Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 85 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
85
Dung lượng
1,6 MB
Nội dung
DỰBÁOBẰNGPHÂNTÍCHHỒIQUY
Phùng ThanhBình
ptbinh@ueh.edu.vn
1
Chúng ta vừa khảo sát một số mô hình dựbáo giản đơn thuộc nhóm các mô
hình dựbáo chuỗi thời gian. Như chúng tôi đã đề cập ở chương 1, mô hình
dự báo chuỗi thời gian sẽ giúp dựbáo các giá trị tương lai về một đối tượng
dự báo nào đó trên nền tảng xu hướng vận động của chính chuỗi dữ liệu đó
trong quá khứ và hiện tại. Tuy nhiên, các biến kinh tế thường có các mối
quan hệ với nhau, và dựa trên các mối quan hệ đó mà chúng ta có thể suy
luận được hành vi của một biến số nào đó khi đã có thông tin từ các biến số
khác có liên quan. Chẳng hạn, các nhà hoạch định chính sách vĩ mô có thể
dự báo được tốc độ tăng trưởng kinh tế trên cơ sở dự đoán được các thông
tin tương lai về cung tiền, lãi suất, hay chi tiêu công. Hoặc các nhà nghiên
cứu có thể dự đoán được mức độ chi tiêu của dân cư cho một nhóm hàng
hóa nào đó trên cơ sở dự đoán xu hướng gia tăng trong thu nhập và trình độ
học vấn. Hoặc giám đốc kinh doanh của một doanh nghiệp có thể dự đoán
được doanh số trong tương lai trên cơ sở dự trù các khoản chi tiêu cho
quảng cáo và chi tiêu cho nghiên cứu thị trường. Để có thể làm được như
vậy, các phương pháp phântíchhồiquy trở thành một trong những công cụ
vô cùng hữu ích. Ngoài ra, phântíchhồiquy còn giúp những người nghiên
cứu kiểm chứng nhiều giả thiết kinh tế quan trọng nhằm có thêm thông tin
chắc chắn cho việc ra quyết định về chính sách hay giải pháp nào đó. Hơn
nữa, chúng ta sẽ tiếp tục tìm hiểu một số mô hình dựbáo chuỗi thời gian
phức tạp ở các chương sau, và các mô hình đó sẽ không thể nào thực hiện
được nếu người phântích không được trang bị một nền tảng tương đối về
phân tíchhồi quy.
MỤC TIÊU HỌC TẬP
Chương này giúp chúng ta hiểu được các vấn đề cơ bản nhất về phântích
hồi quy và các ứng dụng của phântíchhồiquy trong dựbáo với các nội
dung sau đây:
Các vấn đề cơ bản về phântíchhồiquy
Giải thích ý nghĩa thống kê của các kết quả hồiquy
Thực hiện các kiểm định giả thiết quan trọng
Giải thích ý nghĩa kinh tế của các kết quả hồiquy
Nhận biết và khắc phục một số vấn đề thường gặp trong phântích
hồi quy
Một số ứng dụng của phântíchhồiquy trong việc ra quyết định về
chính sách và dựbáo
2
MÔ HÌNH HỒIQUY ĐƠN
MỤC ĐÍCH CỦA PHÂNTÍCHHỒIQUY
Theo Gujarati (2003), phântíchhồiquy có thể giúp người phân tích:
Ước lượng giá trị trung bình của biến phụ thuộc khi cho trước giá trị
một hoặc các biến giải thích.
Kiểm định các giả thiết về bản chất của sự phụ thuộc giữa biến độc
lập và biến phụ thuộc.
Dựbáo giá trị trung bình của biến phụ thuộc khi cho trước các giá
trị của các biến giải thích.
Dựbáo tác động biên hoặc độ co giãn của một biến độc lập lên biến
phụ thuộc thong qua hệ số hồi quy.
