1. Trang chủ
  2. » Giáo án - Bài giảng

Chuyên đề 4 giải bài toán bằng cách lập pt

23 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 1,11 MB

Nội dung

CHUYÊN ĐỀ 3: GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH, LẬP HỆ PHƯƠNG TRÌNH Câu (Tuyển sinh tỉnh Bà Rịa - Vũng Tàu 2017-2018) Một xưởng mỹ nghệ dự định sản xuất thủ công lô hàng gồm 300 giỏ tre Trước tiến hành, xưởng bổ sung thêm công nhân nên số giỏ trẻ phải làm người giảm so với dự định Hỏi lúc dự định, xưởng có công nhân? Biết suất làm việc người Lời giải: Gọi x số công nhân ban đầu xưởng (điều kiện x  N * ) 300 Khi đó, theo dự định cơng nhân phải làm x giỏ 300 Sau xưởng bổ sung thêm cơng nhân số giỏ người phải làm x + 300 300 =  300(x + - x)= 3x(x +5) Theo đề ta có phương trình: x x +  x = 20  x(x +5)= 500  x +5x - 500 =    x = -25 Kiểm tra điều kiện ta chọn x = 20 Vậy lúc dự định xưởng có 20 cơng nhân Câu (Tuyển sinh tỉnh Thái Nguyên năm 2017-2018) Một tam giác vng có cạnh huyền 5cm diện tích cm Tính độ dài cạnh góc vng tam giác vng Lời giải 12 Gọi x (cm) độ dài cạnh góc vng ( x  ) Khi cạnh góc vng là: x ( cm )  12  x    52  x  25 x  144 0  x Theo đề ta có phương trình: 2 Đặt x t , t  , phương trình trở thành: t  25t  144 0 Giải phương trình bậc theo biến t ta được: t1 16 (thỏa điều kiện); t2 9 (thỏa điều kiện) Với t 16  x 4 (vì x  ) Với t 9  x 3 (vì x  ) Vậy hai cạnh góc vng cần tìm 3cm cm Cách 2: Gọi hai cạnh góc vng tam giác x (cm), y (cm) (ĐK: x , y  ) 2 Theo định lí Py-ta-go, ta có: x  y 25 xy 6  xy 12 Diện tích tam giác cm nên: 2 2 2   x  y   2xy 25   x  y  49  x  y 7 Ta có: x  y 25  x  y 7  x 3  x 4    xy 12  y 4  y 3 Do đó, ta có:  Vậy cạnh góc vng cần tìm là: 3cm cm Câu (Tuyển sinh tỉnh Bắc Ninh năm 2017-2018) Giải toán cách lập phương trình, hệ phương trình Một nhóm gồm 15 học sinh (cả nam nữ) tham gia buổi lao động trồng Các bạn nam trồng 30 cây, bạn nữ trồng 36 Mỗi bạn nam trồng số bạn nữ trồng số Tính số học sinh nam số học sinh nữ nhóm, biết bạn nam trồng nhiều bạn nữ cõy Li gii ( x ẻ Ơ ;0 < x < 15) , số HS nữ 15 - x Gọi số HS nam nhóm x Theo đề số bạn nam trồng 30 số bạn nữ trồng 36 nên 30 Mỗi HS nam trồng x cây, 36 Mỗi HS nữ trồng 15 - x Vì bạn nam trồng nhiều bạn nữ nên ta có 30 36 = Û 30( 15 - x) - 36x = x ( 15 - x) x 15 - x éx = 75( loai) & Û x - 81x + 450 = Û ê êx = (nhan) ê ë Vậy có HS nam 9HS nữ Câu (Tuyển sinh tỉnh Bắc Giang năm 2017-2018) Để chuẩn bị cho năm học mới, học sinh hai lớp 9A 9B ủng hộ thư viện 738 sách gồm hai loại sách giáo khoa sách tham khảo Trong học sinh lớp 9A ủng hộ sách giáo khoa sách tham khảo; học sinh lớp 9B ủng hộ sách giáo khoa sách tham khảo Biết số sách giáo khoa ủng hộ nhiều số sách tham khảo 166 Tính số học sinh lớp Lời giải * Gọi số học sinh hai lớp 9A 9B x y ( x, y   ) Số sách giáo khoa hai lớp ủng hộ x  y Số sách tham khảo hai lớp ủng hộ x  y Vì hai lớp ủng hộ số sách 738 nên ta có x  y  3x  y 738 số sách giáo khoa ủng hộ nhiều sách tham khảo 166 nên x  y  (3 x  y ) 166 9 x  y 738  x  y 82   3 x  y 166  x 42, y 40 ( Thỏa mãn) Do ta có hệ phương trình 3 x  y 166 Vậy lớp 9A có 42 học sinh, lớp 9B có 40 học sinh Câu (Tuyển sinh tỉnh Bình Dương