1. Trang chủ
  2. » Giáo án - Bài giảng

TOAN 9-Dai so

39 387 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 39
Dung lượng 711 KB

Nội dung

ễN THI VO LP 10 I-Các kiến thức cơ bản cần nhớ 2 2 3 . . ( , 0) ( 0; 0) 1 . 0; ( ) ; ( ) A B A B A B A A A B B B A B A B A A B B B A A A A A A = = > = = = = A xxác định khi A 0 -Điều kiện phân thức xác định là mẫu khác 0 - Khử mẫu của biểu thức lấy căn và trục căn thức ở mẫu - Cỏc hằng đẳng thức đáng nhớ II-Một số chú ý khi giải toán về biểu thức 1) Tìm ĐKXĐ chú ý : Trong căn 0 ,Mẫu 0 , biểu thức chia 0 2)Rút gọn biểu thức -Đối với các biểu thức chỉ là một căn thức th ờng tìm cách đa thừa số ra ngoài dấu căn .Cụ thể là : + Số thì phân tích thành tích các số chính ph ơng +Phần biến thì phân tích thành tích của các luỹ thừa với số mũ chẵn -Nếu biểu thức chỉ chứa phép cộng và trừ các căn thức ta tìm cách biến đổi về các căn đồng dạng - Nếu biểu thức là tổng , hiệu các phân thức mà mẫu chứa căn thì ta nên trục căn thức ở mẫu trớc,có thể không phải quy đồng mẫu nữa. -Nếu biểu thức chứa các phân thức ch a rút gọn thì ta nên rút gọn phân thức tr ớc -Nếu biểu thức có mẫu đối nhau ta nên đổi dấu tr ớc khi -Ngoài ra cần thực hiện đúng thứ tự các phép tính ,chú ý dùng ngoặc ,dấu - , cách viết căn Chú ý : Một số bài toán nh : Chứng minh đẳng thức , chứng minh biểu thức không phụ thuộc vào biến cũng quy về Rút gọn biểu thức 3) Tính giá trị của biểu thức 1 C h ỉ c ó s ự n ỗ l ự c c ủ a c h í n h b ạ n m ớ i đ e m l ạ i t h à n h c ô n g ễN THI VO LP 10 -Cần rút gọn biểu thức trớc.Nếu biểu thức có chứa dấu giá trị tuyệt đối thì nên thay giá trị của biến vào rồi mới rút gọn tiếp -Nếu giá trị của biến còn phức tạp thì nghĩ đến việc rút gọn tr ớc khi thay vào tính 4) Tìm biến để biểu thức thoả mãn 1 điều kiện nào đó -Cần rút gọn biểu thức trớc -Sau khi tìm đợc giá trị của biến phải đối chiếu với ĐKXĐ III-Các dạng bài tập Dạn g 1: Bài tập rút gọn biểu thức ch ứa căn đơn giản 1) 2 2 2 2 149 76 457 384 2) 34 1 23 1 12 1 + + + + + 3) 1 33 1 48 2 75 5 1 2 3 11 + 4) 0a Với + a49a16a9 5) a a b ab b b a + + 6) 9 4 5 9 80 + 7) 243754832 + 8) 246223 + 9) 222.222.84 ++++ 8 2 2 2 3 2 2 10) 3 2 2 1 2 + + + 11) 6 11 6 11 + Dạn g 2 : Bài tập rút gọn biểu thức h ữu tỉ 1. 2 2 2x 2x x A x 3x x 4x 3 x 1 = + + + 2. 2 x 2 4x B x 2 x 2 4 x = + + 3. 2 1 x 1 2x x(1 x) C 3 x 3 x 9 x + = + 4. 2 2 2 5 4 3x D 3 2x 6x x 9 = + 5. 2 2 2 3x 2 6 3x 2 E x 2x 1 x 1 x 2x 1 + = + + + 6. 