MÔ HÌNH HỒIQUY TUYẾN TÍNH CỔ ĐIỂN
Mô hình hồiquy tuyến tính cổ điển là một cách xem xét bản chất và hình
thức của mối quan hệ giữa hai hay nhiều biến số. Trong phần này, chúng ta
chỉ tập trung xem xét trường hợp mô hình hai biến. Trong đó Y là biến phụ
thuộc và X là biến độc lập (hay còn gọi là biến giải thích). Như vậy, chúng
ta muốn giải thích/dự báo giá trị của Y theo các giá trị khác nhau của X.
Giả sử, X và Y có mối quan hệ tuyến tính như sau:
E(Y
t
) =
1
+
2
X
t
(7.1)
Trong đó, E(Y
t
) là giá trị trung bình có điều kiện của Y
t
theo X
t
, và
1
,
2
là
các tham số chưa biết của tổng thể (t ký hiệu theo thông lệ dữ liệu chuỗi
thời gian cho quan sát vào thời điểm t của biến quan sát). Phương trình
(7.1) được gọi là phương trình hồiquy tổng thể. Giá trị thực Y
t
sẽ không
phải luôn luôn bằng giá trị kỳ vọng E(Y
t
), vì vậy Y
t
có thể được thể hiện
như sau:
Y
t
= E(Y
t
) + u
t
Y
t
=
1
+
2
X
t
+ u
t
(7.2)
Trong đó, u
t
được gọi là hạng nhiễu ngẫu nhiên. Và u
t
luôn tồn tại do các
nguyên nhân như bỏ sót biết giải thích, sai dạng mô hình do bỏ qua các tác
động trễ, sai dạng hàm, lỗi đo lường, hoặc do đơn giản hóa mô hình bằng
cách tổng hợp một số biến khác nhau thành một biến giải thích duy nhất.
3
PHƯƠNG PHÁP BÌNH PHƯƠNG BÉ NHẤT
Phương pháp được sử dụng phổ biến nhất nhằm ước lượng các hệ số hồi
quy là phương pháp bình phương bé nhất thông thường (OLS)
1
. Theo
Gujarati (2003), dưới các giả định của mô hình hồiquy tuyến tính cổ điển
(sẽ trình bày ở phần sau), thì phương pháp OLS có nhiều tính chất thống kê
rất hấp dẫn làm cho nó trở thành một phương pháp mạnh và phổ biến nhất
trong phântíchhồi quy. Phương pháp OLS được cho là của nhà toán học
nổi tiếng người Đức Carl Friedrich Gauss.
Nhắc lại hàm hồiquy tổng thể ở phương trình (7.2):
Y
t
=
1
+
2
X
t
+ u
t
(7.2)
Do hàm hồiquy tổng thể này không thể quan sát trực tiếp được, nên ta ước
lượng nó từ hàm hồiquy mẫu từ phương trình (7.3):
Y
t
=
1
ˆ
+
2
ˆ
X
t
+
t
u
ˆ
(7.3)
=
t
Y
ˆ
+
t
u
ˆ
Trong đó, Y
t
là giá trị quan sát thực tế,
t
Y
ˆ
là giá trị ước lượng hay trung
bình có điều kiện của Y
t
. Ta có
t
u
ˆ
= Y
t
-
t
Y
ˆ
= Y
t
–
1
ˆ
-
2
ˆ
X
t
(7.4)
Phương trình này cho biết phầndư
t
u
ˆ
là hiệu số của giá trị Y thực tế và giá
trị Y ước lượng vào thời điểm t, giá trị này có từ phương trình (7.3).
Xây dựng các hệ số của hàm hồiquy mẫu với điều kiện bình phương
tổng phầndư
)Y
ˆ
Y(u
ˆ
ttt
là tối thiểu nhất. Nghĩa là, nghĩa là xác
định
1
ˆ
và
2
ˆ
sao cho tổng bình phương phầndư
2
t
u
ˆ
(được gọi là RSS)
là tối thiểu. RSS được định nghĩa như sau:
n
1t
2
t21t
n
1t
2
tt
n
1t
2
t
)X
ˆˆ
Y()Y
ˆ
Y(u
ˆ
RSS
(7.5)
Để tối thiểu hóa (7.5), ta lấy đạo hàm bậc một của RSS theo
1
ˆ
và
2
ˆ
và
cho các đạo hàm này bằng không.