năm 2017-2018) Hai đội cơng nhân đắp đê ngăn triều cường Nếu hai đội làm ngày xong việc Nếu làm riêng đội I hồn thành cơng việc chậm đội II ngày Hỏi làm riêng đội đắp xong đê ngày? Lời giải Gọi thời gian đội I làm riêng đắp xong đê x (ngày) Điều kiện : x  Gọi thời gian đội II làm riêng đắp xong đê y (ngày) Điều kiện: x  y  Số ngày hồn thành Số cơng việc làm Đối tượng công việc (ngày) ngày 6 Làm chung Đội thứ I x Đội thứ II y Làm riêng x y 1   x y (1 ) Phương trình Nếu làm riêng đội I hồn thành cơng việc chậm đội II ngày nên ta có phương trình: x  y 9 ( ) Từ ( ) ( ) ta có hệ phương trình: 1 1    x y  x  y 9  6 y  x xy    x 9  y 6 y    y    y  y  x 9  y     y  y  54 0     4   x 9  y Từ ( )  y  y  54 0 Ta có:  '   3  4.1   54  225  Suy y1 9 (nhận), y2  (loại) Thay y 9 vào ( ) ta x 9  18 Vậy thời gian đội I làm riêng đắp xong đê 18 ngày Thời gian đội II làm riêng đắp xong đê ngày Câu (Tuyển sinh tỉnh Bình Định năm 2017-2018) Một đám đất hình chữ nhật có chu vi 24 m Nếu tăng độ dài cạnh lên m giảm độ dài cạnh lại m diện tích mảnh đất tăng thêm m2 Tìm độ dài cạnh hình chữ nhật ban đầu Lời giải Gọi x (m) cạnh thứ mảnh đất hình chữ nhật y (m) cạnh thứ hai mảnh đất hình chữ nhật Điều kiện:  x  12 ,  y  12 Diện tích mảnh đất ban đầu: x y (m2) Theo đề ta có phương trình:  x  y  24 (m) (1) Giả sử tăng độ dài cạnh lên m giảm độ dài cạnh lại m Độ dài cạnh thứ tăng m: x  (m) Độ dài cạnh lại giảm m: y  (m) Diện tích mảnh đất thay đổi: ( x  2)( y  1) (m2) Theo đề ta có phương trình: ( x  2)( y  1)  xy 1 (2) Từ (1) , (2) ta có hệ phương trình: 2  x  y  24   ( x  2)( y  1)  xy 1  x  y 12    x  y 3  x 7   y 5 Vậy kích thước mảnh đất lúc đầu là: m; m Câu (Tuyển sinh tỉnh Bình Phước năm 2017-2018) Cho vườn hoa hình chữ nhật có diện tích 91 m chiều dài lớn chiều rộng m Tìm chu vi vườn hoa? Lời giải Gọi x( m) chiều rộng vườn hoa, x  Chiều dài vườn hoa x  (m) Theo đề ta có phương trình:  x 7(tm)  x( x  6) 91  x  x  91 0  ( x  7)( x  13) 0  x  13( ktm) Vậy chu vi vườn hoa hình chữ nhật 40 m Câu (Tuyển sinh tỉnh Bình Thuận năm 2017-2018) Một nhóm học sinh có kế hoạch trồng 200 tràm giúp gia đình bạn An Vì có học sinh bị bệnh khơng tham gia nên học sinh cịn lại phải trồng thêm so với dự định để hoàn thành kế hoạch.(Biết số học sinh trồng nhau) Tính số học sinh thực tế trồng Lời giải Gọi x số học sinh, y số em trồng ( x  ; y  ) Tổng số em trồng: x y 200 (1) Hai học sinh bị bệnh không tham gia: x  Mỗi học sinh trồng thêm cây: y  Khi tổng số : (x  2)(y  5) 200 (2) Từ (1) , (2) :  x y 200  ( x  2)(y  5) 200  x y 200   5 x  y 10 10  y   x   10  y y 200   10  y  x   2 y  10 y  1000 0    x 10    y 20 Vậy có tấc 10 em tham gia trồng cây, em trồng 20 Câu (Tuyển sinh tỉnh Cao Bằng năm 2017-2018) Một người xe đạp từ A đến B với vận tốc không đổi Khi từ B trở A, người tăng vận tốc 4km/h so với lúc đi, thời gian thời gian 30 phút Tính vận tốc lúc biết quãng đường AB dài 24km Lời giải Gọi vận tốc người lúc x (km/h; x  R; x  0) 24 Thời gian người hết quãng đường AB là: x (giờ) Vận tốc người lúc x  (km/h) 24 Thời gian người hết quãng đường BA là: x  (giờ) 1   h Do thời gian thời gian 30 phút   nên ta có phương