆ADC có :

E là trung điểm AD (gt)EI//CD (gt) ⇒ I là trung điểm AC

+ Xét ∆ABC ta có :

I là trung điểm AC ( CMT)IF//AB (gt)⇒F là trung điểm của BC

* Định nghĩa:

Đờng TB của hình thang là trung

điểm nối 2 cạnh bên của hình thang

Trang 13

x

= ⇒ =

D- Luyên tập - Củng cố:

Thế nào là đờng TB hình thang?- Nêu t/c đờng TB hình thang

* Làm bài tập 20& 22- GV: Đa hớng CM?

IA = IM ⇐DI là đờng TB ∆AEM ⇐DI//EM ⇐EM là trung điểm ∆BDC

- GV: Bảng phụ, thớc thẳng có chia khoảng compa HS: SGK, compa, thớc + BT

Iii Tiến trình bài dạy:

A.Ôn định tổ chức: N

B.Kiểm tra bài cũ: M I

- GV: Ra đề kiểm tra trên bảng phụ

- HS1: Tính x trên hình vẽ sau

5cm x

P K Q

- HS2: Phát biểu T/c đờng TB trong tam giác, trong hình thang? So sánh 2 T/c

- HS3: Phát biểu định nghĩa đờng TB của tam giác, của hình thang? So sánh 2 đ/n

Điểm: 8A……… 8B……… 8C……… 8D……… C.Bài mới:

Hoạt động của giáo viên Hoạt động của học sinh

Trang 14

*HĐ1: Kiểm tra bài cũ

- Gv: Hỏi thêm : Biết DC = 20 cm Tính DI?

- Giải: Theo t/c đờng TB hình thang

- HS đọc đầu bài rồi cho biết GT, KL

- Các nhóm HS thảo luận cách chứng minh

- Đại diện nhóm trình bày

K & K' đều là trung điểm của BD ⇒

K≡K' vậy K∈EF hay E,F,K thẳng

10 20 2

EF x

Trang 15

K

D C

D Luyện tập - Củng cố:- GV nhắc lại các dạng CM từ đờng trung bình

+ So sánh các đoạn thẳng+ Tìm số đo đoạn thẳng+ CM 3 điểm thẳng hàng

- Kiến thức: HS hiểu đợc khái niệm " Bài toán dựng hình" đó là bài toán vẽ hình chỉ sử

dụng 2 dụng cụ là thớc thẳng và compa

+ HS hiểu, giải 1 bài toán dựng hình là chỉ ra 1 hệ thống các phép dựng hình cơ bản, liên tiếp nhau để xác định đợc hình đó và chỉ ra rằng hình dựng đợc theo phơng pháp

đã nêu ra thoả thuận đầy đủ các yêu cầu đề ra

- Kỹ năng : HS bớc đầu biết cách trình bày phần cách dựng và CM Biết sử dụng thớc

compa để dựng hình vào trong vở ( Theo các số liệu cho trớc bằng số) tơng đối chính xác

- Giáo dục: Tính trung thực, tự tin, cẩn thận và t duy lôgic.

Kiểm tra bài cũ: Chữa BT 28/80SGK( GV dùng bảng phụ)

Cho hình thang ABCD (AB//CD)

Trang 16

E là trung điểm của AD, F là trung điểm BC, đờng thẳng EF cắt BD ở I; cắt AC ở K.

a) CMR: AK = KC; BI = ID

b) Cho AB = 6cm ; CD = 10 cm

Tính các độ dài EI; KF; IK

A B C/M

E I K F Từ (gt) ABCD là hình thang có đáy AB, CD

E là trung điểm AD, F là trung điểm BC

nên EF là đờng TB hình thang ABCD

- E là trung điểm AD, EI//AB nên I là trung điểm BD của∆ADB

- F là trung điểm của BC; FK//BA nên K là trung điểm của AC của ∆ABC

- GV: Ta phân biệt rõ các khái niệm sau

+ Bài toán vẽ hình + Bài toán dựng hình

+ Vẽ hình + Dựng hình

- GV: Thớc thẳng dùng để làm gì?

Compa dùng để làm gì.?

*HĐ2: Các bài toán dựng hình đã biết.

( GV đa ra bảng phụ và biểu thị bằng lời)

- Cho biết các hình vẽ trong bảng, mỗi hình vẽ

biểu thị nội dung và lời giải của bài toán

dụng thớc và compa & nói: 6 bài toán dựng

hình trên đây và 3 bài toán dựng hình tam

giác là 9 bài toán đợc coi nh đã biết

Vậy khi trình bày lời giải của bài toán dựng

hình khác nếu phải thực hiện 1 trong 9 bài

toán trên thì không phải trình bày thao tác

1) Bài toán dựng hình

.- Các bài toán vẽ hình mà chỉ sử dụng 2 dụng cụ là thớc thẳng và compa gọi là các bài toán dựng hình

- " Vẽ hình" và " Dựng hình" là 2 khái niệm khác nhau

* Với thớc thẳng ta có thể:

+ Vẽ đợc đthẳng biết 2 điểm của nó+ Vẽ đợc đoạn thẳng khi biết 2 đầu mút của nó

+ Vẽ đợc 1 tia khi biết gốc và 1 điểm của tia

* Với compa:Vẽ đợc đtròn cung tròn khi biết tâm và bkính của nó

2 Các bài toán dựng hình đã biết.

a) Dựng một đoạn thẳng = đoạn thẳng cho trớc

b) Dựng một góc = một góc cho trớc.c) Dựng đờng trung trực của đoạn thẳng cho trớc, trung điểm của đoạn thẳng.d) Dựng tia phân giác cuả 1 góc cho trớc.e) Qua 1 điểm cho trớc dựng 1 đờng thẳng vuông góc với 1 đờng thẳng cho trớc

Trang 17

vẽ hình nh đã làm mà chỉ ghi vào phần lời

+ Muốn dựng đợc hình thang ta phải xác

định 4 đỉnh của nó, theo em những đỉnh nào

đợcbao nhiêu hình thang thoả mãn yêu cầu

bài toán? Vì sao?

- GV: Chốt lại:

Một bài toán dựng hình có thể có nghiệm ( là

dựng đợc thoả mãn yêu cầu bài toán) Có thể

không có nghiệm ( tức là không dựng đợc)

Vậy khi giải bài toán dựng hình ta phải biết:

Với điều kiện cho trớc bài toán có nghiệm

g) Qua 1 điểm nằm ngoài một đờng thẳng cho trớc dựng đt//đt cho trớc.h) Dựng tam giác biết 3 cạnh, biết 2 cạnh

và 1 góc xen giữa, biết 1 cạnh và 2 góc kề

- Dựng tia AX//CD ( AX và điểm C thuộc nửa MP bờ CD)

- Dựng điểm trên tia Ax: AB=3cm, kẻ

đoạn BC

c) Chứng minh :

+ Theo cách dựng ta có: AB//CD nên ABCD là hình thang đấy AB&CD.+ Theo cách dựng ta có: àD = 700

- ∆ADC dựng đợc 1 cách duy nhất

- Trong nửa mặt phẳng bờ DC chỉ có 1

điểm B thoả mãn.⇒Bài toán có một

nghiệm hình

Trang 18

hay không? Nếu có thì có bao nhiêu

nghiệm? ⇒đó là biện luận.

+ Chứng minh: Dựa vào cách dựng để chỉ ra các yếu tố của hình dựng đợc thoả mãn

yêu cầu đề ra

+ Biện luận: Có dựng đợc hình thoả mãn yêu cầu bài ra không? Có mấy hình.?

- Kiến thức: HS nắm đợc các bài toán dựng hình cơ bản Biết cách dựng và chứng

minh trong lời giải bài toán dựng hình để chỉ ra cách dựng

- Kỹ năng:

+ Rèn luyện kỹ năng trình bày 2 phần cách dựngh và chứng minh

+ Có kỹ năng sử dụng thớc thẳng và compa để dựng đợc hình

II CHUẩN Bị:

- GV: Bảng phụ, thớc, compa - HS: Thớc, compa BT về nhà

III Tiến trình bài dạỵ

A.

Tổ chức

B.

Kiểm tra bài cũ : HS1: Trình bày lời giải bài29/83 SGK.

- Dựng ãXBY = 650 - Dựng điểm C trên tia Bx; BC = 4cm

Qua C dựng đờng ⊥By Giao điểm A là đỉnh tam giác cần dựng

* CM: Theo cách dựng ta có àB= 650, BC=4cm, ∆ABC vuông ở A

HS2: Muốn giải bài toán dựng hình ta phải làm những công việc gì? Nội dung lời giải 1 bài toán dựng hình gồm mấy phần?

Trang 19

Muốn giải 1 bài toán dựng hình ta phải làm những công việc sau:

- Phân tích bài toán thông qua hình vẽ, giả sử đã dựng đợc thoả mãn yêu cầu đề ra

- Chỉ ra cách dựng hình đó là thứ tự 1 số các phép dựng hình cơ bản hoặc các bài toán dựng hình cơ bản

- CMR: Với cách dựng ở trên hình dựng đợc thoả mãn yêu cầu đề ra

Điểm: 8A……… 8B……… 8C……… 8D………

C Bài mới:

*HĐ1: Kiểm tra bài cũ

* Dựng hình thang cân ABCD đáy

CD=3cm, đờng chéo AC=4cm, àD=800

+ GV trình bày lại (nói nhanh)

1) Chữa bài 30/83

* Cách dựng- Dựng góc vuông ãxBy

- Dựng điểm C trên tia By, BC = 2cm

- Dựng điểm A trên tia Bx cách C ,1 khoảng AC = 4 cm ( A là giao của đờng tròn tâm (C,4cm) với tia Bx

* CM: Theo cách dựng ta có : àB=900,

BC = 2cm & CD = 4cm ⇒ ∆ABC vuông tại B Thoả mãn yêu cầu đề ra

y C

- Theo cách dựng tia Ax: AB//CD

- Theo cách dựng điểm B có: AB=2cmVậy hình thang ABCD thoả mãn các yêu cầu đề ra

3) Bài 33/83

y

A B z 4

Trang 20

+Tứ giác ABCD có AB//DC nên là hình

thang đáy AB&DC

- Làm tiếp phần cách dựng và chứng minh bài 34/84

- Giờ sau mang thớc, compa, giấy kẻ ô vuông

Ngày giảng: 8A……… 8B……… 8C……… 8D………

Tiết 10 Đối xứng trục

I Mục tiêu :

