Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 75 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
75
Dung lượng
1,55 MB
Nội dung
Đề số 1: đề thi học sinh giỏi huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Bài 1. Tìm giá trị n nguyên dơng: a) 1 .16 2 8 n n = ; b) 27 < 3 n < 243 Bài 2. Thực hiện phép tính: 1 1 1 1 1 3 5 7 49 ( ) 4.9 9.14 14.19 44.49 89 + + + + Bài 3. a) Tìm x biết: 2x3x2 +=+ b) Tìm giá trị nhỏ nhất của A = x20072006x + Khi x thay đổi Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đờng thẳng. Bài 5. Cho tam giác vuông ABC ( A = 1v), đờng cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đờng thẳng song song với AC cắt đờng thẳng AH tại E. Chứng minh: AE = BC Đề số 2: đề thi học sinh giỏi huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Bi 1:(4 im) a) Thc hin phộp tớnh: ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 2 .3 4 .9 5 .7 25 .49 A 125.7 5 .14 2 .3 8 .3 = + + b) Chng minh rng : Vi mi s nguyờn dng n thỡ : 2 2 3 2 3 2 n n n n+ + + chia ht cho 10 Bi 2:(4 im) Tỡm x bit: a. ( ) 1 4 2 3,2 3 5 5 x + = + b. ( ) ( ) 1 11 7 7 0 x x x x + + = 1 Bi 3: (4 im) a) S A c chia thnh 3 s t l theo 2 3 1 : : 5 4 6 . Bit rng tng cỏc bỡnh phng ca ba s ú bng 24309. Tỡm s A. b) Cho a c c b = . Chng minh rng: 2 2 2 2 a c a b c b + = + Bi 4: (4 im) Cho tam giỏc ABC, M l trung im ca BC. Trờn tia i ca ca tia MA ly im E sao cho ME = MA. Chng minh rng: a) AC = EB v AC // BE b) Gi I l mt im trờn AC ; K l mt im trờn EB sao cho AI = EK . Chng minh ba im I , M , K thng hng c) T E k EH BC ( ) H BC . Bit ã HBE = 50 o ; ã MEB =25 o . Tớnh ã HEM v ã BME Bi 5: (4 im) Cho tam giỏc ABC cõn ti A cú à 0 A 20= , v tam giỏc u DBC (D nm trong tam giỏc ABC). Tia phõn giỏc ca gúc ABD ct AC ti M. Chng minh: a) Tia AD l phõn giỏc ca gúc BAC b) AM = BC Ht Đáp án đề 1toán 7 Bài 1. Tìm giá trị n nguyên dơng: (4 điểm mỗi câu 2 điểm) a) 1 .16 2 8 n n = ; => 2 4n-3 = 2 n => 4n 3 = n => n = 1 b) 27 < 3 n < 243 => 3 3 < 3 n < 3 5 => n = 4 Bài 2. Thực hiện phép tính: (4 điểm) 1 1 1 1 1 3 5 7 49 ( ) 4.9 9.14 14.19 44.49 89 + + + + = 1 1 1 1 1 1 1 1 1 2 (1 3 5 7 49) ( ). 5 4 9 9 14 14 19 44 49 12 + + + + + + + + + = 1 1 1 2 (12.50 25) 5.9.7.89 9 ( ). 