1. Trang chủ
  2. » Luận Văn - Báo Cáo

Bài giảng Toán kinh tế 1: Chương 3 - ThS. Nguyễn Ngọc Lam

32 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 32
Dung lượng 1,72 MB

Nội dung

PHẦN II ĐẠO HÀM, VI PHÂN Chương HÀM SỐ - GIỚI HẠN HÀM SỐ Chương ĐẠO HÀM VÀ VI PHÂN chương HÀM NHIỀU BIẾN chương TÍCH PHÂN chương PHƯƠNG TRÌNH VI PHÂN 55 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ 1 MỘT SỐ KHÁI NIỆM VỀ HÀM SỐ MỘT BIẾN Định nghĩa ánh xạ: Cho X, Y hai tập Nếu x  X, cho tương ứng y = f(x)  Y theo qui tắc f, f gọi ánh xạ từ X vào Y Ký hiệu: f : X  Y x  f (x ) x  y  f ( x) • Đơn ánh: x1, x2  X, x1 ≠ x2 => f(x1) ≠ f(x2) • Tồn ánh: Với y  Y, x  X: y = f(x) • Song ánh: Nếu f vừa đơn ánh tồn ánh • Nếu f: XY song ánh f-1: YX ánh xạ ngược f 56 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Định nghĩa hàm số: Với X,Y  R, ta gọi ánh xạ f:XY hàm số biến Ký hiệu y = f(x) x: biến độc lập y: biến phụ thuộc Tập X: miền xác định Tập f(X) = {f(x): x  X}: miền giá trị f 57 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Định nghĩa phép toán: Cho f, g mxđ X: • f = g: f(x) = g(x),  x  X • f  g = f(x)  g(x), xX • fg = f(x)g(x), xX • af = af(x), xX • f/g = f(x)/g(x), xX, g(x)0 58 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Hàm số hợp: Giả sử y = f(u) đồng thời u = g(x) Khi f = f[g(x)] hàm số hợp biến độc lập x thông qua biến trung gian u Ký hiệu fog Ví dụ: Tìm gof, goh, fog, hog với g = lg2x, f = sinx, h=ex Hàm số ngược: Cho hàm số f có miền xác định X Nếu f: XY song ánh f-1: YX gọi hàm số ngược f • Đồ thị f, f-1 đối xứng qua đường y = x 59 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Hàm số đơn điệu: • f gọi tăng (giảm) (a,b) nếu: x1,x2  (a,b): x1 < x2 => f(x1)  f(x2) (f(x1)  f(x2)) • f gọi tăng (giảm) nghiêm ngặt (a,b) nếu: x1,x2  (a,b): x1 < x2 => f(x1) < f(x2) (f(x1) > f(x2)) • Hàm số tăng giảm (a,b) gọi đơn điệu Hàm số bị chặn: • f gọi bị chặn M: |f(x)|  M, x • f gọi bị chặn M: f(x)  M, x • f gọi bị chặn m: f(x)  m, x 60 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Hàm số tuần hồn: Cho hàm số f có miền xác định X Hàm số gọi tuần hoàn nếu: T ≠ 0: f(x+T) = f(x),  x  X Số T0 > nhỏ (nếu có) T gọi chu kỳ sở hàm số f Ví dụ: • Hàm số y= sinx, y = cos(x) với chu kỳ sở T0 = 2 • Hàm số y = tg(x), y = cotgx với chu kỳ sở T0 =  61 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Hàm số chẵn, lẻ: f có miền xác định X, với x, -x  X • f gọi hàm số chẵn nếu: f(-x) = f(x),  x  X • f gọi hàm số lẻ nếu: f(-x) = -f(x),  x  X Ví dụ: f(x) = cosx + x- x2 g ( x )  log( x  x  1) Hàm số chẵn Hàm số lẻ Ghi chú: • Hàm số chẵn đối xứng qua Oy • Hàm số lẻ đối xứng qua gốc toạ độ 62 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ 2 PHÂN LOẠI HÀM SỐ Hàm số luỹ thừa: y = x , với   R •   N: mxđ R •  nguyên âm: mxđ x ≠ •  có dạng 1/p, p  Z: mxđ phụ thuộc vào p chẵn, lẻ •  số vô tỉ: qui ước xét y = x x  0,  > x >  < Đồ thị y = x qua điểm (1,1) qua góc toạ độ (0,0)  > 0, khơng qua góc toạ độ  < 63 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Hàm số mũ: y = ax (a > 0, a ≠ 1) • Hàm số mũ xác định với x • Hàm số mũ tăng a > • Hàm số mũ giảm a < • Điểm (0,1) nằm đồ thị hàm số mũ 64 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Định nghĩa giới hạn bên: • Bên phải:  > 0,  > 0: x0 < x < x0 +   f(x) – L <  lim f ( x )  L x  x0  • Bên trái:  > 0,  > 0: x0 -  < x < x0  f(x) – L <  lim f ( x)  L x x0  Định lý: lim f ( x )  L  lim x  x0 x  x0  Ví dụ, Tìm giới hạn f(x) x0 f ( x )  lim f ( x)  L x  x0   x x  f ( x)   1 - x x  72 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Định nghĩa giới hạn lân cận : lim f ( x )  L x    > 0, N > đủ lớn: x > N  f(x) - L <  lim f ( x )  L x    > 0, N < đủ nhỏ: x < N  f(x) - L <  Ví dụ, chứng minh lim 