- Kiến thức: HS nắm vững định nghĩa 2 điểm đối xứng với nhau qua 1 đt, hiểu đợc

đ/n về 2 đờng đối xứng với nhau qua 1 đt, hiểu đợc đ/n về hình có trục đối xứng

- Kỹ năng: HS biết về điểm đối xứng với 1 điểm cho trớc Vẽ đoạn thẳng đối xứng với

đoạn thẳng cho trớc qua 1 đt Biết CM 2 điểm đối xứng nhau qua 1 đờng thẳng

- Thái độ: HS nhận ra 1 số hình trong thực tế là hình có trục đối xứng Biết áp dụng

tính đối xứng của trục vào việc vẽ hình gấp hình

II CHUẩN Bị:

+ GV: Giấy kẻ ô, bảng phụ + HS: Tìm hiểu về đờng trung trực tam giác

III Tiến trình bài dạy A

A- Ôn định tổ chức:

B- Kiểm tra bài cũ:

- Thế nào là đờng trung trực của tam giác?

với ∆cân hoặc ∆đều đờng trung trực có đặc điểm gì?

Trang 21

( vẽ hình trong trờng hợp ∆cân hoặc ∆đều) B D C

D

E

Điểm: 8A……… 8B……… 8C……… 8D……… C.Bài mới:

* HĐ1: Hình thành định nghĩa 2 điểm đối xứng

nhau qua 1 đờng thẳng

+ GV cho HS làm bài tập

Cho đt d và 1 điểm A∉d Hãy vẽ điểm A' sao

cho d là đờng trung trực của đoạn thẳng AA'

+ Muốn vẽ đợc A' đối xứng với điểm A qua d ta vẽ

nhau qua 1 đờng thẳng

- GV: Ta đã biết 2 điểm A và A' gọi là đối xứng nhau

qua đờng thẳng d nếu d là đờng trung trực đoạn AA'

Vậy khi nào 2 hình H & H' đợc gọi 2 hình đối xứng

nhau qua đt d? ⇒Làm BT sau

Cho đt d và đoạn thẳng AB

- Vẽ A' đối xứng với điểm A qua d

- Vẽ B' đối xứng với điểm B qua d

Lấy C∈AB Vẽ điểm C' đx với C qua d

- HS vẽ các điểm A', B', C' và kiểm nghiệm trên bảng

- HS còn lại thực hành tại chỗ

+ Dùng thớc để kiểm nghiệm điểm C' ∈A'B'

+ Gv chốt lại: Ngời ta CM đợc rằng : Nếu A' đối xứng

với A qua đt d, B' đx với B qua đt d; thì mỗi điểm trên

đoạn thẳng AB có điểm đối xứng với nó qua đt d là 1

điểm thuộc đoạn thẳng A'B' và ngợc lại mỗi điểm trên

đt A'B' có điểm đối xứng với nó qua đờng thẳng d là 1

điểm thuộc đoạn AB

- Về dựng 1 đoạn thẳng A'B' đối xứng với đoạn thẳng

AB cho trớc qua đt d cho trớc ta chỉ cần dựng 2 điểm

1) Hai điểm đối xứng nhau qua 1 đ ờng thẳng

A

d

A

B d

H

A'

* Định nghĩa: Hai điểm gọi là

đối xứng với nhau qua đt d nếu

d là đờng trung trực của đoạn thẳng nối 2 điểm đó

Quy ớc: Nếu điểm B nằm trên

đt d thì điểm đối xứng với B qua đt d cũng là điểm B2) Hai hình đối xứng nhau

qua 1 đ ờng thẳng

B

A

d

C B

A = _ x _ x d

A' =

C' B'

- Khi đó ta nói rằng AB & A'B'

là 2 đoạn thẳng đối xứng với nhau qua đt d

* Định nghĩa: Hai hình gọi là

đối xứng nhau qua đt d nếu 1

?2

Trang 22

A'B' đx với nhau qua đầu mút A,B qua d rồi vẽ đoạn

A'B' ⇒Ta có đ/n về hình đối xứng ntn?

+ GV đa bảng phụ

- Hãy chỉ rõ trên hình vẽ sau: Các cặp đoạn thẳng, đt

đối xứng nhau qua đt d & giải thích (H53)

+ GV chốt lại

+ A&A', B&B', C&C' Là các cặp đối xứng nhau qua đt

d do đó ta có:

Hai đoạn thẳng : AB &A'B' đx với nhau qua d

BC &B'C' đx với nhau qua d

AC &A'C ' đx với nhau qua d

2 góc ABC&A'B'C' đx với nhau qua d

∆ ABC&A'B'C' đx với nhau qua d

2 đờng thẳng ACA'C' đx với nhau qua d

+ Hình H& H' đối xứng với nhau qua trục d

* HĐ3: Hình thành định nghĩa hình có trục đối

xứng

Cho ∆ABC cân tại A đờng cao AH Tìm hình

đối xứng với mỗi cạnh của ∆ABC qua AH

Mỗi hình sau đây có bao nhiêu trục đối xứng

mỗi điểm thuộc hình này đx với 1 điểm thuộc hình kia qua

đt d và ngợc lại

* đt d gọi là trục đối xứng của

2 hình

H H' d

⇒Đt AH là trục đối xứng cuả

tam giác cân ABC

Trang 23

+Gv: Đa tranh vẽ hình thang cân

- Hình thang có trục đối xứng không? Là hình thang

nào? và trục đối xứng là đờng nào?