5 4 49 89 5.4.7.7.89 28 + = = Bài 3. (4 điểm mỗi câu 2 điểm) a) Tìm x biết: 2x3x2 +=+ Ta có: x + 2 0 => x - 2. + Nếu x - 2 3 thì 2x3x2 +=+ => 2x + 3 = x + 2 => x = - 1 (Thoả mãn) + Nếu - 2 x < - 2 3 Thì 2x3x2 +=+ => - 2x - 3 = x + 2 => x = - 3 5 (Thoả mãn) 2 + Nếu - 2 > x Không có giá trị của x thoả mãn b) Tìm giá trị nhỏ nhất của A = x20072006x + Khi x thay đổi + Nếu x < 2006 thì: A = - x + 2006 + 2007 x = - 2x + 4013 Khi đó: - x > -2006 => - 2x + 4013 > 4012 + 4013 = 1 => A > 1 + Nếu 2006 x 2007 thì: A = x 2006 + 2007 x = 1 + Nếu x > 2007 thì A = x - 2006 - 2007 + x = 2x 4013 Do x > 2007 => 2x 4013 > 4014 4013 = 1 => A > 1. Vậy A đạt giá trị nhỏ nhất là 1 khi 2006 x 2007 Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đờng thẳng. (4 điểm mỗi) Gọi x, y là số vòng quay của kim phút và kim giờ khi 10giờ đến lúc 2 kim đối nhau trên một đờng thẳng, ta có: x y = 3 1 (ứng với từ số 12 đến số 4 trên đông hồ) và x : y = 12 (Do kim phút quay nhanh gấp 12 lần kim giờ) Do đó: 33 1 11: 3 1 11 yx 1 y 12 x 1 12 y x == ===>= x = 11 4 x)vũng( 33 12 ==> (giờ) Vậy thời gian ít nhất để 2 kim đồng hồ từ khi 10 giờ đến lúc nằm đối diện nhau trên một đờng thẳng là 11 4 giờ Bài 5. Cho tam giác vuông ABC ( A = 1v), đờng cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đờng thẳng song song với AC cắt đờng thẳng AH tại E. Chứng minh: AE = BC (4 điểm mỗi) Đờng thẳng AB cắt EI tại F ABM = DCM vì: AM = DM (gt), MB = MC (gt), ã AMB = DMC (đđ) => BAM = CDM =>FB // ID => ID AC Và FAI = CIA (so le trong) (1) IE // AC (gt) => FIA = CAI (so le trong) (2) 3 D B A H C I F E M Từ (1) và (2) => CAI = FIA (AI chung) => IC = AC = AF (3) và E FA = 1v (4) Mặt khác EAF = BAH (đđ), BAH = ACB ( cùng phụ ABC) => EAF = ACB (5) Từ (3), (4) và (5) => AFE = CAB =>AE = BC Đề số 2: đề thi học sinh giỏi huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Bi 1:(4 im) a) Thc hin phộp tớnh: ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 2 .3 4 .9 5 .7 25 .49 A 125.7 5 .14 2 .3 8 .3 = + + b) Chng minh rng : Vi mi s nguyờn dng n thỡ : 2 2 3 2 3 2 n n n n+ + + chia ht cho 10 Bi 2:(4 im) Tỡm x bit: a. ( ) 1 4 2 3,2 3 5 5 x + = + b. ( ) ( ) 1 11 7 7 0 x x x x + + = Bi 3: (4 im) c) S A c chia thnh 3 s t l theo 2 3 1 : : 5 4 6 . Bit rng tng cỏc bỡnh phng ca ba s ú bng 24309. Tỡm s A. d) Cho a c c b = . Chng minh rng: 2 2 2 2 a c a b c b + = + Bi 4: (4 im) Cho tam giỏc ABC, M l trung im ca BC. Trờn tia i ca ca tia MA ly im E sao cho ME = MA. Chng minh rng: a) AC = EB v AC // BE b) Gi I l mt im trờn AC ; K l mt im trờn EB sao cho AI = EK . Chng minh ba im I , M , K thng hng 4 c) Từ E kẻ EH BC ⊥ ( ) H BC∈ . Biết · HBE = 50 o ; · MEB =25 o . Tính · HEM và · BME Bài 5: (4 điểm) Cho tam giác ABC cân tại A có µ 0 A 20= , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: c) Tia AD là phân giác của góc BAC d) AM = BC ……………………………… Hết ……………………………… §¸p ¸n ®Ò 2 to¸n 7 Bài 1:(4 điểm): a) (2 điểm) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 10 12 5 6 2 10 3 5 2 12 5 12 4 10 3 4 6 3 12 6 12 5 9 3 9 3 3 9 3 2 4 5 12 4 10 3 12 5 9 3 3 10 3 12 4 12 5 9 3 2 .3 4 .9 5 .7 25 .49 2 .3 2 .3 5 .7 5 .7 2 .3 2 .3 5 .7 5 .2 .7 125.7 5 .14 2 .3 8 .3 2 .3 . 3 1 5 .7 . 1 7 2 .3 . 3 1 5 .7 . 1 2 5 .7 . 6 2 .3 .2 2 .3 .4 5 .7 .9 1 10 7 6 3 2 A − − − − = − = − + + + + − − = − + + − = − − = − = b) (2 điểm) 2 2 3 2 3 2 n n n n+ + − + − = 2 2 3 3 2 2 n n n n+ + + − − = 2 2 3 (3 1) 2 (2 1) n n + − + = 1 3 10 2 5 3 10 2 10 n n n n− × − × = × − × = 10( 3 n -2 n ) Vậy 2 2 3 2 3 2 n n n n+ + − + − M 10 với mọi n là số nguyên dương. Bài 2:(4 điểm) a) (2 điểm) 5 ( ) 1 2 3 1 2 3 1 7 2 3 3 1 5 2 3 3 1 4 2 1 4 16 2 3,2 3 5 5 3 5 5 5 1 4 14 3 5 5 1 2 3 x x x x x x x x − = − =− = + = − =− + = − − + = − + ⇔ − + = + ⇔ − + = ⇔ − = ⇔ ⇔ b) (2 điểm) ( ) ( ) ( ) ( ) 1 11 1 10 7 7 0 7 1 7 0 x x x x x x x + + + − − − = ⇔ − − − = ( ) ( ) ( ) 1 10 1 10 7 0 1 ( 7) 0 7 0 7 ( 7) 1 8 7 1 7 0 10 x x x x x x x x x x + ÷ + − = − − = − = ⇒ = − = ⇒ = ⇔ − − − = ⇔ ⇔ Bài 3: (4 điểm) a) (2,5 điểm) Gọi a, b, c là ba số được chia ra từ số A. Theo đề bài ta có: a : b : c = 2 3 1 : : 5 4 6 (1) và a 2 +b 2 +c 2 = 24309 (2) Từ (1) ⇒ 2 3 1 5 4 6 a b c = = = k ⇒ 2 3 ; ; 5 4 6 k a k b k c= = = Do đó (2) ⇔ 2 4 9 1 ( ) 24309 25 16 36 k + + = 6 ⇒ k = 180 và k = 180− + Với k =180, ta được: a = 72; b = 135; c = 30. Khi đó ta có số A = a + b + c = 237. + Với k = 180− , ta được: a = 72− ; b = 135− ; c = 30− Khi đó ta có só A = 72− +( 135− ) + ( 30− ) = 237− . b) (1,5 điểm) Từ a c c b = suy ra 2 .c a b= khi đó 2 2 2 2 2 2 . . a c a a b b c b a b + + = + + = ( ) ( ) a a b a b a b b + = + Bài 4: (4 điểm) a/ (1điểm) Xét AMC∆ và EMB∆ có : AM = EM (gt ) · AMC = · EMB (đối đỉnh ) BM = MC (gt ) Nên : AMC∆ = EMB∆ (c.g.c ) 0,5 điểm ⇒ AC = EB Vì AMC ∆ = EMB∆ · MAC⇒ = · MEB (2 góc có vị trí so le trong được tạo bởi đường thẳng AC và EB cắt đường thẳng AE ) Suy ra AC // BE . 0,5 điểm b/ (1 điểm ) Xét AMI∆ và EMK∆ có : AM = EM (gt ) · MAI = · MEK ( vì AMC EMB ∆ = ∆ ) AI = EK (gt ) Nên AMI EMK∆ = ∆ ( c.g.c ) Suy ra · AMI = · EMK Mà · AMI + · IME = 180 o ( tính chất hai góc kề bù ) ⇒ · EMK + · IME = 180 o ⇒ Ba điểm I;M;K thẳng hàng c/ (1,5 điểm ) Trong tam giác vuông BHE ( µ H = 90 o ) có · HBE = 50 o · HBE⇒ = 90 o - · HBE = 90 o - 50 o =40 o 7 K H E M B A C I ã HEM = ã