trình: 24 24   x x4   24  x   x  x  4  24.x   x   x 24.x  96  24 x 96     x   x  x   x  x  x 192  x  x  192 0  x 12   x  16 So với điều kiện ta có x 12 thỏa mãn Vậy vận tốc người lúc 12 km/h Câu 10 (Tuyển sinh tỉnh Cần Thơ năm 2017-2018) Để chuẩn bị tham gia Hội khỏe Phù Đổng cấp trường, thầy Thành giáo viên chủ nhiệm lớp 9A tổ chức cho học sinh lớp thi đấu mơn bóng bàn nội dung đánh đơi nam nữ (một nam kết hợp với nữ) Thầy Thành chọn số học sinh nam kết hợp với số học sinh nữ lớp để lập thành cặp thi đấu Sau chọn số học sinh tham gia thi đấu lớp 9A lại 16 học sinh làm cổ động viên Hỏi lớp 9A có tất học sinh? Lời giải Gọi số học sinh nam lớp 9A x (học sinh), x  Số học sinh nữ lớp 9A y (học sinh), y  1 x số học sinh nam lớp 9A là: (học sinh) 5 y số học sinh nữ lớp 9A là: (học sinh) Thầy Thành chọn số học sinh nam kết hợp với số học sinh nữ nên ta có phương trình: x  y 0  1 Tổng số học sinh lớp 9A là: x  y (học sinh) x y (học sinh) Tổng số học sinh chọn để tham gia thi đấu là: Sau chọn số học sinh tham gia thi đấu lớp 9A cịn lại 16 học sinh làm cổ động viên nên ta có phương trình: Từ  1  2  x  y  16    2  x  y    ta có hệ phương trình: 1  x  y 0      x  y    x  y  16  2  1 x  y 0     x  y 16  Số học sinh nam lớp 9A 20 học sinh Số học học sinh nữ lớp 9A 16 học sinh Vậy số học sinh lớp 9A 36 học sinh 1  x  16 0  x 20  2  y 16  y 16  tm  Câu 11 (Tuyển sinh tỉnh Cao Bằng năm 2017-2018) Một người xe đạp từ A đến B với vận tốc không đổi Khi từ B trở A, người tăng vậntốc 4km/h so với lúc đi, thời gian thời gian 30 phút Tính vận tốc lúc biết quãng đường AB dài 24km Lời giải Gọi vận tốc người lúc x (km/h; x  R; x  0) 24 Thời gian người hết quãng đường AB là: x (giờ) Vận tốc người lúc x  (km/h) 24 Thời gian người hết quãng đường BA là: x  (giờ) 1   h Do thời gian thời gian 30 phút   nên ta có phương trình: 24 24   x x4   24  x   24.x   x  x    x   x 24.x  96  24 x 96     x   x  x   x  x  x 192  x  x  192 0  x 12   x  16 So với điều kiện ta có x 12 thỏa mãn Vậy vận tốc người lúc 12 km/h Câu 12 (Tuyển sinh tỉnh Đắc Lắc năm 2017-2018) Tính chiều dài chiều rộng hình chữ nhật Biết tăng chiều dài chiều rộng lên cm ta hình chữ nhật có diện tích tăng thêm 80 cm so với diện tích hình chữ nhật ban đầu, cịn tằng chiều dài lên cm giảm chiều rộng xuống cm ta hình chữ nhật có diện tích diện tích hình chữ nhật ban đầu Lời giải Gọi x ; y (cm) chiều dài, chiều rộng hình chữ nhật ban đầu ĐK: x  y   x    y    cm2  Diện tích hình chữ nhật sau tăng hai kích thước là:  x    y    cm  Diện tích hình chữ nhật sau tăng chiều dài giảm chiều rộng là:  x    y    xy 80  x  y 16  x 10     x  5  y    xy 0  x  y 10  y 6 (Thỏa mãn ĐK) Theo đề ta có hệ:  Vậy chiều dài chiều rộng 10 cm cm Câu 13 (Tuyển sinh tỉnh Thừa Thiên Huế năm 2017-2018) Cho hai vòi nước chảy vào vể khơng có nước sau đầy bể Nếu lúc đầu mở vòi thứ chảy đóng lại, sau mở vịi thứ hai chảy ta bể nước Hỏi mở riêng vịi thời gian để vòi chảy đầy bể bao nhiêu? Lời giải Gọi x  h thời gian vòi thứ chảy đầy bể ( x  ) Gọi y  h thời gian vòi thứ hai chảy đầy bể ( y  ) Suy 1h vòi thứ chảy x (bể) 1h vòi thứ hai chảy y (bể) hai vòi chảy vào bể khơng có nước sau