1. Trang chủ
  2. » Giáo án - Bài giảng

Khbd hình học 9 tinh chat hai tiep tuyen cat nhau 2 ppt

29 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 29
Dung lượng 12,64 MB

Nội dung

PHÒNG GD - ĐT HUYỆN TRÀ CÚ TRƯỜNG THCS NGỌC BIÊN DẠY HỌC TRỰC MƠN HÌNH HỌC Lớp TUYẾN LÊ KIM TIẾN Bài 24/111 (SGK): Cho đường tròn (O), dây AB khác đường kính Qua O kẻ đường vng góc với AB, cắt tiếp tuyến A đường tròn điểm C a) Chứng minh CB tiếp tuyến đường tròn Bắt đầu! b) Cho bán kính đường trịn 15cm,AB = 24cm Tính OC A Câu a BC tiếp tuyến OB  BC Câu b Tính OC O C H Tính OH B Bài 24/111 (SGK): a) CMR: CB tiếp tuyến (O) Nối B với C, B với O Ta có: ∆ AOB có OA = OB ( = R ) Þ ∆AOB cân O Lại có OH  AB ( gt ) nên OH đường cao đồng thời phân giác AOB   Þ AOC BOC Nên: CAO CBO (c  g  c)   Do đó: CBO CAO 90 Þ CB  BO Mà BO=R (B thuộc (O)) Þ CB tiếp tuyến đường tròn (O) A C H B O A Bài 24/111 (SGK): b) Cho R = 15cm, AB = 24cm Tính OC Ta có HA = HB (tính chất ∆ cân ABO) => AH = AB : = 24:2 = 12cm 15cm 12 C O CO = ? Áp dụng định lí Pitago cho tam giác vng AOH ta có: H A HO2 = OA2 – AH2 = 152 - 122 = 81 = 92 12 => OH = 9cm Áp dụng hệ thức canh tam giác ACO vuông A C H => AO2 = OH.OC => OC = AO2 : OH = 152 : = 25cm Vậy OC = 25cm Bắt đầu! B 15cm O Bài 25/112 (SGK) Cho đường trịn tâm O có bán kính OA = R, dây BC vng góc với OA trung điểm M OA a) Tứ giác OCAB hình ? Vì ? b) Kẻ tiếp tuyến với đường tròn B, cắt đường thẳng OA E Tính độ dài BE theo R B a) Chứng minh tứ giác OCAB hình thoi b) Tính  BOA Þ BE O E A M C Bắt đầu! Bài 25/112 (SGK) a) Chứng minh:Tứ giác OCAB hình thoi Ta có: BOC cân O (OB=OC=R) có OM  BC ( gt) suy ra: OM trung trực BC B MB = MC Mà: MA = MO ( gt) OCAB hình bình hành Mặt khác BC  OA ( gt) nên OCAB hình thoi b) Tiếp tuyến với (O) B cắt đường thẳng AO E Tính BE theo R  ABO có: AB = BO ( t/c hình thoi)  Mặt khác OA = OB = R Þ ∆ AOB Þ BOE 60 Xét ∆ OBE vng B có: BE = BO.tan 600 = R O E A M C PHÒNG GD - ĐT HUYỆN TRÀ CÚ TRƯỜNG THCS NGỌC BIÊN DẠY HỌC TRỰC MƠN HÌNH HỌC Lớp TUYẾN LÊ KIM TIẾN MỞ ĐẦU Với “thước phân giác”, ta tìm tâm vật hình trịn nào? 450 Bài 6: TÍNH CHẤT HAI TIẾP TUYẾN CẮT NHAU §6 TÍNH CHẤT HAI TIẾP TUYẾN CẮT NHAU Tính chất hai tiếp tuyến cắt Định lí: SGK/114 nhau: Nếu hai tiếp tuyến đường tròn cắt điểm thì: a) Điểm cách hai tiếp điểm b) Tia kẻ từ điểm qua tâm tia phân giác góc tạo hai tiếp tuyến c) Tia kẻ từ tâm qua điểm tia phân giác góc tạo hai bán kính qua tiếp điểm B (O) GT AB, AC tiếp tuyến A O C KL AB  AC   OAB OAC AOB  AOC §6 TÍNH CHẤT HAI TIẾP TUYẾN CẮT NHAU Cho tam giác ABC Gọi I giao điểm đường phân giác góc tam giác; D, E, F theo thứ tự chân đường vng góc kẻ từ I đến cạnh BC, AC, AB Chứng minh ba điểm D, E, F nằm đường trịn tâm I Chứng minh  Vì I thuộc tia phân giác góc BAC nên IE IF Vì I thuộc tia phân giác góc ABC nên IF ID Do đó: IE IF ID Vậy ba điểm D, E, F nằm đường tròn tâm I * Ta nói: Đường trịn tâm I nội tiếp tam giác ABC Tam giác ABC ngoại tiếp đường trịn tâm I §6 TÍNH CHẤT HAI TIẾP TUYẾN CẮT NHAU Đường tròn nội tiếp tam giác: * Khái niệm: Đường tròn tiếp xúc với ba cạnh tam giác đường tròn nội tiếp tam giác, tam giác gọi ngoại tiếp đường tròn * Tâm đường tròn nội tiếp tam giác giao đường phân giác góc tam giác A * Cách vẽ: E F I B D C §6 TÍNH CHẤT HAI TIẾP TUYẾN CẮT NHAU Cho tam giác ABC, K giao điểm đường phân giác hai góc ngồi B C; D, E, F theo thứ tự chân đường vng góc kẻ từ K đến cạnh BC, AC, AB Chứng minh ba điểm D, E, F nằm đường trịn có tâm K Chứng minh x  xAy Vì K thuộc tia phân giác góc nên IE IF  Vì K thuộc tia phân giác góc xBC nên IF ID Do đó: IE IF ID Vậy ba điểm D, E, F nằm đường trịn tâm K * Ta nói: Đường trịn tâm K đường tròn bàng tiếp tam giác ABC y Tiết 26: §6 TÍNH CHẤT HAI TIẾP TUYẾN CẮT NHAU Đường tròn bàng tiếp tam giác: * Khái niệm: Đường tròn tiếp xúc với cạnh tam giác tiếp xúc với phần kéo dài hai cạnh gọi đường tròn bàng tiếp tam giác * Tâm đường tròn bàng tiếp tam giác góc A giao điểm hai đường phân giác góc ngồi B C, giao điểm đường phân giác góc A đường phân giác góc ngồi B (hoặc C) x y LUYỆN TẬP

Ngày đăng: 10/08/2023, 04:48

w