C D

* Đờng thẳng đi qua trung

điểm 2 đáy của hình thang cân

là trục đối xứng của hình thang cân đó

D- Luyên tập - Củng cố:

- HS quan sát H 59 SGK- Tìm các hình có trục đx trên H59

+ H (a) có 2 trục đối xứng + H (g) có 5 trục đối xứng

+ H (h) không có trục đối xứng + Các hình còn lại mỗi hình có 1 trục đối xứng

E- BT - H ớng dẫn về nhà :

- Học thuộc các đ/n

+ Hai điểm đối xứng qua 1 đt + Hai hình đối xứng qua 1 đt

+ Trục đối xứng của 1 hình

- Kỹ năng: HS thực hành vẽ hình đối xứng của 1 điểm, của 1 đoạn thẳng qua trục đx Vận dụng t/c 2 đoạn thẳng đối xứng qua đờng thẳng thì bằng nhau để giải các bài thực tế

II CHUẩN Bị:

- GV: bảng phụ hoặc vẽ trực tiếp HS: Bài tập

III tiến trình dạy học

?4

Trang 24

A-ổn định tổ chức

B- Kiểm tra bài cũ: HS1: Phát biểu đ/n về 2 điểm đx nhau qua 1 đt d

+ Cho 1 đt d và 1 đoạn thẳng AB Hãy vẽ đoạn thẳng A'B' đx với đoạn thẳng AB qua d.+ Đoạn thẳng AB và đt d có thể có những vị trí ntn đối với nhau? Hãy vẽ đoạn thẳng

A'B' đx với AB trong các trờng hợp đó

Điểm: 8A……… 8B……… 8C……… 8D……… C-Bài mới

*HĐ1: HS làm bài tại lớp

a) Cho 2 điểm A, B thuộc cùng 1nửa MP có

bờ là đt d Gọi C là điểm đx với A qua d, gọi

D là giao điểm của đờng thẳng d và đoanh

thẳng BC Gọi E là điểm bất kỳ của đt d ( E

không // d )

CMR: AD+DB<AE+EB

b) Bạn Tú đang ở vị trí A, cần đến bờ sông B

lấy nớc rồi đo đến vị trí B Con đờng ngắn

nhất bạn Tú đi là đờng nào?

- GV: Dựa vào nội dung giải 2 câu a, b của

bài 39 Hãy phát biểu bài toán này dới dạng

khác?

Giải

a) Gọi C là điểm đx với A qua d, D là giao

điểm của d và BC, d là đờng trung trực của

(VD: 1 ) Cho đt d & 2 điểm phân biệt A&B

không thuộc đt d Tìm trên đt d điểm M sao

cho tổng khoảng cách từ M đến A,B là nhỏ

nhất)

2) Hoặc tìm trên d điểm M : MA+MB là nhỏ

nhất

Giải

1) AB ∈2 nửa MP khác nhau có bờ là đt d

Điểm phải tìm trên d là giao điểm M của d và

_ D

d _ E

C A

M

d

M'

B A B _ d _ M M '

Trang 25

MA+MB=AB<M'A+M'B (∀M' ≠M)2) A, B ∈1 nửa mp bờ là đt d

a) AB không // dMA+MB<M'A+M'Bb) AB//d

MA+MB<M'A+M'B

2) Chữa bài 41

Các câu a, b, c là đúng Câu d sai

Vì đoạn thẳng AB có hai trục đối xứng đó là ờnxứng trung trực của đoạn thẳng AB và đờng thẳng chứa AB

A B _

d _ M M '

A'

A B _

M M ' d _

3) Chữa bài 40 B

Trong biển a, b, d có trục đx

- Trong biển c không có trục đx

- Kiến thức: HS nắm vững đn hình bình hành là hình tứ giác có các cạnh đối song song

( 2 cặp cạnh đối //) Nắm vững các tính chất về cạnh đối, góc đối và đờng chéo của hình bình hành

Trang 26

- Kỹ năng: HS dựa vào dấu hiệu nhận biết và tính chất nhận biết đợc hình bình hành

Biết chứng minh một tứ giác là hình bình hành, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau, 2 đờng thẳng song song

Kiểm tra bài cũ : GV: Hỏi

- Phát biểu định nghĩa hình thang, hình thang cân, hình thang vuông ?

- Nêu các tính chất của hình thang, hình thang cân?

+ Các cạnh đối của tứ giác có gì đặc biệt?

⇒Ngời ta gọi tứ giác này là hình bình hành

+ Vậy theo em hình bình hành là hình ntn?

GV: vậy định nghĩa hình thang & định

nghĩa HBH khác nhau ở chỗ nào?