đầy bể nên hai vòi chảy bể 1   x y (1) suy Vòi thứ chảy giờ, vòi thứ hai chảy bể 1   x y (2) suy Từ (1) (2) ta có hệ: 1 1 2 1 1      x  y 5   x x  x 20       1   1   1  x y  x y  x y  x 20  1 1  20  y 5   x 20  1   y  20   x 20   20  y  Vậy vịi thứ chảy đầy bể 20 20 Vịi thứ hai chảy đầy bể Câu 14 (Tuyển sinh tỉnh Tiền Giang năm 2017-2018) Hai thành phố A B cách 150km Một xe máy khởi hành từ A đến B, lúc ơtơ khởi hành từ B đến A với vận tốc lớn vận tốc xe máy 10km/h Ơtơ đến A 30 phút xe máy đến B Tính vận tốc xe Lời giải Gọi x  km / h  vận tốc xe máy  x  0 vận tốc ơtơ x  10  km / h  150 150   x  10   Theo đề ta có phương trình: x x  10x  3000 0 x 50 (nhận) x  60 (loại) 50  km / h  , 60  km / h  Vậy: vận tốc xe máy vận tốc ôtô  1  Câu 15 (Tuyển sinh tỉnh Đồng Nai năm 2017-2018) Một đội xe dự định chở 120 hàng Để tăng an toàn nên đến thực hiện, đội xe bổ sung thêm xe, lúc số hàng xe chở số hàng xe dự định chở Tính số hàng xe dự định chở, biết số hàng xe dự định chở nhau, thực Lời giải Gọi x (xe) số xe chuẩn bị theo dự định (điều kiện x > 0) Khi đó: 120 Theo dự định xe cần chở x (tấn) Nhưng thực tế bổ sung thêm xe nên số xe là: x + (xe) 120 Vì mà xe cần chở: x  (tấn) Vì theo thực tế xe chở so với dự định nên ta có phương trình: 120  120 1 x x 4  120(x  4)  120x (x  4)x  x  4x  480 0  x 20 (nhận) x  24 (loại) Vậy theo dự định có 20 xe xe phải chở hàng Câu 16 (Tuyển sinh tỉnh Gia Lai năm 2017-2018) Một tổ công nhân may lập kế hoạch may 60 quần áo Khi thực hiện, ngày tổ may nhiều kế hoạch nên hồn thành cơng việc kế hoạch ngày Biết số quần áo may ngày Hỏi tổ công nhân may lập kế hoạch để hồn thành cơng việc ngày? Lời giải x  *   x a) Gọi số ngày mà tổ công nhân may lập kế hoạch để hồn thành cơng việc Gọi y  y  * số quần áo mà tổ cơng nhân may lập kế hoạch để hồn thành công việc Theo kế hoạch, tổ công nhân may 60 quần áo nên xy 60 Số ngày may thực tế x  Số quần áo may thực tế y   1 Theo đề bài, ta có Kết hợp với Thế vào  1  1  x  1  y   60  xy  x  y 62 ta 60  x  y 62  y 2 x  ta x  x   60  x  x  30 0  x 6  x  x     x   0   x    x   0    x  * * Mà x    x 6 thỏa mãn  y 10 (thỏa mãn y   ) Vậy tổ công nhân may lập kế hoạch để hồn thành cơng việc ngày Câu 17 (Tuyển sinh tỉnh Hà Tĩnh năm 2017-2018) Một người xe máy từ địa điểm A đến địa điểm B cách 60 km với vận tốc dự định trước Sau quãng đường, điều kiện thời tiết không thuận lợi nên qng đường cịn lại người phải với vận tốc so với vận tốc dự định ban đầu 10 km/h Tính vận tốc dự định thời gian người từ A đến B , biết người đến muộn dự định 20 phút Lời giải Gọi vận tốc dự định người xe máy x ( x  10 , tính km/h); 20 phút  (giờ) 60 Thời gian người dự định để từ A đến B x (giờ) 20 Thời gian người quãng đường đầu x (giờ) 40 Thời gian người quãng đường lại x  10 (giờ) 20 40 60 40 40       x x  10 x Theo ta có phương trình: x x  10  x 40  x  10 x  1200 0    x  30 Ta thấy x  30 không thỏa mãn Vậy vận tốc dự định 40 km/h 60 11   Thời gian người bằng: 40 (giờ) tức 50 phút Câu 18 (Tuyển sinh tỉnh Hải Dương năm 2017-2018) Tháng đầu, hai tổ sản xuất 900 chi tiết máy Tháng thứ hai, cải tiến kỹ thuật nên tổ I vượt mức 10% vả tổ II vượt mức 12% so