0)X
ˆˆ
Y(2
ˆ
RSS
t21t
1
(7.6)
0X)X
ˆˆ
Y(2
ˆ
RSS
tt21t
2
(7.7)
1
Ordinary least squares
4
Hai phương trình (7.6) và (7.7) có thể được viết lại như sau:
t21t
X
ˆˆ
nY
(7.8)
2
t2t1tt
X
ˆ
X
ˆ
YX
(7.9)
Trong đó n là số quan sát trong mẫu. Hệ hai phương trình (7.8) và (7.9) có
thể được biểu diển dưới hình thức ma trận như sau:
2.2
A
2
tt
t
X X
X n
1,2
B
2
1
ˆ
ˆ
=
1,2
C
tt
t
XY
Y
(7.10)
Có thể giải nhanh hệ phương trình (7.10) theo quy tắc Cramer để có
1
ˆ
và
2
ˆ
như sau:
2
t
2
t
tttt
2
t
1
XXn
XYXYX
ˆ
(7.11)
2
t
2
t
tttt
2
XXn
YXXYn
ˆ
(7.12)
Tuy nhiên, các công thức ước tính
1
ˆ
và
2
ˆ
như trên có vẻ hơi phức tạp
nên rất dễ làm người đọc (nhất là sinh viên năm 2 và năm 3 các ngành kinh
tế) ngao ngán vì tính phức tạp của nó. Từ phương trình (7.8) ta có:
X
ˆ
Y
ˆ
21
(7.13)
Thế
1
ˆ
ở phương trình (7.13) vào phương trình (7.9) để tìm
2
ˆ
như sau:
Y
t
X
t
= (
X
ˆ
Y
2
) X
t
+
ˆ
2
X
2
t
Y
t
X
t
=
t2t
XX
ˆ
XY
+
2
ˆ
X
2
t
Do
XnX
t
, nên ta có:
Y
t
X
t
=
2
2
X
ˆ
nXYn
+
ˆ
2
X
2
t
Y
t
X
t
-
XYn
=
2
2
t2
XnX
ˆ
(7.14)
Ta lại có,
)YXYtXYXYX()YY)(XX(
ttttt
=
YXYXXYYX
ttt
=
YXnYXnYXnYX
tt
5
=
YXnYX
tt
(7.15)
Và
2
t
)XX(
=
)XXX2X(
2
t
2
t
=
2
t
2
t
XXX2X
=
2
2
t
XnXXn2X
=
2
2
t
XnX
(7.16)
Thế phương trình (7.15) và (7.16) vào phương trình (7.14) ta có:
2
t2tt
)XX(
ˆ
)YY)(XX(
2
t
tt
2
)XX(
)YY)(XX(
ˆ
(7.17)
=
2
t
tt
x
yx
Trong đó, x
t
= (X
t
-
X
) và y
t
= (Y
t
-
Y
). Như vậy, qua một vài bước biến
đối nhỏ ta có công thức ước tính
2
ˆ
cực kỳ đơn giản và rất ý nghĩa. Tưởng
tượng rằng, lấy cả tử và mẫu của (7.17) chia cho (n-1), ta có:
)X(Var
)Y,X(Cov
ˆ
t
tt
2
(7.18)
Ngoài ra,
2
ˆ
ở phương trình (7.17) còn có thể được thể hiện một cách khác
như sau:
2
ˆ
=
2
t
tt
x
yx
=
2
2
t
ttt
2
t
tt
XnX
)xYYx
)XX(
)YY(x
=
2
2
t
tt
2
2
t
ttt
XnX
Yx
XnX
)XX(YYx
=
2
2
t
tt
XnX
Yx
=
2
t
tt
x
Yx
(7.19)
Các công thức ở phương trình (7.17) và (7.19) mách cho chúng ta một điều
rất thú vị rằng,
1
ˆ
là một hàm tuyến tính theo
2
ˆ
,
2
ˆ
là một hàm tuyến tính
6
theo Y
t
, nên cả
1
ˆ
và
2
ˆ
đều là các hàm tuyến tính theo Y
t
. Và Y
t
là một
hàm tuyến tính theo u
t
, vậy
1
ˆ
và
2
ˆ
là các hàm tuyến tính theo u
t
. Cho
nên, nếu u
t
có phân phối chuẩn thì
1
ˆ
và
2
ˆ
cũng sẽ có phân phối chuẩn.