Hãy quan sát hình vẽ, đo đạc, so sánh các

cạnh các góc, đờng chéo từ đó nêu tính chất

của cạnh, về góc, về đờng chéo của hình

bình hành đó

- HS dùng thớc thẳng có chia khoảng cách

để đo cạnh, đờng chéo

- Dùng đo độ để đo các góc của HBH & NX

Đờng chéo AC cắt BD tại O

GV: Em nào CM đợc O là trung điểm của

AD// BC

+ Tứ giác chỉ có 1 cặp đối // là hình thang

+ Tứ giác phaỉ có 2 cặp đối // là hình bình hành

HBH là hình thang có 2 cạnh bên //

2 Tính chất

? 1

Trang 27

* HĐ4: Hình thành các dấu hiệu nhận biết

+ GV: Để nhận biết 1 tứ giác là HBH ta dựa

vào yếu tố nào để khẳng định?

+ GV: tóm tắt ý kiến HS bằng dấu hiệu

điểm của mỗi đờng

A B

1 2 2

o

2 1

D 2 C

3) Dấu hiệu nhận biết

1-Tứ giác có các cạnh đối // là HBH2-Tứ giác có các cạnh đối = là HBH3-Tứ giác có 2 cạnh đối // &=là HBH4-Tứ giác có các góc đối=nhau là HBH

5- Tứ giác có 2 đờng chéo cắt nhau tại trung điểm mỗi hình là HBH

F I

A B E 75 0 N

D C (a) G 110 0 70 0

H K 70 0M (b) (c)

S

V U

P // //

R (d) 100 0 80 0

Trang 28

- Kiến thức: HS củng cố đn hình bình hành là hình tứ giác có các cạnh đối song song

( 2 cặp cạnh đối //) Nắm vững các tính chất về cạnh đối, góc đối và đờng chéo của hình bình hành Biết áp dụng vào bài tập

- Kỹ năng: HS dựa vào dấu hiệu nhận biết và tính chất nhận biết đợc hình bình hành

Biết chứng minh một tứ giác là hình bình hành, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau, 2 đờng thẳng song song

- Thái độ: Rèn tính khoa học, chính xác, cẩn thận T duy lô gíc, sáng tạo.

B- Kiểm tra bài cũ:

HS1: + Phát biểu định nghĩa HBH và các tính chất của HBH?

+ Muốn CM một tứ giác là HBH ta có mấy cách chứng minh? Là những cách nào?

HS2: CMR nếu một tứ giác có các cạnh đối bằng nhau thì các cạnh đối song song với

nhau và ngợc lại tứ giác có các cạnh đối song song thì các cạnh đối bằng nhau?

Hoạt động của giáo viên và học sinh Kiến thức cơ bản

* HĐ1: Tổ chức luyện tập 1) Chữa bài 44/92 (sgk)

Cho HBH : ABCD Gọi E là trung điểm của

AD; F là trung điểm của BC Chứng minh rằng:

BE = DF

- GV: Để CM hai đoạn thẳng bằng nhau ta

th-ờng qui về CM gì? Có những cách nào để CM?

ABCD là HBH nên ta có: AD// BC(1)

AD = BC(2) E là trung điểm của

AD, F là trung điểm của BC (gt) ⇒

ED = 1/2AD,BF = 1/2 BC

Từ (1) & (2) ⇒ ED// BF & ED =BF

Trang 29

- GV: Cho HS tự CM cách 2

* HĐ2: Hình thành pp vẽ HBH nhanh nhất

GV: Em hãy nêu cách vẽ HBH nhanh nhất?

- HS nêu cách vẽ HBH nhanh nhất:

C1:

+ Dựa vào dấu hiệu 3

C2:

+ Dựa vào dấu hiệu 5

a- Hình thang có 2 cạnh đáy bằng nhau là HBH

b) Hai đờng chéo AC∩KH tại trung điểm O

của mỗi đờng ⇒O∈AC hay A, O thẳng hàng.

AB = CD

- Vẽ AD, vẽ BC đợc HBH : ABCD + Cách 2: - Vẽ 2 đờng thẳng a & b cắt nhau tại O

- Trên a lấy về 2 phía của O 2 điểm A

& C sao cho OA = OC

- Trên b lấy về 2 phía của O 2 điểm

B & D sao cho OB = OD

- Vẽ AB, CD, AD, BC Ta đợc HBH : ABCD

3- Chữa bài 46/92 (sgk)

3) a) Đúng vì giống nh tứ giác có 2 cạnh

đối // = là HBHb) Đúng vì giống nh tứ giác có các cạnh đối // là HBH

c) Sai vì Hình thang cân có 2 cạnh

đối = nhau nhng không phải là HBHd) Sai vì Hình thang cân có 2 cạnh bên = nhau nhng không phải là HBH

4- Chữa bài 47/93 (sgk)

A B

K O

H

C Da) ABCD là hình bình hành (gt)

Ta có: AD//BC & AD=BC

ãADH =ãCBK ( So le trong, AD//BC)

⇒KC=AH (1) KC//AH (2)

Từ (1) &(2) ⇒AHCK là hình b/ hành

D- Luyên tập - Củng cố:

- Qua bài HBH ta đã áp dụng CM đợc những điều gì?- GV chốt lại :