2 3 5 10 15 K x 1 x (x 1) x 1 = + + + Dạn g 3: Bài tập tổng hợp Bài 1 Cho biểu thức A = 2 1 1 1 1 x x x x x x x + + + ữ ữ + + : 2 1x a. Tìm điều kiện xác định. b. Chứng minh A = 1 2 ++ xx c. Tính giá trị của A tại x = 8 - 28 d. Tìm max A. 2 ễN THI VO LP 10 Bài2 Cho biểu thức P = n4 4n4 2n 1n 2n 3n + + + ( với n 0 ; n 4 ) a. Rút gọn P b. Tính giá trị của P với n = 9 Bài3 Cho biểu thức M = 2 ( ) 4a b ab a b b a a b ab + + ( a , b > 0) a. Rút gọn biểu thức M. b. Tìm a , b để M = 2 2006 Bài 4: Cho biểu thức : M = + + xx x xx x x x x 2 1 11 : 1 a) Rút gọn M. b) Tính giá trị của M khi x = 7 + 4 3 c) Tìm x sao cho M =1/2 Bài 5: Cho biểu thức : P = + 2 2 : 2 3 2 4 x x x x xxx x a) Rút gọn P. b) Tính giá trị của P khi x = 53 8 + Bài 6 Cho biểu thức : B = ++ + + 1 2 1: 1 1 1 12 xx x xxx x a) Rút gọn B. b) Tìm x để : 2.B < 1 c) Với giá trị nào của x thì B. x = 4/5 Bài 7: Cho biểu thức : M = + + + 1 1 3 1 : 3 1 9 72 xxx x x xx a) Rút gọn M. b) Tìm các số nguyên của x để M là số nguyên. c) Tìm x sao cho : M > 1 Bài 8: Cho biểu thức : A = 1 : + + + + + 1 1 1 1 1 22 xxx x xx xx a) Rút gọn A. b) Tính giá trị của A nếu x = 7 - 4 3 c) Tìm giá trị nhỏ nhất của A . Bài 9: Cho biểu thức : P = + + + + 1 2 11 1 : 1 1 1 1 x x x xx x x x 3 ễN THI VO LP 10 a) Rút gọn P. b) Tính giá trị của P khi x = 2 347 c) Tìm x sao cho P = 1/2 Bài 10: Cho biểu thức : A = 3 2 1 1 . 1 1 1 x x x x x x x x x + + ữ ữ ữ ữ + + + a) Rút gọn A. b) Tính giá trị của A nếu x = 2 32 Bài 11: Cho biểu thức : A = + + + 1 1: 1 1 1 2 x x xxxxx x a) Rút gọn A. b) Tìm x để A < 0 Bài 12: Cho biểu thức : B = + +++ + 1 2 2: 1 2 1 1 x xx xxxxx a) Rút gọn B. b) Tính giá trị của B khi x = 6 + 2 5 c) Tìm x nguyên để B nguyên. Bài 13: Cho biểu thức : A = + + + + xxxx x 2 1 6 5 3 2 a) Rút gọn A. b) Tính giá trị của A nếu x = 32 2 + c) Tìm x nguyên để A nguyên Bài 14: Cho biểu thức : M = + + + x x x x xx x 3 12 2 3 65 92 a) Rút gọn M. b) Tìm x để M < 1 c) Tìm các số tự nhiên x để M nguyên. Bài 15: Cho biểu thức : A = + + 2 3 1: 3 1 32 4 x x x x xx xx a) Rút gọn A. b) Tìm x để A > 1 Bài 16: Cho biểu thức : P = 3 2 3 : 2 2 4 4 2 2 xx xx x x x x x x + + a) Rút gọn P. 4 ễN THI VO LP 10 b) Tìm các số nguyên của x để P chia hết cho 4. Bài 17: Cho biểu thức : M = + + + + xx x x x x x x x 141 : 1 13 1 a) Rút gọn M. b) Tìm các số tự nhiên x để M là số nguyên c) Tìm x thoả mãn M < 0 Bài 18: Cho biểu thức : P = + + ++ + x x xxx x x x 1 52 1 3 : 1 1 12 3 a) Rút gọn P. b) Tính giá trị của P khi x = 53 8 c) Tìm x nguyên để P là số tự nhiên d) Tìm x để P < -1 Bài 19: Cho biểu thức : B = + + + + xx x x x x x xx x 2 2 2 3 : 4 23 2 3 2 a) Rút gọn B. b) Tính giá trị của B khi x = 9 - 4 5 c) Tìm x sao cho B.