Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 15 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
15
Dung lượng
841 KB
Nội dung
1 ; 2 b x a − + ∆ = 2 2 b x a − − ∆ = Cho phương trình bậc hai ax 2 + bx+ c = 0 (a ≠ 0). Hãy viết công thức nghiệm tổng quát của phương trình trong trường hợp > 0 ? Khi > 0: Phương trình bậc hai ax 2 + bx + c = 0 (a ≠ 0) có hai nghiệm phân biệt Với = b 2 – 4acĐáp án: TI T 57:Ế ĐẠI SỐ 9 Khi phương trình ax 2 + bx + c = 0 (a ≠ 0) có nghiệm: Hãy tính a) x 1 + x 2 b) x 1 .x 2 1 ; 2 b x a − + ∆ = 2 2 b x a − − ∆ = =+ xx 21 a2 b ∆ −− + a2 bb ∆∆ −−+− = a2 b2− = a b− = = xx 2.1 a2 b ∆ +− a2 b . ∆ −− 2 22 a4 )()b( ∆ −− = 2 2 a4 b ∆ − = 2 22 a4 ac4bb +− = a c = a2 b ∆ +− Đáp án: TIẾT 57: ĐẠI SỐ 9 Nếu x 1 , x 2 là hai nghiệm của PT ax 2 + bx + c = 0 (a ≠ 0) thì: 1. HỆ THỨC VI-ÉT: a b xx −=+ 21 a c xx = . 21 * Định lí VI-ÉT: TIẾT 57: ĐẠI SỐ 9 Nếu x 1 , x 2 là hai nghiệm của PT ax 2 + bx + c = 0 (a ≠ 0) thì: 1. HỆ THỨC VI-ÉT: a b xx −=+ 21 a c xx = . 21 * Định lí VI-ÉT: Δ = x 1 + x 2 = x 1 . x 2 = Δ = x 1 + x 2 = x 1 . x 2 = Bµi tËp 25(Sgk/52): Đối với mỗi phương trình sau, kí hiệu x 1 và x 2 là hai nghiệm (nếu có). Không giải phương trình, hãy điền vào những chỗ trống (…). a, 2x 2 - 17x + 1 = 0 (-17) 2 – 4.2.1 = 281 > 0 1 2 17 2 c, 8x 2 - x + 1 = 0 (-1) 2 – 4.8.1= -31 < 0 Kh«ng cã gi¸ trÞ Kh«ng cã gi¸ trÞ TIẾT 57: : ĐẠI SỐ 9 Nếu x 1 , x 2 là hai nghiệm của PT ax 2 + bx + c = 0 (a ≠ 0) thì: 1. HỆ THỨC VI-ÉT: a b xx −=+ 21 a c xx = . 21 * Định lí VI-ÉT: *T.Quát 1: Nếu PT ax 2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 thì PT có một nghiệm x 1 = 1, còn nghiệm kia là Cho PT: 2x 2 - 5x + 3 = 0 a, Xác định các hệ số a, b, c rồi tính a + b + c. b, Chứng tỏ x 1 = 1 là một nghiệm của phương trình. c, Dùng định lí Vi-ét để tìm x 2 . ? 2 – SGK: Ta cã a = a + b + c = 2 -5 3 2 + (-5) + 3 = 0 Thay x 1 = 1 vµo VT cña PT ta cã: VT = 2.1 2 - 5.1 + 3 = 0 VËy x 1 = 1 lµ mét nghiÖm cña PT. Theo ®Þnh lý Vi-Ðt thì: 1 2 . c x x a = Mµ x 1 = 1 a, b, c, 2 3 2 ==⇒ a c x a c x 2 = = VP ; b = ; c = TIẾT 57: ĐẠI SỐ 9 Nếu x 1 , x 2 là hai nghiệm của PT ax 2 + bx + c = 0 (a ≠ 0) thì: 1. HỆ THỨC VI-ÉT: a b xx −=+ 21 a c xx = . 21 * Định lí VI-ÉT: *T.Quát 1: Nếu PT ax 2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 thì PT có một nghiệm x 1 = 1, còn nghiệm kia là Cho PT: 3x 2 + 7x + 4 = 0 a, Chỉ rõ các hệ số a, b, c rồi tính a - b + c. b, Chứng tỏ x 1 = -1 là một nghiệm của phương trình. c, Tìm x 2 . ? 3 – SGK: Ta cã a = ; b = ; c = a - b + c = 3 7 4 3 - 7 + 4 = 0 Thay x 1 = -1 vµo VT cña PT ta cã: VT = 3.(-1) 2 + 7.(-1) + 4 = 0 = VP VËy x 1 = -1 lµ mét nghiÖm cña PT. Theo ®Þnh lý Vi-Ðt thì: 1 2 . c x x a = Mµ x 1 = -1 a, b, c, 3 4 a c x 2 − =−=⇒ a c x 2 = TIẾT 57: ĐẠI SỐ 9 Nếu x 1 , x 2 là hai nghiệm của PT ax 2 + bx + c = 0 (a ≠ 0) thì: 1. HỆ THỨC VI-ÉT: a b xx −=+ 21 a c xx = . 21 * Định lí VI-ÉT: *T.Quát 1: Nếu PT ax 2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 thì PT có một nghiệm x 1 = 1, còn nghiệm kia là a c x 2 = *T.Quát 2: Nếu PT ax 2 + bx + c = 0 (a ≠ 0) có: a - b + c = 0 thì PT có một nghiệm x 1 = -1, còn nghiệm kia là a c x 2 −= ? 