+ CM tam giác bằng nhau, các đoạn thẳng bằng nhau, các góc bằng nhau, 3 điểm

thẳng hàng, các đờng thẳng song song.+ Biết CM tứ giác là HBH

+ Cách vẽ hình bình hành nhanh nhất

E- BT - H ớng dẫn về nhà :

Trang 30

Học bài: Đ/ nghĩa, t/chất và DH nhận biết HBH Làm các bài tập 48, 49,/ 93 SGK.Vẽ HBH, đ/ chéo

Ngày giảng: 8A……… 8B……… 8C……… 8D………

Tiết 14 đối xứng tâm

I Mục tiêu :

- Kiến thức: HS nắm vững định nghĩa hai điểm đối xứng tâm (đối xứng qua 1 điểm)

Hai hình đối xứng tâm và khái niệm hình có tâm đối xứng

- Kỹ năng: Hs vẽ đợc đoạn thẳng đối xứng với 1 đoạn thẳng cho trớc qua 1 điểm cho

trớc Biết CM 2 điểm đx qua tâm Biết nhận ra 1 số hình có tâm đx trong thực tế

- Thái độ: Rèn t duy và óc sáng tạo tởng tợng.

II CHUẩN Bị:

- GV: Bảng phụ , thớc thẳng HS: Thớc thẳng + BT đối xứng trục

III tiến trình bài dạy

A) Ôn định tổ chức:

B) Kiểm tra bài cũ:

GV: Đa câu hỏi trên bảng phụ

- Phát biểu định nghĩa hai điểm đối xứng với nhau qua 1 đờng thẳng

- Hai hình H và H' khi nào thì đợc gọi là 2 hình đx với nhau qua 1 đt cho trớc?

- Cho ∆ABC và đt d Hãy vẽ hình đối xứng với ∆ABC qua đt d

Điểm: 8A……… 8B……… 8C……… 8D………

C).

Bài mới

Hoạt động của giáo viên Hoạt động của HS

* HĐ1: Hình thành định nghĩa hai điểm đối

xứng qua một điểm

+ GV: Cho Hs thực hiện ?1

Một HS lên bảng vẽ điểm A' đx với điểm A

qua O.HS còn lại làm vào vở

GV: Điểm A' vẽ đợc trên đây là điểm đx với

điểm A qua điểm O Ngợc lại ta cũng có điểm

đx với điểm A' qua O Ta nói A và A' là hai

điểm đx nhau qua O

- Hs phát biểu định nghĩa

*HĐ2: Tìm hiểu hai hình nh thế nào gọi là

đối xứng nhau qua một điểm.

- GV: Hai hình nh thế nào thì đợc gọi là 2

hình đối xứng với nhau qua điểm O

GV: Ghi bảng và cho HS thực hành vẽ

- HS lên bảng vẽ hình và kiểm nghiệm

- HS kiểm nghiệm bằng đo đạc

- Dùng thớc kẻ kiểm nghiệm rằng điểm C'

thuộc đoạn thẳng A'B' và điểm A'B'C' thẳng

điểm O cũng là điểm O

2) Hai hình đối xứng qua 1 điểm.

?2

A C B // \

O \ //

B' C' A'

Ngời ta CM đợc rằng:

?1

Trang 31

- Gọi A và A' là hai điểm đx nhau qua O

Gọi B và B' là hai điểm đx nhau qua O

GV: Vậy em nào hãy định nghĩa hai hình đối

xứng nhau qua 1 điểm

- HS phát biểu định nghĩa

- HS nhắc lại định nghĩa

- GV: Dùng bảng phụ vẽ sẵn hình 77, 78

- Hãy tìm trên hình 77 các cặp đoạn thẳng đx

với nhau qua O, các đờng thẳng đối xứng với

nhau qua O, hai tam giác đối xứng với nhau

Điểm C∈AB đối xứng với điểm C' ∈

A'B' Ta nói rằng AB & A'B' là hai

đoạn thẳng đx với nhau qua điểm O

* Định nghĩa:

Hai hình gọi là đối xứng với nhau qua

điểm O, nếu mỗi điểm thuộc hình này

đx với 1 điểm thuộc hình kia qua

điểm O và ngợc lại

Điểm O gọi là tâm đối xứng của hai hình đó

C

A _ B

// \ O \ //

/ / D

Trang 32

GV: Qua H77, 78 em hãy nêu cách vẽ đoạn

thẳng, tam giác, 2 hình đx nhau qua điểm O

* HĐ3: Nhận xét phát hiện hình có tâm đối

xứng

- GV: Vẽ hình bình hành ABCD Gọi O là

giao điểm 2 đờng chéo Tìm hình đx với mỗi

cạnh của hình bình hành qua điểm O

- GV: Vẽ thêm điểm E và E' đx nhau qua O

Ta có: AB & CD đx nhau qua O

AD & BC đx nhau qua O

E đx với E' qua O ⇒E' thuộc hình bình

* Vậy: Nếu 2 đoạn thẳng ( 2 góc, 2

tam giác) đx với nhau qua 1 điểm thì chúng bằng nhau

* Cách vẽ đx qua 1 điểm:

+ Ta muốn vẽ 2 đoạn thẳng đx qua 1

điểm O ta chỉ cần vẽ 2 cặp đỉnh tơng ứng đối xứng nhau qua O

+ Muốn vẽ 2 tam giác đx với nhau qua O ta chỉ cần vẽ 3 cặp đỉnh tơng ứng đx với nhau qua O

+ Muốn vẽ 1 hình đối xứng 1 hình cho trớc qua tâm O ta vẽ các điểm đx với từng điểm của hình đã cho qua O, rồi nối chúng lại với nhau

3) Hình có tâm đối xứng.