với tháng đầu, hai tổ sản xuất 1000 chi tiết máy Hỏi tháng đầu tổ sản xuất chi tiết máy? Lời giải Gọi số chi tiết máy mà tổ I tổ II sản xuất tháng đầu x y * Điều kiện: x , y  N ; x , y  900  x  y 900  Từ đề lập hệ phương trình: 1,1x  1,12 y 1000  x 400  Giải hệ được:  y 500 (thỏa mãn điều kiện) Vậy tháng đầu tổ I sản xuất 400 chi tiết máy, tổ II sản xuất 500 chi tiết máy Câu 19 (Tuyển sinh tỉnh Hà Nội năm 2017-2018) Một xe ô tô xe máy khởi hành từ A để đến B với vận tốc xe khơng đổi tồn qng đường AB dài 120km Do vận tốc xe ô tô lớn vận tốc xe máy 10km/h nên xe ô tô đến B sớm xe máy 36 phút Tính vận tốc xe Lời giải Gọi vận tốc xe máy x ( Đơn vị km / h , x  ) Đổi 36 phút  Vận tốc ô tô x  10 km / h 120 Thời gian xe máy hết quãng đường AB x ( ) 120 Thời gian ô tô hết quãng đường AB x  10 ( ) Lập luận để có PT: 120 120   x x  10  x  10 x  2000 0  x  50(loai )   x 40(t / m) Vậy: Vận tốc xe máy 40 km / h vậ tốc ô tô 50 km / h Câu 20 (Tuyển sinh tỉnh Vĩnh Long năm 2017-2018) Hai vòi nước chảy vào bể khơng có nước đầy bể Nếu để riêng vòi thứ chảy giờ, sau đóng lại mở vịi thứ hai chảy tiếp bể Hỏi chảy riêng vịi chảy đầy bể bao lâu? Lời giải  x  6 Gọi thời gian vòi thứ chảy riêng đầy bể x (giờ)  y  6 thời gian vòi thứ hai chảy riêng đầy bể y (giờ) Hai vịi nước chảy vào bể khơng có nước đầy bể 1    x y (1) Vòi thứ chảy giờ, sau đóng lại mở vòi thứ hai chảy tiếp 1 2   x y (2) bể  1 1  x  y 6  x 10     y 15 2    y Từ (1) (2) ta có hệ phương trình  x Đối chiếu với điều kiện, giá trị x 10; y 15 thỏa mãn Vậy thời gian vòi thứ chảy riêng đầy bể 10 giờ, thời gian vòi thứ hai chảy riêng đầy bể 15 Câu 21 (Tuyển sinh tỉnh Hải Phòng năm 2017-2018) Bài tốn có nội dung thực tế: “Em có tưởng tượng hai phổi (gọi tắt phổi) chứa khoảng lít khơng khí hay khơng? Dung tích phổi người phụ thuộc vào số yếu tố, hai yếu tố quan trọng chiều cao độ tuổi Sau cơng thức ước tính dung tích chuẩn phổi người: Nam: P 0, 057h – 0, 022a – 4, 23 Nữ: Q 0, 041h – 0, 018a – 2, 69 đó: h : chiều cao tính xentimét, a : tuổi tính năm, P , Q : dung tích chuẩn phổi tính lít” (Toán 7, tập hai, NXB Giáo dục Việt Nam, năm 2017, tr 29) Bạn Hùng (nam) 15 tuổi, số đo chiều cao bạn biết qua toán sau: Chiều cao bạn Hùng tính xentimét Đó số tự nhiên có chữ số, chữ số hàng trăm 1, chữ số hàng chục chữ số hàng đơn vị hai lần chữ số hàng chục chữ số hàng đơn vị Tính dung tích chuẩn phổi bạn Hùng Lời giải a   , a 9 Gọi chữ số hàng chục a, điều kiện: Do chữ số hàng chục chữ số hàng đơn vị nên chữ số hàng đơn vị a  2a   a   4 Mặt khác hai lần chữ số hàng chục chữ số hàng đơn vị nên ta có: Giải phương trình ta a 6 Nên chữ số hàng đơn vị a  8 Suy chiều cao bạn Hùng 168 cm Khi dung tích phổi bạn Hùng là: P 0, 057.168  0, 022.15  4, 23 5, 016 (lít) Câu 22 (Tuyển sinh tỉnh Hịa Bình năm 2017-2018) Một phịng họp có 240 ghế (mỗi ghế chỗ ngồi) xếp thành dãy, dãy có số ghế Trong họp có 315 người tham dự nên ban tổ chức phải kê them dãy ghế dãy tang them gế so với ban đầu vừa đủ chỗ ngồi Tính số ghế có phịng họp lúc đầu, biết số dãy ghế nhỏ 50 Lời giải ( x Ỵ ¥ *, x < 50) Gọi số dãy ghế ban đầu x (dãy) 240 Số ghế dãy ban đầu là: x (ghế) Trong họp: Số dãy