PHÒNG GD&ĐT ĐOAN HÙNG TRƯỜNG THCS QUẾ LÂM ĐỀ THAM KHẢO ĐỀ THAM KHẢO THI VÀO LỚP 10 THPT NĂM HỌC: 2022 - 2023 Mơn: Tốn Thời gian làm 120 phút không kể thời gian giao đề (Đề có 02 trang) PHẦN I TRẮC NGHIỆM KHÁCH QUAN (2,5 điểm) Câu Các giá trị x để x xác định A x B x 3 C x 3 D x y m x Câu Các giá trị m để đường thẳng tạo với trục Ox góc nhọn A m B m 2 C m 2 D m Câu Giá trị a để đường thẳng y 2 x cắt đường thẳng y ax điểm có tung độ A B C D x ;y Câu Cho 0 P 2 x0 y0 A 3 x y 7 nghiệm hệ 4 x y Giá trị B 11 C biểu thức D 12 y m 3 x Câu Điều kiện m để hàm số đồng biến với x A m B m 3 C m D m Câu Cho x1 , x2 hai nghiệm phương trình x x 0 Khi x12 x2 x1 x2 A B C D 18 A x;y Câu Cho parabol y x đường thẳng y 3x cắt điểm 1 B x2 ; y2 Giá trị y1 y2 A 15 B 17 C D Câu Cho ABC vuông A , BC 5cm , AC 4cm Khẳng định đúng? tan C A cot C B sin C C sin B D Câu Từ vị trí cách 300m, bạn Nam nhìn thấy đỉnh núi góc nhìn 30 45 với phương nằm ngang Chiều cao núi làm tròn tới mét A 150m B 409m C 410m D 820m Trang Câu 10 Cho ABC cân A nội tiếp đường tròn tâm O Biết BAC 120 số đo ACO 0 B 90 A 120 C 60 D 15 PHẦN II TỰ LUẬN (7,5 điểm) A x x Câu (1,5 điểm) Cho biểu thức x 4 a) Tính giá trị B x 4 b) Tính P A.B c) Tìm x để P Câu (2,0 điểm) 2 x B x x với x y m x a) Tìm m để đường thẳng song song với đường thẳng qua hai điểm A 1; B 3;10 b) Gọi x1 , x2 hai nghiệm phương trình x 2mx 0 Tìm giá trị 2 m để x1 1 x2 1 2 O Câu (3,0 điểm) Cho nửa đường tròn đường kính BC Lấy điểm A tia đối tia CB Kẻ tiếp tuyến AF với nửa đường tròn ( F tiếp điểm) Tiếp tuyến kẻ từ B cắt AF D a) Chứng minh tứ giác DFOB nội tiếp b) Chứng minh AO AB AF AD BD MD 1 c) Kẻ OM vng góc BC ( M thuộc AD ) Chứng minh DM AM x3 3x – x x 0 Câu (1,0 điểm) Giải phương trình: - HẾT - Trang Đáp án I Trắc nghiệm Mỗi câu 0,25 điểm Câu Đáp án B D B C A A B D C 10 C II Tự luận Câu Đáp án Điểm 0,5 a Với x = ta có B 2 b Với x x 4 ta có : P AB 5 x x 2 x x x x 6 Câu P x Vậy c x 2 P x 2 x 2 x x x 0,25 2 x x x x 2 0,25 x 2 0 x 0,25 x 20 x 2 0x4 Vậy x Câu 0,25 a Gọi đường thẳng qua điểm A B có dạng y ax b 4 a b 10 a b Khi ta có hệ phương trình Phương trình đường thẳng AB y 3x y m x a 3 b 1 Để đường thẳng song song với đường thẳng AB m 3 m 5 b Để phương trình có nghiệm ' m 0 (*) 0,5 0,5 0,25 Trang x1 x2 2m x1 x2 4 Theo Vi-ét ta có: Ta có : 2 x1 1 x2 1 2 0,25 x12 x2 x1 x2 0 x1 x2 x1 x2 x1 x2 0 0,25 4m 4m 0 m 1 m Đối chiếu với (*) ta m Câu 0,25 a Vẽ hình D M F B O C A 0,25 Vì AF BD tiếp tuyến nên DBO DFO 90 0 Xét tứ giác DFOB có DBO DFO 90 90 180 0,75 Nên tứ giác DFOB nội tiếp đường trịn đường kính DO b Chứng minh AOF #ADB ( g g ) 0,5 AO AD AO AB AF AD Suy AF AB 0,5 c Vì OM DB vng góc với BC nên DB//OM Suy BDO DOM (1) 0,25 Vì tiếp tuyến BD DF cắt nên BDO ODM (2) Từ (1) (2) suy DMO ODM hay DOM cân M DM MO 0,25 Vì DB//OM nên theo định lí Talet có Trang BD AD MO AM BD AM DM DM AM BD DM 1 DM AM BD DM 1 DM AM x3 x – x x 1 0,25 0,25 Điều kiện : x Đặt y = x với y 0 ta : x 3x – y y 0,25 x 3x – 4y y x x y y 0 ( x y ) (3x y y ) 0 ( x y ) x xy y y ( x y )( x y ) 0 0,25 ( x y )( x y ) 0 x y x y 0 Câu *) Khi x y ta có : x x x x 0 x 0,25 1 (t / m) x 1 (loai ) x *) Khi x y 0 ta có: x x = x x 2 x 2 x ( x 1 x 2 2 x 0) 0,25 ( thỏa mãn x ) 1 x1 , x2 2 2 Vậy phương trình có hai nghiệm : Trang Trang