* Định nghĩa : Điểm O gọi là tâm đx

của hình H nếu điểm đx với mỗi điểm thuộc hình H qua điểm O cũng đx với mỗi điểm thuộc hình H

⇒Hình H có tâm đối xứng.

* Định lý: Giao điểm 2 đờng chéo

của hình bình hành là tâm đối xứng của hình bình hành

Trang 33

MD//AB ⇔MD//AE

ME//AC ⇔ ME//AD => AEMD là hình bình hành

mà IE=ID (ED là đ/ chéo hình bình hành AEMD⇒AM đi qua I (T/c) và AM∩ED =(I)

⇒Hay AM là đờng chéo hình bình hành AEMD.⇒IA=IM⇒A đx M qua I.

- Kiến thức: Củng cố các khái niệm về đối xứng tâm, ( 2 điểm đối xứng qua tâm, 2

hình đối xứng qua tâm, hình có tâm đối xứng

- Kỹ năng: Luyện tập cho HS kỹ năng CM 2 điểm đối xứng với nhau qua 1 điểm

- Thái độ: t duy lô gic, cẩn thận.

II CHUẩN Bị:

- GV: Bài tập, thớc Hs: Học bài + BT về nhà

III tiến trình bài dạy

A) Ôn định tổ chức

B) Kiểm tra bài cũ:

HS1: Hãy phát biểu định nghĩa về

a) Hai điểm đx với nhau qua 1 điểm b) Hai hình đx nhau qua 1 điểm

2) Cho đoạn thẳng AB và 1 điểm O (O khác AB)

a) Hãy vẽ điểm A' đx với A qua O, điểm B' đx với B qua O rồi CM

AB= A'B' & AB//A'B'

b) Qua điểm C∈AB và điểm O vẽ đờng thẳng d cắt A'B' tại C' Chứng minh 2 điểm C

B' A'

C'

Điểm: 8A……… 8B……… 8C……… 8D………

c)Bài mới

Hoạt động của giáo viên Hoạt động của GV

HĐ1: Kiểm tra bài cũ

HĐ2:Tổ chức luyện tập

Cho H82 Trong đó MD//AB, ME//AC

CRM: A đối xứng với M qua I

1) Chữa bài 53/96

A

E

Trang 34

GV gọi HS lên bảng chữa bài tập

Gv gọi hs đoc đề bài

GV gọi HS lên bảng chữa bài tập

HS nhận xét bài giải của bạn

* GV: Chốt lại:

Đây là bài toán chứng minh: Hình b hành

có tâm đx là giao 2 đờng chéo của nó

4 3 _

O 2 D

_ B

- Vì A&B đối xứng qua Ox nên Ox là

đờng trung trực của AB ⇒OA = OB

& Oà1 = ả

2

O (1)-Vì A&C đx qua Oy nên Oy là đờng ttrực của AC⇒OA= OC &ả

⇒C,O,B thẳng hàng & OB=OC

Vậy C đx Với B qua O

3) Chữa bài 55/96

A M B

/

O /

D N C ABCD là hình bình hành , O là giao 2

đờng chéo (gt)

⇒AB//CD⇒ àA1 = Cà1 (SCT)

Trang 35

OA=OC (T/c đờng chéo)

⇒ ∆AOM=∆CON (g.c.g)⇒OM=ON

Vậy M đối xứng N qua O

4) Chữa bài 57/96

- Câu a, c là đúng Câu b là sai

D- Luyên tập - Củng cố:

So sánh các định nghĩa về hai điểm đx nhau qua tâm

- So sánh cách vẽ hai hình đối xứng nhau qua trục, hai hình đx nhau qua tâm

- Kiến thức: HS nắm vững đ/nghĩa hình chữ nhật, các T/c của hình chữ nhật, các

DHNB về hình chữ nhật, T/c trung tuyến ứng với cạnh huyền của 1 tam giác vuông

- Kỹ năng: Hs biết vẽ hình chữ nhật (Theo định nghĩa và T/c đặc trng)

+ Nhận biết HCN theo dấu hiệu của nó, nhận biết tam giác vuông theo T/c đờng trung tuyến thuộc cạnh huyền Biết cách chứng minh 1 hình tứ giác là hình chữ nhật

- Thái độ: Rèn t duy lô gíc - p2 chuẩn đoán hình

II CHUẩN Bị:

- GV: Bảng phụ, thớc, tứ giác động HS: Thớc, compa

III tiến trình bài dạy:

A) Ôn định tổ chức.

B) Kiểm tra bài cũ.

a) Vẽ hình thang cân và nêu đ/nghĩa, t/c của nó? Nêu các DHNB 1 hình thang cân b) Vẽ hình bình hành và nêu định nghĩa, T/c và dấu hiệu nhận biết hình bình hành.