HEB - ã MEB = 40 o - 25 o = 15 o ã BME l gúc ngoi ti nh M ca HEM Nờn ã BME = ã HEM + ã MHE = 15 o + 90 o = 105 o ( nh lý gúc ngoi ca tam giỏc ) Bi 5: (4 im) a) Chng minh ADB = ADC (c.c.c) suy ra ã ã DAB DAC= Do ú ã 0 0 20 : 2 10DAB = = b) ABC cõn ti A, m à 0 20A = (gt) nờn ã 0 0 0 (180 20 ): 2 80ABC = = ABC u nờn ã 0 60DBC = Tia BD nm gia hai tia BA v BC suy ra ã 0 0 0 80 60 20ABD = = . Tia BM l phõn giỏc ca gúc ABD nờn ã 0 10ABM = Xột tam giỏc ABM v BAD cú: AB cnh chung ; ã ã ã ã 0 0 20 ; 10BAM ABD ABM DAB= = = = Vy: ABM = BAD (g.c.g) suy ra AM = BD, m BD = BC (gt) nờn AM = BC Đề số 3: đề thi học sinh giỏi Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Câu 1: Tìm tất cả các số nguyên a biết a 4 Câu 2: Tìm phân số có tử là 7 biết nó lớn hơn 9 10 và nhỏ hơn 9 11 Câu 3. Cho 2 đa thức P ( ) x = x 2 + 2mx + m 2 và Q ( ) x = x 2 + (2m+1)x + m 2 Tìm m biết P (1) = Q (-1) Câu 4: Tìm các cặp số (x; y) biết: 8 20 0 M A B C D = = = x y a / ; xy=84 3 7 1+3y 1+5y 1+7y b/ 12 5x 4x Câu 5: Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau : A = 1+x +5 B = 3 15 2 2 + + x x Câu 6: Cho tam giác ABC có  < 90 0 . Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB; AE vuông góc và bằng AC. a. Chứng minh: DC = BE và DC BE b. Gọi N là trung điểm của DE. Trên tia đối của tia NA lấy M sao cho NA = NM. Chứng minh: AB = ME và ABC = EMA c. Chứng minh: MA BC Đáp án đề 3 toán 7 Câu 1: Tìm tất cả các số nguyên a biết a 4 0 a 4 => a = 0; 1; 2; 3 ; 4 * a = 0 => a = 0 * a = 1 => a = 1 hoặc a = - 1 * a = 2 => a = 2 hoặc a = - 2 * a = 3 => a = 3 hoặc a = - 3 * a = 4 => a = 4 hoặc a = - 4 Câu 2: Tìm phân số có tử là 7 biết nó lớn hơn 9 10 và nhỏ hơn 9 11 Gọi mẫu phân số cần tìm là x Ta có: 9 7 9 10 11x < < => 63 63 63 70 9 77x < < => -77 < 9x < -70. Vì 9x M 9 => 9x = -72 => x = 8 Vậy phân số cần tìm là 7 8 Câu 3. Cho 2 đa thức P ( ) x = x 2 + 2mx + m 2 và Q ( ) x = x 2 + (2m+1)x + m 2 Tìm m biết P (1) = Q (-1) 9 P(1) = 1 2 + 2m.1 + m 2 = m 2 + 2m + 1 Q(-1) = 1 2m 1 +m 2 = m 2 2m Để P(1) = Q(-1) thì m 2 + 2m + 1 = m 2 2m 4m = -1 m = -1/4 Câu 4: Tìm các cặp số (x; y) biết: = x y a / ; xy=84 3 7 => 2 2 84 4 9 49 3.7 21 x y xy = = = = => x 2 = 4.49 = 196 => x = 14 => y 2 = 4.4 = 16 => x = 4 Do x,y cùng dấu nên: x = 6; y = 14 x = -6; y = -14 = = 1+3y 1+5y 1+7y b/ 12 5x 4x áp dụng tính chất dãy tỉ số bằng nhau ta có: + + = = = = = = 1+3y 1+5y 1+7y 1 7y 1 5y 2y 1 5y 1 3y 2y 12 5x 4x 4x 5x x 5x 12 5x 12 => 2 2 5 12 y y x x = => -x = 5x -12 => x = 2. Thay x = 2 vào trên ta đợc: 1 3 2 12 2 y y y + = = =>1+ 3y = -12y => 1 = -15y => y = 1 15 Vậy x = 2, y = 1 15 thoả mãn đề bài Câu 5: Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau : A = 1+x +5 Ta có : 1+x 0. Dấu = xảy ra x= -1. A 5. Dấu = xảy ra x= -1. Vậy: Min A = 5 x= -1. 