( x 1 ) = 3 x Bài 20: Cho biểu thức : M = + + + + + + + + 1 11 1 :1 11 1 xy xxy xy x xy xxy xy x a) Rút gọn M b) Tính giá trị của M khi x = 2 - 3 và y = 31 13 + Bài 21: Cho biểu thức : B = +++ + + 632 6 632 32 yxxy xy yxxy yx a) Rút gọn B. b) Cho B= ).10( 10 10 + y y y Chứng minh : 10 9 = y x Bi 22 : Cho biu thc : + + + + + + = 1 2: 3 2 2 3 65 2 x x x x x x xx x P a) Rút gọn P. b) Tìm x để 2 51 P 5 ễN THI VO LP 10 B i 23 : Cho biểu thức : ( ) 1 122 1 2 + + ++ = x x x xx xx xx P a) Rút gọn P. b) Tìm giá trị nhỏ nhất của P. c) Tìm x để biểu thức P x Q 2 = nhận giá trị là số nguyên Bi 24: Cho biu thc : 2 2 2 1 1 1 1 1 + + = x xx x x x P a) Rút gọn P b) Tìm x để 2> x P Bi 25: Cho biu thc : + + = 2 2 : 2 45 2 1 x x x x xx x x P a) Rút gọn P b)*Tìm m để có x thoả mãn : 12 += mxxmxP Bài26: Cho biểu thức A = 2 2 2 x1 2 1x x1 1 x1 1 + + 1. Tìm điều kiện của x để biểu thức A có nghĩa. 2. Rút gọn biểu thức A. 3. Giải phơng trình theo x khi A = - 2. Phần thứhai A>kiếnthức cần nhớ - Hàm số bậc nhất : y = ax + b đồng biến khi a > 0 . Khi đó Đths tạo với rrục hoành ox một góc nhọn .Nghịch biến thì ngợc lại. -ĐK hai đờng thẳng song song là : ' ' a a b b = -ĐK hai đờng thẳng cắt nhau là : a a -ĐK hai đờng thẳng vuông góc là tích a.a = -1 -Đt hs y=ax( a 0) đi qua gốc toạ độ 6 K h á t v ọ n g v ơ n l ê n p h í a t r ớ c l à m ụ c đ í c h c ủ a c u ộ c s ố n g ễN THI VO LP 10 -Đths y=ax+b (a 0,b 0)không đi qua gốc toạ độ.Nó tạo với ox,oy 1 tam giác B> Bài tập Bài 1 : Cho hàm số y = (m + 5)x+ 2m 10 a) Với giá trị nào của m thì y là hàm số bậc nhất b) Với giá trị nào của m thì hàm số đồng biến. c) Tìm m để đồ thị hàm số điqua điểm A(2; 3) d) Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9. e) Tìm m để đồ thị đi qua điểm 10 trên trục hoành . f) Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1 g) Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m. h) Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất Bài 2 : Cho đờng thẳng y=2mx +3-m-x (d) . Xác định m để: a) Đờng thẳng d qua gốc toạ độ b) Đờng thẳng d song song với đ ờng thẳng 2y- x =5 c) Đờng thẳng d tạo với Ox một góc nhọn d) Đờng thẳng d tạo với Ox một góc tù e) Đờng thẳng d cắt Ox tại điểm có hoành độ 2 f) Đờng thẳng d cắt đồ thị Hs y= 2x 3 tại một điểm có hoành độ là 2 g) Đờng thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4 h) Đờng thẳng d đi qua giao điểm của hai đờng thảng 2x -3y=-8 và y= -x+1 Bài 3 : Cho hàm số y=( 2m-3).x+m-5 a ) Vẽ đồ thị với m=6 b) Chứng minh họ đờng thẳng luôn đi qua điểm cố định khi m thay đổi c) Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân d) Tìm m để đồ thị hàm số tạo với trục hoành một góc 45 o e ) Tìm m để đồ thị hàm số tạo với trục hoành một góc 135 o f) Tìm m để đồ thị hàm