ghế có là: x + (dãy) 240 +1 Số ghế dãy là: x (ghế) Tổng số ghế có phịng họp là: ỉ240 ÷ +1÷ ÷ è x ứ (gh) ( x + 3) ỗỗỗ Vỡ s ghế vừa đủ chỗ ngồi cho 315 người tham dự nên ta có: ỉ240 +1÷ ÷ ÷= 315 è x ứ ( x + 3) ỗỗỗ x+ 720 - 72 = x Û x - 72 x + 720 = éx = 60 ( loai ) Û ê êx = 12 ( tm) ë Vậy số dãy ghế có phịng họp lúc đầu 12 (dãy) Câu 23 (Tuyển sinh tỉnh TP Hồ Chí Minh năm 2017-2018) Một miếng đất HCN có chu vi 100 m Tính chiều dài chiều rộng mảnh đất biết lần chiều rộng lần chiều dài 40 cm Lời giải Gọi x chiều dài hình chữ nhật ( x  , m ) y chiều rộng hình chữ nhật ( y  , m ) Theo đề ta có hệ phương trình:  x  y 50  5 y  x 40 Giải hệ phương trình ta được:  x 30   y 20 ( nhận) Vậy chiều dài hình chữ nhật 30 m, chiều rộng hình chữ nhật 20 m Câu 24 (Tuyển sinh tỉnh Vĩnh Phúc năm 2017-2018) Một phịng họp có tổng số 80 ghế ngồi, xếp thành hàng, hàng có số lượng ghế Nếu bớt hàng mà không làm thay đổi số lượng ghế phịng hàng cịn lại phải xếp thêm ghế Hỏi lúc đầu phịng có ghế? Lời giải Gọi số hàng ghế lúc đầu x  x   ; x 2;80x  * 80  Số ghế hàng lúc đầu x (chiếc) Nếu bớt hàng số hàng cịn lại x  80 Khi đó, số ghế hàng x  (chiếc) Vì lúc hàng cịn lại phải xếp thêm ghế nên ta có phương trình: 80 80  2 x x Giải phương trình được: x1 10 (thỏa mãn điều kiện) x2  (không thỏa mãn điều kiện) Vậy lúc đầu có 10 hàng ghế Câu 25 (Tuyển sinh tỉnh Khánh Hịa năm 2017-2018) Một hội trường có 300 ghế ngồi (loại ghế người ngồi) xếp thành nhiều dãy với số lượng ghế dãy để tổ chức kiện Vì số người dự kiến đến 351 người nên người ta phải xếp thêm dãy ghế có số lượng ghế dãy ghế ban đầu sau xếp thêm vào dãy ghế (kể dãy ghế xếp thêm) để vừa đủ người ngồi ghế Hỏi ban đầu hội trường có dãy ghế? Lời giải Gọi x , y số dãy ghế số ghế dãy ban đầu ( x , y   * )  xy 300    x  1  y   351 Ta có:   xy 300    xy  x  y  351  xy 300  xy 300   2 x  y 49  y 49  x   x 12 (nhaän)   25   x  (loaïi)  x  49  x  300 2 x  49 x  300 0       y 49  x  y 49  x  y 49  x Vậy ban đầu hội trường có 12 dãy ghế  x 12   y 25 (nhận) Câu 26 (Tuyển sinh tỉnh Kiên Giang năm 2017-2018) Mỗi ngày Ba bạn An trở bạn từ nhà đến trường 30 phút Vì hơm ngày thi tuyển sinh nên Ba bạn muốn đén trường sớm hơn, ơng tăng vận tốc xe 15  km / h  lên đến sớm thường ngày 10 phút Hỏi quãng đường từ nhà bạn An đến trường km? Lời giải Gọi vận tốc xe thường ngày x  km / h   x   ; Quãng đường từ nhà bạn An đến trường y  km   y   y  Theo đề ta có x  1 Do BA bạn An tăng vận tốc lên y  x  15 Từ  1 15  km / h  đến sớm 10 phút nên ta có:  2  2 ta có hệ phương trình sau:  y  x   3 y  x  15  x 30   y 15 Vậy quãng đường từ nhà bạn An đến trường 15 km / h Câu 27 (Tuyển sinh tỉnh Kon Tum năm 2017-2018) Một đội xe cần chở 48 hàng Trước làm việc đội bổ sung thêm xe nên xe chở so với dự định Hỏi đội xe lúc đầu có chiếc? Biết số hàng chở tất xe có trọng lượng Lời giải 48 Gọi x( x   ) , số xe lúc đầu, số hàng xe: x (tấn) 48 Trên thực tế có x  (xe), số hàng xe thực tế: x  (tấn) Vì xe chở so với dự định nên ta có pt: 48 48  1 x x4 *  48  x    48 x  x  x  x  x  192 0  x 12  x  16 (loại x  ) Vậy số xe ban đầu 12 xe Câu 28 (Tuyển sinh tỉnh Lai Châu năm 2017-2018) Một người xe đạp từ Thành phố Lai Châu đến Tam Đường cách 36 km Khi từ Thị trấn Tam Đường trở Thành phố Lai Châu, người tăng tốc độ thêm km/h , thời gian thời gian 36 phút Tính vận tốc người xe đạp từ Thành phố Lai Châu đến Tam Đường Lời giải Gọi vận tốc người xe đạp từ Thành phố Lai Châu đến Tam Đường v (km/ h) ( v  ) Vận tốc người trở về: v  36 Thời gian người đi: v 36 Thời gian người về: v  Ta có: 36 36  0,6  v v 3 36  v  3  36v  0,6 v  v  3  108 0,6v  1,8v  0,6v  1,8v  108 0  v 12(n)   v  15(l) Vậy vận tốc người xe đạp từ Thành phố Lai Châu đến Tam Đường 12 (km/ h) Câu 29 (Tuyển sinh tỉnh Nghệ An năm 2017-2018) Một mảnh vườn hình chữ nhật có chiều dài lớn chiều rộng 15 m Nếu giảm chiều dài m tăng chiều rộng m diện tích mảnh vườn tăng thêm 44 m Tính diện tích mảnh vườn Lời giải x, y  m  chiều dài chiều rộng mảnh vườn, điều kiện x  0, y  suy diện xy m tích mảnh vườn là: Gọi   Do chiều dài lớn chiều rộng mảnh vườn 15 m nên ta có phương trình: x  y 15   Khi giảm chiều dài m, tăng chiều rộng m diện tích mảnh vườn tăng 44 m nên ta có x    y  3 xy  44  3x  2y 50   phương trình :  x  y 15  Từ     ta có hệ phương trình: 3x  2y 50 Giải hệ phương trình ta : x 20, y 5 ( TMĐK ) Vậy diện tích mảnh vườn là: S xy 100 m Câu 30 (Tuyển sinh tỉnh Ninh Bình 2017 – 2018 ) Một tơ dự định từ bến xe A đến bến xe B cách 90 km với vận tốc không đổi Tuy nhiên, ô tô khởi hành muộn 12 phút so với dự định Để đến bến xe B ô tô tăng vận tốc thêm km/h so với vận tốc dự định Tìm vận tốc dự định tô Lời giải Đổi: 12 phút  Gọi vận tốc dự định ô tô x (đơn vị: km/h, điều kiện: x  ) Vận tốc thực tế ô tô x  (km/h) 90 Thời gian ô tô dự định từ A đến B là: x (giờ) 90 Thời gian thực tế để ô tô từ A đến B là: x  (giờ) 90 90   Theo ta có phương trình: x x  5  90.5( x  5)  90.5 x  x ( x  5)  x  x  2250 0  x  50   x 45 So sánh với điều kiện x  suy vận tốc dự định ô tô 45 km/h Câu 31 (Tuyển sinh tỉnh Ninh Thuận năm 2018-2018) Áp dụng định lí Viet để tìm hai số , biết tổng chúng 15 tích chúng 56 Lời giải Gọi x, y hai số thõa mãn tổng chúng 15 tích chúng 56  x  y 15   x y 56 Từ  1  1  2  x 15  y vào   ta có :  y 7 x y  15  y  y 56  y  15 y  56 0   y    y   0    y 8 Vậy với y 7  x 8 Với y 8  x 7 Câu 32 (Tuyển sinh tỉnh Phú Yên năm 2017-2018) Một cano xuôi dịng khúc sơng dài 40 km, ngược dịng khúc sơng 30 phút Tính vận tốc thực ca nô (khi nước yên lặng) biết vận tốc dòng nước km/ h Lời giải 30 phút = 4,5 x  2 Gọi vận tốc thực ca nô x (km/h)  Vận tốc ca nơ xi dịng là: x  (km/h) Vận tốc ca nô ngược dòng là: x – (km/h) 40 Thời gian ca nơ xi dịng là: x  (giờ) 40 Thời gian ca nơ ngược dịng là: x  (giờ) Vì cano xi dịng khúc sơng dài 40 km, ngược dịng khúc sơng 30 phút nên ta có phương trình: 40 40  4,5 x2 x  40( x  2) 40( x  2) 4,5(x  2)(x  2)   x2 x (x  2)(x  2)  40( x  2) 40( x  2) 4,5(x  2)(x  2)   x2 x (x  2)(x  2)  40 x  80  40 x  80 4,5( x  4)  80 x 4,5  x    4,5 x  80 x  18 0  x  160 x  36 0  '   80     36  6724 x1     80   6724    80   6724  18 x2   9 (loại) (nhận); Vậy vận tốc thực ca nô 18 km/h Câu 33 (Tuyển sinh tỉnh Quảng Ngãi năm 2017-2018) Một phịng họp có 250 chỗ ngồi chia thành dãy, dãy có số chỗ ngồi Vì có đến 308 người dự họp