10 [...]... AE) Chứng minh MHK vuông cân Đề số 26: đề thi học sinh giỏi (Thời gian làm bài 120 phút) Câu 1: (2đ) Rút gọn A= x x2 x + 8 x 20 2 Câu 2 (2đ) Ba lớp 7A,7B,7C có 94 học sinh tham gia trồng cây Mỗi học sinh lớp 7A trồng đợc 3 cây, Mỗi học sinh lớp 7B trồng đợc 4 cây, Mỗi học sinh lớp 7C trồng đợc 5 cây, Hỏi mỗi lớp có bao nhiêu học sinh Biết rằng số cây mỗi lớp trồng đợc đều nh nhau Câu 3: (1,5đ) 2006... = 3100 3 = B1 3 = Y 3 c) 41o1 = 4100 +1 = 4100 4 = C 6 4 = k 4 d) 71 01 = 71 00+ 1 = 71 00 7 = D1 7 = F 7 e) 8101 = 8100+ 1 = 8100 8 = E 6 8 = N 8 f) 9101 = 9100 +1 = 9100 9 = F1 9 = M 9 3 Một số bài toán phức tạp hơn Bài toán 3: Tìm chử số tận cùng của các luỷ thừa sau : 35 a) 129219 97 ; b) 333319 97 ; c) 123419 97 ; d) 12 371 9 97 ; e) 123819 97 ; f) 256919 97 Bài giải Nhận xét quan trọng : Thực chất chử... thuận với 7 và 11; b và c tỉ lệ nghịch với 3 và 8 và 5a 3b + 2c = 164 Câu 3: Tính nhanh: 1 1 1 76 1 4 5 3 ì ì4 + 4 17 762 139 76 2 4 17. 762 139 Câu 4 Cho tam giác ACE đều sao cho B và E ở hai nửa mặt phẳng đối nhau có bờ AC a Chứng minh tam giác AED cân b Tính số đo góc ACD? 33 Tuyển tập các đề thi học sinh giỏi lớp 7 Một số kinh nghiệm nhỏ về tìm chử số tận cùng và ứng dụng vào các bài toán chứng minh... tn nhiên có chử số tận cùng là : (0,1,5,6) khi nâng lên luỷ thừa với số mủ tự nhiên thì có chử số tự nhiên không thay đổi Kết luận trên là chìa khoá để giả các bài toán về tìm chử số tận cùng của một luỷ thừa 2 Các bài toán cơ bản Bài toán 1 : Tìm chử số tận cùng của các luỷ thừa sau a) 2100 ; b) 3100 ; c) 4100 d) 5100 ; e) 6100 ; f) 71 00 g) 8100 ; 9100 Ta nhận thấy các luỷ thừa 5100 , 6100 thuộc... trừ sẻ có chử số tận cùng là 0 ta sẻ có các bài toán chứng minh chia hết cho { 2,5,10 } Nếu một số có tận cùng là 1 và một số có tận cùng là 3 chẳng hạn ta sẻ có bài toán chứng minh tổng hai số đó chia hết cho 2 (vì chử số tận cùng của tổng là 4) Các bài toán cụ thể : Hảy chứng minh a) 129219 97 + 333319 97 5 Theo bài toán trên ta có 129219 97 = M 2 333319 97 = D3 nh vậy tổng của hai số này sẻ có tận... số tận cùng và ứng dụng vào các bài toán chứng minh chia hết của các lớp 6 ,7 I phần mở đầu : Tìm chử số tận cùng của một luỷ thừa đây là những bài toán tơng