số tạo với trục hoành một góc 30 o , 60 o g) Tìm m để đồ thị hàm số cắt đờng thẳng y = 3x-4 tại một điểm trên 0y h ) Tìm m để đồ thị hàm số cắt đờng thẳng y = -x-3 tại một điểm trên 0x Bài4 (Đề thi vào lớp 10 tỉnh Hải D ơng năm 2000,2001) Cho hàm số y = (m -2)x + m + 3 a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến . b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3. c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x 1 và y = (m - 2)x + m + 3 đồng quy. d)Tìm m để đồ thị hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 2 Bài 5 (Đề thi vào lớp 10 tỉnh Hải Dơng năm 2004) Trong hệ trục toạ độ Oxy, cho hàm số y = 2x + m (*) 7 ễN THI VO LP 10 1)Tìm m để đồ thị hàm số (*) đi qua điểm a)A(-1 ; 3) ; b) B( 2 ; -5 2 ) ; c) C(2 ; -1) 2) Xác định m để đồ thị hàm số (*) cắt đồ thị hàm số y = 3x 2 trong góc phần t thứ IV Bài 6 :Cho (d 1 ) y=4mx- ( m+5) ; (d 2 ) y=( 3m 2 +1).x + m 2 -4 a) Tìm m để đồ thị (d 1 )đi qua M(2;3) b) Cmkhi m thay đổi thì (d 1 )luôn đi qua một điểm A cố định, (d 2 ) đi qua B cố định. c) Tính khoảng cách AB d)Tìm m để d 1 song song với d 2 e)Tìm m để d 1 cắt d 2 . Tìm giao điểm khi m=2 Bài 7 Cho hàm số y =f(x) =3x 4 a)Tìm toạ độ giao điểm của đths với hai trục toạ độ b) Tính f(2) ; f(-1/2); f( 7 24 ) c) Các điểm sau có thuộc đths không? A(1;-1) ;B(-1;1) ;C(2;10) ;D(-2;-10) d)Tìm m để đths đi qua điểm E(m;m 2 -4) e)Tìm x để hàm số nhận các giá trị : 5 ; -3 g)Tính diện tích , chu vi tam giác mà đths tạo với hai trục toạ độ. h)Tìm điểm thuộc đths có hoành độ là 7 k) Tìm điểm thuộc đths có tung độ là -4 l) Tìm điểm thuộc đths có hoành độ và tung độ bằng nhau Phần thứ ba A>kiếnthức cần nhớ 1)Các phơng pháp giải HPT a) Phơng pháp thế : Thờng dùng giải HPT đã có 1 phơng trình 1 ẩn , có hệ số của ẩn bằng 1 và hệ chứa tham số b) Phơng pháp cộng : Phải biến đổi tơng đơng HPT về đúng dạng sau đó xét hệ số của cùng 1 ẩn trong 2 phơng trình :- Nếu đối nhau thì cộng .Nếu bằng nhau thì trừ .Nếu khác thì nhân . Nếu kết quả phức tạp thì đi vòng. c) Phơng pháp đặt ẩn phụ : Dùng để đa HPT phức tạp về HPT bậc nhất hai ẩn 2)Một số dạng toán quy về giải HPT: - Viết phơng trình đờng thẳng ( Xác định hàm số bậc nhất) - Ba điểm thẳng hàng - Giao điểm của hai đờng thẳng(Toạ độ giao điểm của hai đờng thẳng là nghiệm của HPT) - Ba đờng thẳng đồng quy - Xác định hệ số của đa thức , phơng trình 3)Giải phơng trình bậc nhất 1 ẩn B> Các dạng bài tập 8 Ước mơ chính là bánh lái của con tầu, để ớc mơ thành công bạn cần có nghị lực ễN THI VO LP 10 I-Dạng 1: Giải HPT không chứa tham số ( Chủ yếu là dùng phơng pháp cộng và đặt ẩn phụ ) Bài tập rất nhiều trong