nên ban tổ chức phải kê thêm dãy ghế, dãy ghế phải kê thêm chỗ ngồi vừa đủ Hỏi lúc đầu phịng họp có dãy ghế dãy ghế có chỗ ngồi? Lời giải Gọi x số dãy ghế ban đầu y số chỗ ngồi dãy ban đầu ĐK: x, y  N *  1 Theo đề ta có tổng số chỗ ngồi ban đầu là: x y 250  x  3  y  1 308  xy  y  x  308   Số người dự họp thực tế là: Thay  1 vào  3 Thay  2  1 vào  x  y 55  x 55  y  3  55  y  y 250 suy ra:  y  55 y  250 0  y 10  y  25 25 N* + (loại) + y 10  N * suy x 250 :10 25  N * y Vậy ban đầu có 25 dãy ghế, dãy ghế có 10 chỗ ngồi Câu 34 (Tuyển sinh tỉnh Quảng Ninh năm 2017-2018) Giải toán sau cách lập phương trình hệ phương trình: Một mảnh vườn hình chữ nhật có diện tích 300m Nếu giảm chiều dài 2m tăng chiều rộng thêm 3m mảnh vườn trở thành hình vng Tính chiều dài, chiều rộng mảnh vườn Lời giải Gọi chiều dài x  m  xy 300   x  y   x 20  x  15 (TM ) ( KTM )   y  20  y 15  , chiều rộng y  m   x, y   ta có hệ phương trình Câu 35 (Tuyển sinh tỉnh Tây Ninh năm 2017 – 2018) Một mảnh đất hình chữ nhật có chiều dài chiều rộng 6m độ dài đường chéo lần chiều rộng Tính diện tích mảnh đất hình chữ nhật cho Lời giải  m  ,  x  0 Gọi chiều rộng mảnh đất x  m Suy chiều dài mảnh đất x  65 65 x  m Đường chéo mảnh đất Theo đề ta có phương trình: 2 x   x  6  65  65  x  x  12 x  36  x    16  x 8 tm    x  24  l  11  33x  192 x  576 0    Chiều rộng 8m , chiều dài 14m  Diện tích mảnh đất : 8.14 112  m  Câu 36 (Tuyển sinh huyện Bình Chánh – TP HCM năm 2018 – 2019) Trong lớp học có số ghế dài Nếu xếp ghế học sinh học sinh khơng có chỗ ngồi Nếu xếp ghế học sinh thừa ghế Hỏi lớp có ghế học sinh? Lời giải Gọi x số ghế, y số học sinh * ĐK : x, y   Nếu xếp ghế học sinh số học sinh ngồi ghế 3x cịn học sinh khơng có chỗ ngồi nên tổng số học sinh lớp : x  Do ta có phương trình : x   y (1)  x –1 Nếu xếp ghế học sinh thừa ghế, nghĩa tổng số học sinh lớp :  x –1  y Do ta lại có phương trình : (2) Từ (1) (2) ta có hệ phương trình : 3 x  y   x 10   4 x  y 4  y 36 (nhận) Vậy lớp có 10 ghế 36 học sinh Câu 37 (Tuyển sinh huyện Bình Chánh – TP HCM năm 2018 – 2019) Máy kéo nơng nghiệp có hai bánh sau to hai bánh trước Khi bơm căng, bánh xe sau có đường kính 1, 672m bánh trước có đường kính 88cm Hỏi bánh xe trước lăn 50 vịng bánh xe sau lăn vòng? Lời giải Đổi: 88cm 0,88m 0,88 2, 76  m  Chu vi bánh xe trước: Khi bánh xe trước lăn 50 vòng quãng đường xe là: 50.0,88 44 138, 23  m  1, 672 5, 25  m  Chu vi bánh xe sau: Khi bánh xe trước lăn 50 vịng số vịng bánh xe sau lăn là:  44  :  1, 672  138, 23 : 5, 25 26 (vòng) Câu 38 (Tuyển sinh huyện Củ Chi – TP HCM năm 2018 – 2019) Ơng Bình gửi ngân hàng 100000000 đồng (một trăm triệu đồng) với lãi suất 0, 65% tháng (lãi kép) Sau tháng ơng Bình đến ngân hàng rút toàn tiền vốn lãi để chăn ni heo Hỏi ơng Bình rút tiền? (Kết làm tròn đến hàng đơn vị) Lời giải Số tiền vốn lãi tháng thứ : 100000000   0.65%  100650000 (đồng) Số tiền vốn lãi tháng thứ hai : 100650000   0.65%  101304225 (đồng) Câu 39 (Tuyển sinh huyện Củ Chi – TP HCM năm 2018 – 2019) Khi kí hợp đồng ngắn hạn (1 năm) với kĩ sư tuyển dụng Công ty A đề phương án trả lương để người tuyển dụng chọn, cụ thể :

Ngày đăng: 10/08/2023, 05:13

w