đối phức tạp của học sinh các lớp 6 ,7 nhng lại là những bài toán hết sức lí thú , nó tạo cho học sinh lòng say mê khám phá từ đó các em ngày càng yeu môn toán hơn có những bài có số mủ rất lớn tởng nh là mình không thể giãi đợc Nhng nhờ phát hiện... chất là bài toán 2 a) 129219 97 = 12924 499 +1= (12924)499 1292 = A6.1292 = M 2 b) 333319 97 = 33334 499 +1 =(33334)499 +1 3333 = (B1) 499 3333 = D3 c) 123419 97 = 12344 499 +1 = (12344)499 1234 = ( C 6 )499 1234 = G 4 d) 12 371 9 97 = 12 374 499 +1 = (12 374 ) 499 12 37 = (D1) 499 12 37 = X 7 4 vận dụng vào các bài toán chứng minh chia hết áp dụng dấu hiệu chia hết Ta dể dàng nhận thấy : Nếu hai số có chử số... 129219 97 + 333319 97 5 b) Chứng minh 162819 97 + 129219 97 10 Ap dụng qui tắc tìm chử số tận cùng ta có 162819 97 sẻ có tận cùng là M 8 129219 97 Sẻ Có tận cùng là N 2 Nh vậy 162819 97 + 129219 97 10 (vì chử số tận cùng của tổng này sẻ là 0) Ta củng có thể vận dung hiệu của hai số hoặc tích của hai số để ra các bài toán chứng minh tơng tự III Kết luận : Trên đây tôi đã trình bày phần cơ bản của vấn đề tìm... số là 2, 3 , 4 , 7 , 8 , 9 Muốn giãi các bài toán này thì ta phai đa chúng về một trong 4 dạng cơ bản trên thực chất chỉ có đa về hai dạng cơ bản đó là : ( X 1) n = M 1 , ( X 6) n = N 6 giải bài toán 1 a) 2100 = 24*25 = ( ( 2) 4)25 = (16)25 = A6 b) 3100 = 34*25 = ( ( 3) 4)25 = (81)25 = B1 c) 4100 = 44*50 =( ( 4) 2)50 = (16)50 = C 6 d) 71 00 = 74 *25 =( ( 7 ) 4)25 = 240125 = D1 e) 8100 = 84*25 = ( (... điểm cố định khi D thay đổi trên cạnh BC Câu 5: (1 điểm) Tìm số tự nhiên n để phân số 7n 8 có giá trị lớn nhất 2n 3 19 Đề số 11: đề thi học sinh giỏi Câu 1: (2 điểm) a) Tính: (Thời gian làm bài 120 phút) 3 3 11 11 A = 0 ,75 0,6 + + : + + 2 ,75 2,2 7 13 7 13 10 1,21 22 0,25 5 225 : + + B= 49 7 3 9 b) Tìm các giá trị của x để: x + 3 + x + 1 = 3x Câu 2: (2 điểm) a b c không . BC Đề số 2: đề thi học sinh giỏi huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Bi 1:(4 im) a) Thc hin phộp tớnh: ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 2 .3 4 .9 5 .7 25 .49 A 125 .7 5. BC Đề số 2: đề thi học sinh giỏi huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Bi 1:(4 im) a) Thc hin phộp tớnh: ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 2 .3 4 .9 5 .7 25 .49 A 125 .7 5. = BC (gt) nờn AM = BC Đề số 3: đề thi học sinh giỏi Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Câu 1: Tìm tất cả các số nguyên a biết a 4 Câu 2: Tìm phân số có tử là 7 biết nó lớn hơn 9 10