SGK,SBT hoặc có thể tự ra II-Dạng 2 : Hệ phơng trình chứa tham số 1)Cho HPT : 9 3 x my o mx y m = = a) Giải HPT với m = -2 b) Giải và biện luận HPT theo tham số m c) Tìm m để HPT có nghiệm duy nhất (x ; y) thảo mãn 4x 5y = 7 d) Tìm m để HPT có 1 nghiệm âm e) Tìm m để HPT có 1 nghiệm nguyên f) Tìm 1 đẳng thức liên hệ giữa x,y độc lập với m Chú ý : Việc giải và biện luận HPT theo tham số là quan trọng .Nó giúp ta tìm đợc điều kiện của tham số đề HPt có 1 nghiệm ,VN,VSN . 2) Cho hệ phơng trình: mx + y = 3 9x + my = 2m + 3 a. Giải phơng trình với m = 2, m = -1, m = 5 b. Tìm m để phơng trình có 1 nghiệm, vô nghiệm, vô số nghiệm. c. Tìm m để 3x + 2y = 9 , 2x + y > 2 d. Tìm m để phơng trình có nghiệm dơng. e. Tìm m để phơng trình có nghiệm nguyên âm. 3)Cho hệ phơng trình =+ =+ 2y)1m(x myx)1m( ; có nghiệm duy nhất (x ; y) a) Tìm đẳng thức liên hệ giữa x và y không phụ thuộc vào m; b) Tìm giá trị của m thoả mãn 2x 2 - 7y = 1 c) Tìm các giá trị của m để biểu thức A = yx y3x2 + nhận giá trị nguyên. 4)Cho hệ phơng trình =+ = 2myx 1ymx a.Giải hệ phơng trình theo tham số m. b.Gọi nghiệm của hệ phơng trình là (x,y). Tìm các giá trị của m để x +y = 1 c.Tìm đẳng thức liên hệ giữa x và y không phụ thuộc vào m. 5)Cho hệ phơng trình : ( 1) 3 . a x y a x y a + = + = a) Giải hệ với 2a = b) Xác định giá trị của a để hệ có nghiệm duy nhất thoả mãn x + y > 0 6)Cho hệ phơng trình 9 ễN THI VO LP 10 2 3 5 mx y x my = + = a) Tìm giá trị của m để hệ có nghiệm x = 1, y = 3 1 b) Chứng minh hệ luôn có nghiệm duy nhất với mọi m 7)Cho hệ phơng trình : =+ +=+ ayx ayx 2 332 a)Tìm a biết y=1 b)Tìm a để : x 2 +y 2 =17 8)Cho hệ phơng trình ( 1) 3 1 2 5 m x my m x y m = = + a) Giải hệ phơng trình với m = 2 b) Tìm m để hệ có nghiệm duy nhất (x;y) mà S = x 2 +y 2 đạt giá trị nhỏ nhất Dạng 3 .Một số bài toán quy về HPT 1) Viết phơng trình đờng thẳng đi qua 2 điểm A(2;5) và B(-5;7) 2) Cho hàm số y = (3m-1)x + 4n -2 Tìm m,n biết đồ thị hàm số đi qua điểm (5 ;-3) và cắt trục hoành tại 1 điểm có hoàng độ là -2 3)Tìm giao điểm của hai đờng thẳng 4x-7y=19 và 6x + 5y = 7 4) Cho 2 đờng thẳng: d 1 : y = mx + n d 2 : (m - 1)x + 2ny = 5 a. Xác định m,n biết d 1 cắt d 2 tại điểm (2;- 4) b. Xác định phơng trình đờng thẳng d 1 biết d 1 đi qua điểm (-1; 3) và cắt ox tại một điểm có hoành độ là - 4. c. Xác định phơng trình đờng thẳng d 2 biết d 2 đi qua điểm 7 trên oy và song song với đờng thẳng y - 3x = 1 5) Giả sử đờng thẳng (d) có phơng trình y = ax+ b. Xác định a, b để (d) đi qua hai điểm A (1;3) và B (-3; 1) 6) Tìm giá trị của m để các đờng thẳng sau cắt nhau tại một điểm: y = 6 - 4x ; y = 4 53 +x ; và y = (m 