0 x   x 73 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Giới hạn vô hạn hàm số: lim f ( x )   x  x0 M > lớn tuỳ ý,  > 0: < x – x0 <   f(x) > M lim f ( x )   x  x0 N < nhỏ tuỳ ý,  > 0: < x – x0<   f(x) < N Ví dụ: chứng minh lim x a ( x  a )   74 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Các tính chất giới hạn hàm số: Định lý: lim f(x) = A lim g(x) = B • lim (f ± g) = A ± B • lim (fg) = AB • lim (f/g) = A/B (B ≠ 0) • lim fg = AB • lim C = C • lim [Cf(x)] = CA Ghi chú: Nếu gặp dạng vô định 0/0, /,  - , 0., 1, 0, 00 phải biến đổi để khử chúng 75 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Ví dụ: Tìm x3  a) lim x 2 x  b) lim x  3x  x  x2  c) lim ( x3  x  1) x 76 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Định lý: Giả sử g(x)  f(x)  h(x) x thuộc lân cận x0 Nếu lim g ( x )  lim h ( x )  L  x  x0 x  x0 lim f ( x )  L x  x0 Ví dụ: Tìm lim x sin (1 / x ) x Định lý: Trong trình, lim u(x) = L f hàm sơ cấp xác định lân cận L, limf(u) = f(L) = f(limu) Ví dụ: Tìm  x    lim sin   2x  x  x   77 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Một số giới hạn đặc biệt: x 1 sin x  lim 1    e lim 1 x x  x0 x 1/ x a x 1   lim  x e lim  ln a x0 x 0 x ln(1  x) lim 1 x x 0 • Hàm số lũy thừa:   : lim x  ; lim x  x    : lim x  x   x 0   0; lim x  x  0   78 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ • Hàm mũ: a 1 : lim a x   ; lim a x  x   x x   x  a  : lim a  0; lim a   x   • Hàm logarit: a 1 x   : lim loga x  ; lim loga x   x 0  x   a  1: lim loga x  ; lim loga x   x 0 x  • Hàm ngược lượng giác:   lim arctgx  ; lim arctgx   2 x   x   lim arccotgx  0; lim arccotgx   x   x   79 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Ví dụ: Chứng minh: tgx lim 1 x0 x Ví dụ: Tìm: arcsin x lim 1 x x0 3 x  lim   x   x  x arctgx lim 1 x 0 x x 3 x    lim   x   x   Vô bé vô lớn: Định nghĩa: Hàm số f(x) gọi vơ bé (vơ lớn) q trình limf(x) = (limf(x) = ) 80 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Định nghĩa: Cho f(x), g(x) hai VCB trình lim(f/g) = A, nếu: • A = 0: f VCB bậc cao g Ký hiệu: f(x) = 0g(x) • A = : f VCB bậc thấp g • A (hằng số  0, ): f, g hai VCB bậc • A = 1: f, g hai VCB tương đương Ký hiệu f(x)~g(x) • Nghịch đảo VCB (VCL) VCL (VCB) 81 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Định lý: Nếu f, g hai VCB, f~f1, g~g1 lim(f/g) = lim(f1/g1) Định lý (qui tắc ngắt bỏ VCB bậc cao): Nếu g VCB bậc cao f q trình f + g ~ f Ví dụ: Chứng minh sin x  arcsin x  arctg x lim  3x x sin x x~ x  x Khi x 0+ 82 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ 3 HÀM SỐ LIÊN TỤC Định nghĩa: Hàm số f gọi liên tục x0 nếu: lim f ( x )  f ( x0 ) Liên tục bên: • Liên tục phải: lim x  x0 x  x0  • Liên tục trái: lim x  x0  f ( x )  f ( x0 ) f ( x )  f ( x0 ) Định lý: f liên tục x0 f liên tục phải liên tục trái x0 83 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Định nghĩa: Hàm số f(x) gọi gián đoạn x0 khơng liên tục x0 Hàm số f(x) gián đoạn x0 trường hợp sau: - f không xác định x0 - f xác định x0 lim f(x) ≠ f(x0) x  x0 - không tồn lim f(x) x  x0 Ví dụ: Xác định tính liên tục x0 =  x  x  f ( x)    x  x  f ( x)  x 84 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Định nghĩa: f gọi liên tục khoảng mở (a,b) liên tục điểm thuộc khoảng Định nghĩa: f gọi liên tục khoảng đóng [a,b] liên tục điểm thuộc khoảng mở (a,b), liên tục bên phải a liên tục bên trái b 85 C3 HÀM SỐ - GIỚI HẠN HÀM SỐ Định lý: Nếu f, g hàm số liên tục x0 hàm số sau liên tục x0: kf (k số), f+g, fg, f/g (g(x0)≠0) Định lý: Trong trình limu(x) = u0 f liên tục u0 limf(u(x)) = f(lim u(x)) = f(u0) Định lý: Nếu f liên tục [a,b] f(a)f(b) < x0  (a,b): f(x0) = Định lý: Nếu f liên tục [a,b] f đạt giá trị lớn nhất, nhỏ [a,b] 86

Ngày đăng: 14/10/2023, 21:30