4 – SGK: Tính nhẩm nghiệm của các phương trình: a) -5x 2 + 3x + 2 = 0 b) 2004x 2 + 2005x +1 = 0 Có a + b + c = -5 + 3 + 2 = 0 Vậy x 1 = 1; 5 2 − Có a - b + c = 2004 - 2005 + 1 = 0 Vậy x 1 = -1; 2004 1 − x 2 = x 2 = TIẾT 57: ĐẠI SỐ 9 Nếu x 1 , x 2 là hai nghiệm của PT ax 2 + bx + c = 0 (a ≠ 0) thì: 1. HỆ THỨC VI-ÉT: a b xx −=+ 21 a c xx = . 21 * Định lí VI-ÉT: *T.Quát 1: Nếu PT ax 2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 thì PT có một nghiệm x 1 = 1, còn nghiệm kia là a c x 2 = *T.Quát 2: Nếu PT ax 2 + bx + c = 0 (a ≠ 0) có: a - b + c = 0 thì PT có một nghiệm x 1 = -1, còn nghiệm kia là a c x 2 −= TIẾT 57: ĐẠI SỐ 9 Nếu x 1 , x 2 là hai nghiệm của PT ax 2 + bx + c = 0 (a ≠ 0) thì: 1. HỆ THỨC VI-ÉT: a b xx −=+ 21 a c xx = . 21 * Định lí VI-ÉT: *T.Quát 1: Nếu PT ax 2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 thì PT có một nghiệm x 1 = 1, còn nghiệm kia là a c x 2 = *T.Quát 2: Nếu PT ax 2 + bx + c = 0 (a ≠ 0) có: a - b + c = 0 thì PT có một nghiệm x 1 = -1, còn nghiệm kia là a c x 2 −= 2. Tìm hai số biết tổng và tích của chúng: Bài toán: Tìm hai số biết tổng của chúng bằng S và tích của chúng bằng P. Gọi số thứ nhất là x thì số thứ hai là (S - x). Tích hai số bằng P nên: x(S – x) = P x 2 – Sx + P = 0 (1) Nếu = S 2 – 4P ≥ 0 thì PT (1) có nghiệm. Các nghiệm này chính là các số cần tìm. [...]...I S 9 TIT 57: 1 H THC VI-ẫT: * nh lớ VI-ẫT: Nu x1, x2 l hai nghim ca PT ax2 + bx + c = 0 (a 0) thỡ: b + x2 = x1 c a x1.x2 = a *T.Quỏt 1: Nu PT ax2 + bx + c = 0 (a 0) cú: a + b + c = 0 thỡ PT c cú mt nghim x1... Vớ d 1: Tỡm hai s bit tng ca chỳng bng 27, tớch ca chỳng bng 180 Gii: Hai s cn tỡm l nghim ca phng trỡnh x2 27x + 180 = 0 = (-27)2 - 4.1.180 = 9 x1 = 15 ; x2 = 12 Vy hai s cn tỡm l 15 v 12 I S 9 TIT 57: 1 H THC VI-ẫT: * nh lớ VI-ẫT: Nu x1, x2 l hai nghim ca PT ax2 + bx + c = 0 (a 0) thỡ: b + x2 = x1 c a x1.x2 = a *T.Quỏt 1: Nu PT ax2 + bx + c = 0 (a 0) cú: a + b + c = 0 thỡ PT c cú mt nghim x1... S2 4P 0 ? 5 SGK: Tỡm hai s bit tng ca chỳng bng 1, tớch ca chỳng bng 5 Hai s cn tỡm l nghim ca PT: x2 x + 5 = 0 = (-1)2 4.1.5 = - 19 < 0 Vy khụng cú hai s no cú tng bng 1, tớch bng 5 I S 9 TIT 57: 1 H THC VI-ẫT: * nh lớ VI-ẫT: Nu x1, x2 l hai nghim ca PT ax2 + bx + c = 0 (a 0) thỡ: b + x2 = x1 c a x1.x2 = a *T.Quỏt 1: Nu PT ax2 + bx + c = 0 (a 0) cú: a + b + c = 0 thỡ PT c cú mt nghim x1... Vi-ột v cỏch tỡm hai s bit tng v tớch ca chỳng - Nm vng cỏch nhm nghim trong cỏc trng hp c bit: a + b + c = 0 v a b + c = 0 - Bi tp v nh: 25, 26, 27, 28 trang 52; 53 SGK Cảmươnưcácưthầyưcôưđãưđếnưdự tiết họcư! Chúcưcácưemưtiếnưbộưhơnưtrongưhọcưtậpư! . +− = a c = a2 b ∆ +− Đáp án: TIẾT 57: ĐẠI SỐ 9 Nếu x 1 , x 2 là hai nghiệm của PT ax 2 + bx + c = 0 (a ≠ 0) thì: 1. HỆ THỨC VI-ÉT: a b xx −=+ 21 a c xx = . 21 * Định lí VI-ÉT: TIẾT 57: ĐẠI SỐ 9 Nếu. trÞ Kh«ng cã gi¸ trÞ TIẾT 57: : ĐẠI SỐ 9 Nếu x 1 , x 2 là hai nghiệm của PT ax 2 + bx + c = 0 (a ≠ 0) thì: 1. HỆ THỨC VI-ÉT: a b xx −=+ 21 a c xx = . 21 * Định lí VI-ÉT: *T.Quát 1: Nếu PT. = VP ; b = ; c = TIẾT 57: ĐẠI SỐ 9 Nếu x 1 , x 2 là hai nghiệm của PT ax 2 + bx + c = 0 (a ≠ 0) thì: 1. HỆ THỨC VI-ÉT: a b xx −=+ 21 a c xx = . 21 * Định lí VI-ÉT: *T.Quát 1: Nếu PT