1)x + 2m. 7)Trong hệ trục toạ độ Oxy, cho hàm số y = 2x + m (*) a)Tìm m để đồ thị hàm số (*) đi qua điểm A(-1 ; 3) ; B( 2 ; -5 2 ) ; C(2 ; -1) b) Xác định m để đồ thị hàm số (*) cắt đồ thị hàm số y = 3x 2 trong góc phần t thứ IV 8)Cho hàm số: y = (2m-3)x +n-4 (d) ( 3 2 m ) 1. Tìm các giá trị của m và n để đờng thẳng (d) : a) Đi qua A(1;2) ; B(3;4) b) Cắt oytại điểm có tung độ 3 2 1y = và cắt ox tại điểm có hoành độ 1 2x = + 2. Cho n = 0, tìm m để đờng thẳng (d ) cắt đờng thẳng (d / ) có phơng trình x-y+2 = 0 10 [...]... Biến đổi đại số trên đoạn thẳng bằng nhau + Chứng minh hai đoạn thẳng có cùng số đo + Sử dụng tính chất bắc cầu hay CM phản chứng II-Chứng minh hai đờng thẳng song song hai đờng thẳng vuông góc 1 Chứng minh hai đờng thẳng song song C1/CM cùng song song hoặc cùng vuông góc với đờng thẳng thứ ba C2/ CM 1 cặp góc SLT hoặc đ v bằng nhau , hoặc 1 cặp TCP bù nhau C3/ Nếu là 2 cạnh trong 1 tứ giác th ờng CM... vuông góc với đờng thẳng song song với đờng kia hoặc song song với đờng thẳng vuông góc với đờng kia III - chứng minh ba điểm thẳng hàng, ba đ ờng thẳng đồng qui 1 Chứng minh ba điểm thẳng hàng: ( Cùng thu ộ c mộ t đ ờn g thẳn g ) Cần chứng minh ba điểm: A, B, C thẳng hàng : C1/ AB + BC = AC (hoặc AC + CB = AB, BA + AC = BC) C2/ Chứng minh góc ABC = 180 0 C3/ CM: AB, AC cùng song song với một đờng thẳng... tứ giác là hình thang cân C6/ Nếu là hai góc So le trong hoặc đồng vị thờng chứng minh hai đờng thẳng song song C7/ Nếu là hai góc trong đờng tròn ta thờng chuyển về chứng minh cung , dây tơng ứng bn C8/ Ngoài ra ta có thể sử dụng : hai góc có cùng số đo (tính cụ thể), tính chất tia phân giác , hai góc đối đỉnh, cặp góc có cạnh tơng ứng vuông góc hay song song, *Chú ý: Nếu không chứng minh đ ợc trực... t h ì nghĩ tới Tính chất của các hình ấy VI.Nếu có góc vuông , tam giác vuông thì nghĩ tới định lý Pi ta go và các hệ thức l ợng trong tam giác vuông VII.Nếu có 2 đ ờng thẳng song song thì nghĩ tới Định lý Ta Lét và các cặp góc So le trong , Đồng vị VIII.Nếu có đ ờng phân giác , đ ờng trung tuyến , đ ờng cao , trung trực của tam giác thì nghĩ tới tính chất của chúng B.phân tích đi lên từ kết luận( Dựa... ngời đó đã làm tăng mỗi giờ 3 sản phẩm song vẫn hoàn thành chậm hơn dự kiến 1 giờ 30 phút Tính năng suất dự kiến Bài 18: Một máy bơm muốn bơm đầy nớc vào một bể chứa trong thời gian đã định thì mỗi giờ phải bơm đợc 10 m3 Sau khi bơm đợc 1/3 thể tích bể chứa , ngời công nhân vận hành cho máy hoạt động với công suất lớn hơn 5m3 mỗi giờ so với ban đầu Do vậy , so với qui định bể chứa đợc bơm đầy trớc... thng a i qua S ct ng trũn (O) ti hai im