1. Trang chủ
  2. » Giáo án - Bài giảng

Đề 2, mt, đa, tl 100 ok

4 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 145,5 KB

Nội dung

MA TRẬN ĐỀ KIỂM TRA GIỮA HỌC KÌ II – Năm học: …… MƠN TỐN Vận dụng Cấp độ Nhận biết Chủ đề Phương trình bậc ẩn Hệ phương trình bậc ẩn Số câu Số điểm Giải toán cách lập phương trình Số câu Số điểm Thơng hiểu Cấp độ thấp Giải hệ phương trình bậc ẩn Cấp độ cao Biết tìm điều kiện hệ số để hệ phương trình có nghiệm, vơ nghiệm 1,0 3,0 Vận dụng bước giải xác 2,0 Xác định hệ số a,b,c giải phương trình bậc hai Số câu Số điểm 1,0 Các góc với Vẽ hình theo yêu Chứng minh đường trịn cầu tứ giác nội tiếp Góc có đỉnh nằm bên đường trịn Góc nội tiếp Tia phân giác góc Tứ giác nội tiếp Số câu 1 Cộng 4,0 2,0 Phương trình bậc hai ẩn Số điểm Tổng số câu Tổng số điểm Tỉ lệ 0,5 1,5 15% 1,0 4,0 40% 1,0 Chứng minh hai góc Chứng minh tia phân giác góc 1,5 3,5 35% 3,0 10 10 100% 1,0 10% PHÒNG GD&ĐT HUYỆN … TRƯỜNG THCS…… ĐỀ KIỂM TRA GIỮA HỌC KÌ II NĂM HỌC: 2021 – 2022 Mơn: Tốn Thời gian: 90 phút (Không kể thời gian giao đề) ĐỀ CHÍNH THỨC Họ tên: Lớp: Điểm Lời phê giáo viên! ĐỀ BÀI: Câu 1: (1,0 điểm) Xác định hệ số a, b, c giải phương trình bậc hai sau: x2 – 5x + = Câu 2: (3,0 điểm) Giải hệ phương trình sau:  x  2y 5 3x  4y 5 a  b 3x  2 x   y y 3 7 Câu 3: (2,0 điểm) Giải toán cách lập hệ phương trình: Tìm hai số biết bốn lần số thứ hai cộng với năm lần số thứ 18040 ba lần số thứ hai lần số thứ hai 2002 Câu 4: (3,0 điểm) Cho tam giác ABC vuông A Trên AC lấy điểm M vẽ đường tròn đường kính MC Kẻ BM cắt đường trịn D Đường thẳng DA cắt đường tròn S Chứng minh rằng: a ABCD tứ giác nội tiếp;   b ABD = ACD c CA tia phân giác góc SCB Câu 5: (1,0 điểm) Chứng minh rằng: Phương trình x2 + 2mx – 2m – = ln có hai nghiệm phân biệt với m -Hết - PHÒNG GD&ĐT HUYỆN … TRƯỜNG THCS……… ĐỀ CHÍNH THỨC ĐÁP ÁN ĐỀ KIỂM TRA GIỮA HỌC KÌ II NĂM HỌC: 2021– 2022 Mơn: Tốn Thời gian: 90 phút (Không kể thời gian giao đề) Bài Thang điểm Nội dung – Đáp án x2 – 5x + = (a = 1; b = -5; c = 6)  b  4ac   5  4.1.6 25  24 1  Câu Suy phương trình có hai nghiệm phân biệt: (1,0 điểm) x2  0,5 điểm x1   b   1  3 ; 2a 2.1 0,5 điểm  b  5  2 2a 2.1  x  2y 5 2x  4y 10   a  3x  4y 5 3x  4y 5 Câu 3x  y 3 5 x 10  x 2  x 2 (2,0 điểm) b 2x  y 7 3x  y 3 3.2  y 3 y  x     x  2y 5 x    y 5 Gọi số thứ x, số thứ hai y Đk: < x, y < 18040 Do bốn lần số thứ hai cộng với năm lần số thứ 18040 Nên ta có phương trình 5x + 4y = 18040 (1) Do ba lần số thứ hai lần số thứ hai 2002 Nên ta có phương trình: 3x - 2y = 2002 (2) Câu Từ (1) (2) ta có hệ phương trình: (2,0 điểm) 5 x  y 18040 5 x  y 18040 11x 22044  x 2004  tm      3 x  y 2002 6 x  y 4004 3 x  y 2002  y 2005  tm  Vậy hai số cần tìm là: 2004; 2005 1,0 điểm 1,0 điểm 0,25 điểm 0,5 điểm 0,5 điểm 0,5 điểm 0,25 điểm Câu (3,0 điểm) 0,5 điểm  a Ta có góc MDC góc nội tiếp chắn nửa đường tròn (O) o  nên MDC 90 ⇒ ΔCDB tam giác vng nên nội tiếp đường trịn đường kính BC Ta có ΔABC vng A ⇒ ΔABC nội tiếp đường trịn tâm I đường kính BC Ta có A D hai đỉnh kề nhìn BC góc 90o khơng đổi => Tứ giác ABCD nội tiếp đường trịn đường kính BC 1,0 điểm b Ta có ABD góc nội tiếp đường tròn (I) chắn cung AD Tương tự góc ADC góc nội tiếp đường trịn (I) chắn cung AD 0,5 điểm Vậy ABD = ADC c Trong đường trịn đường kính MC:   SDM góc nội tiếp chắn cung SM SCM 1,0 điểm    => SCM = SDM hay SCM = ADB (1) + Trong đường tròn đường kính BC: ADB ACB góc nội tiếp chắn cung AB => ADB = ACB (2)  Từ (1) (2) suy ra: SCM = ACB  => CA tia phân giác SCB ' b'  ac m  ( 2m  3) Câu (1,0 điểm) m  2m  (m  2m  1)  2  m  1    m 1,0 điểm

Ngày đăng: 26/10/2023, 09:42

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w