Điểm: 8A……… 8B……… 8C……… 8D………

C) Bài mới:

Hoạt động của giáo viên Hoạt động của HS

Trang 36

góc bằng 900 ⇒Mỗi góc là 1 góc vuông Hay

- Tuy nhiên HCN mới có T/c đặc trng đó là:

* HĐ2: Tìm hiểu các tính chất của HCN

+GV: T/c này đợc suy từ T/c của hình thang

2) Tính chất:

Trong HCN 2 đờng chéo bằng nhau và cắt nhau tại trung điểm của mỗi đ-ờng

3 Dấu hiệu nhận biết:

M //

?3

Trang 37

tuyến ứng với cạnh huyền Hãy phát biểu tính

chất tìm đợc ở câu b dới dạng định lý

GV gọi HS đọc đề bài

a) Tứ giác ABCD là hình gì vì sao?

b) ∆ABC là tam giác gì?

c) ∆ABC có đờng trung tuyến AM = nửa cạnh

BC

- HS phát biểu định lý áp dụng

- HS nhắc lại

Giải:

a) ABCD có 2 đờng chéo cắt nhau tại trung

điểm mỗi đờng nên là HBH ⇒ HBH có 2

đ-ờng chéo bằng nhau ⇒ là HCN

b) ∆ABC vuông tại A

c) AM = 1

2BC

* Định lý áp dụng

1 Trong ∆vuông đờng trung tuyến ứng với

cạnh huyền bằng nửa cạnh huyền

2 Nếu 1 ∆ có đờng trung tuyến ứng với 1 cạnh

bằng nửa cạnh ấy thì ∆ đó là ∆ vuông

A

B M C

- Học bài CM các dấu hiệu 1, 2, 3

- Thực hành vẽ HCN bằng các dụng cụ khác Làm các bài tập: 58, 59, 61 SGK/99

- Kỹ năng: Chứng minh hình học, chứng minh tứ giác là HCN

- Thái độ: Rèn t duy lô gíc - p2 phân tích óc sáng tạo

Trang 38

a) Phát biểu đ/n và t/c của hình chữ nhật?

b) Các câu sau đây đúng hay sai? Vì sao?

+ Hình thang cân có 1 góc vuông là HCN

+ Hình bình hành có 1 góc vuông là HCN

+ Tứ giác có 2 đờng chéo bằng nhau là HCN

+ Hình bình hành có 2 đờng chéo bằng nhau là HCN

+ Tứ giác có 3 góc vuông là HCN

+ Hình thang có 2 đờng chéo = nhau là HCN

Điểm: 8A……… 8B……… 8C……… 8D………

C Bài mới

Hoạt động của giáo viên Hoạt động của HS

* HĐ1: Kiểm tra bài cũ

* HĐ2: Tổ chức luyện tập

∆ ABC đờng cao AH, I là trung điểm AC, E là

trung điểm đx với H qua I tứ giác AHCE là hình

B H CBài giải:

Trang 39

Tiết 18: Kiểm tra viết

A Mục đích yêu cầu kiểm tra:

- KT: Nắm chắc các khái niệm về tứ giác, hình thang, hình bình hành, hình chữ nhật, nắm đợc tính chất, dấu hiệu nhận biết các hình đó

- Kĩ năng: Vẽ hình đúng, chính xác, biết giải BT dựng hình, chứng minh hình

- Thái độ: Giáo dục ý thức chủ động, tích cực tự giác trong học tập

B Thiết kế ma trận 2 chiều:

Trang 40

TNKQ TL TNKQ TL TNKQ TL

Tứ giác, hình thang 1 0,5 2 1 1 2 4 3,5Hình bình hành 1 0,5 1 0,5 1 2 3 3,0Hình chữ nhật 1 0,5 1 1 1 2 3 3.5Tổng

3 1,5

4 2,5

3 6

10 10

C.Đề kiểm tra:

Phần trắc nghiệm khách quan: ( 3đ) Chọn câu đúng:

a Đúng c Tuỳ theo từng trờng hợp có thể đúng

b Sai d Tuỳ theo từng trờng hợp có thể sai

Câu 2: Hai góc kề một cạnh bên của hình thang

a Bù nhau b Bằng nhau c Bằng 900 d Mỗi góc bằng 1800

Câu 3: Để chứng minh một tứ giác là hình bình hành ta chứng minh:

a Hai cạnh đối bằng nhau

b Hai cạnh đối song song

c Hai đờng chéo cắt nhau tại trung điểm mỗi đờng

d Hai đờng chéo bằng nhau

Bài 1: Cho tam giác ABC cân tại A, trung tuyến AM Gọi I là trung điểm của AC, K là

điểm đối xứng của M qua I

a Tứ giác AMCK là hình gì ? Vì sao?

b Tứ giác AKMB là hình gì ? Vì sao?

c Tìm điều kiện của tam giác ABC để tứ giác AMCK có hai cạnh liên tiếp bằng nhau?

C.

Đáp án chấm :

Phần trắc nghiệm khách quan: ( 3đ) Mỗi câu đúng cho 0,5đ

Ngày đăng: 19/04/2015, 13:00

TỪ KHÓA LIÊN QUAN

w