M, N vi M nm gia hai im S v N (ng thng a khụng i qua tõm O) a) Chng minh SO vuụng gúc vi AB b) Gi H l giao im ca SO v AB, gi I l trung im ca MN Hai ng thng OI v AB ct nhau ti im E Chng minh IHSE l mt t giỏc ni tip c) Chng minh OI.OE = R 2 d) Cho bit SO = 2R v MN = Tớnh din tớch tam giỏc ESM theo R 27 ễN THI VO LP 10 Dang2 : Đa giác nội tiếp đ ờng tròn Bài 9: (đề... 2 a) Vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ Oxy b) Tìm tọa độ giao điểm của hai đồ thị Bài 12** : Tam giác đều AOB nội tiếp trong một parabol y = ax 2 đỉnh O là gốc tọa độ và đáy AB song song với trục Ox, A và B nằm trên parabol Hãy tính tung độ của điểm B Bài 13 : Cho đờng thẳng (d): y = k(x - 1) và parabol (P): y = 1 x 2 Với giá trị nào của k thì (d): 2 a) Tiếp xúc với (P) b) Cắt... rồi chon điểm thứ 4, sau đó CM 4 điểm này cùng thuộc một đ ờng tròn Sau đó CM t ơng tự với các điểm còn lại VI-chứng minh hệ thức , tỉ lệ thức C1/ Gắn vào 2 tam giác đồng dạng C2/ Nếu có đờng thẳng song song thờng dùng định lý Ta Lét C3/Nếu có góc vuông thờng dùng hệ thức l ợng trong tam giác vuông C4/ Nếu có phân giác th ờng dùng tính chất đờng phân giác Chú ý: Nếu không chứng minh đ ợc trực tiếp... THI VO LP 10 2 Cách một điểm cố định một khoảng không đổi là đ ờng tròn tâm 3 Nhìn đoạn thẳng cố định một góc không đổi là cung chứa góc 4 Cách đờng thẳng cố định một khoảng không đổi là đ ờng thẳng song song ( hoặc vuông góc) 5 Cách đều 2 điểm cố định là đ ờng trung trực của đoạn thẳng 6 Cách đều 2 cạnh một góc cố định là tia phận giác cuả góc Chú ý : Quỹ tích ( còn gọi là tập hợp) phải gắn với yếu... tiếp điểm) và một cát tuyến cắt đ ờng tròn tại A và B a Gọi I là trung điểm AB Chứng minh 4 điểm P, Q, O, I nằm trên một đ ờng tròn b PQ cắt AB tại E Chứng minh MP 2 = ME MI c Qua A kẻ một đ ờng thẳng song song với MP cắt PQ, PB lần l ợt tại H,K.Chứng minh Tứ giác AHIQ nội tiếp và KB = 2 HI Bài 3 ( Đề năm 06-07)Cho điểm A ở bên ngoài đ ờng tròn tâm O Kẻ hai tiếp tuyến AB, AC với đờng tròn (B, C là tiếp . Khi đó Đths tạo với rrục hoành ox một góc nhọn .Nghịch biến thì ngợc lại. -ĐK hai đờng thẳng song song là : ' ' a a b b = -ĐK hai đờng thẳng cắt nhau là : a a -ĐK hai đờng thẳng. tung độ bằng 9. e) Tìm m để đồ thị đi qua điểm 10 trên trục hoành . f) Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1 g) Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi. đờng thẳng y=2mx +3-m-x (d) . Xác định m để: a) Đờng thẳng d qua gốc toạ độ b) Đờng thẳng d song song với đ ờng thẳng 2y- x =5 c) Đờng thẳng d tạo với Ox một góc nhọn d) Đờng thẳng d tạo với

Ngày đăng: 12/07/2014, 17:00

Xem thêm

TỪ KHÓA LIÊN QUAN

w