CÁC GIẢ ĐỊNH CỦA HỒIQUY TUYẾN TÍNH CỔ ĐIỂN
Theo Gujarati (2003), nếu mục tiêu của ta chỉ là ước lượng các hệ số
1
và
2
, thì chỉ cần phương pháp OLS là đủ. Nhưng, như ta đã biết, các mục tiêu
của phântíchhồiquy không chỉ dừng lại ở việc có được các giá trị ước
lượng
1
ˆ
và
2
ˆ
, mà còn phải suy diễn (dự báo khoảng) về các giá trị thực
1
và
2
thực sự có ý nghĩa thống kê hay không. Chính vì vậy, chúng ta cần
biết cụ thể về bản chất của hàm hồiquy tổng thể. Cụ thể, chúng ta không
chỉ xác định dạng hàm của mô hình hồi quy, mà còn đưa ra các giả định về
cách mà Y
t
được tạo ra như thế nào. Phương trình (7.2) cho thấy Y
t
phụ
thuộc vào cả X
t
và u
t
. Cho nên, nếu ta không biết X
t
và u
t
được tạo ra như
thế nào, thì ta sẽ không có cách nào suy diễn được Y
t
cũng như các hệ số
1
và
2
. Chính vì thế, các giả định về biến giải thích X
t
và số hạng nhiễu u
t
có
ý nghĩa rất quan trọng cho việc giải thích các giá trị ước lượng của hồi quy.
Ta đã biết, các hạng nhiễu u
t
(không thể quan sát được) là các hạng nhiễu
ngẫu nhiên. Do hạng nhiễu u
t
cộng với một số hạng phi ngẫu nhiên X
t
để
tạo ra Y
t
, vậy Y
t
sẽ là một biến ngẫu nhiên. Dưới đây là tóm tắt các giả
định trong mô hình hồiquy tuyến tính cổ điển.
BẢNG 7.1: Giả định của mô hình hồiquy tuyến tính cổ điển
Giả định
Biểu diễn dạng toán
Không thỏa mãn do
(1)
Mô hình tuyến tính
Y
t
=
1
+
2
X
t
+ u
t
Sai dạng mô hình
(2)
Mô hình được xác định đúng
(3)
X
t
có thể biến thiên
Var(X
t
) 0
Sai dạng mô hình
(4)
X
t
và u
t
không tương quan
Cov(X
t
,u
t
) = 0
Tự hồiquy
(5)
Giá trị kỳ vọng của hạng
nhiễu bằng không
E(u
t
) = 0
Sai dạng mô hình
(6)
Không có đa cộng tuyến
,0)XX(
jtjiti
i j
Đa cộng tuyến
(7)
Phương sai không đổi
Var(u
t
) =
2
Phương sai thay đổi
(8)
Không có tương quan chuỗi
Cov(u
t
,u
s
) = 0, t s
Tự tương quan
(9)
Hạng nhiễu phân phối chuẩn
u
t
~ N( ,
2
)
Outliers
ĐẶC ĐIỂM CỦA CÁC ƯỚC LƯỢNG OLS
Các ước lượng của OLS khi tuân thủ các giả định sẽ đạt được tiêu chuẩn
BLUE
2
, có nghĩa là ước lượng không chệch, tuyến tính, và tốt nhất. Ước
lượng là tuyến tính do giá trị ước lượng hệ số hồi được biểu diễn tuyến tính
theo Y (phương trình 7.20). Giá trị các ước lượng của các hệ số hồiquy là
không chệch do kỳ vọng của ước lượng hệ số hồiquy trong hàm hồiquy
mẫu bằng với giá trị của hệ số hồiquy trong hàm hồiquy tổng thể (phương
2
Best linear unbiased estimator
7
trình 7.25 và 7.26), và ước lượng của các hệ số hồiquy là tốt nhất vì
phương sai của các hệ số hồiquy của hàm hồiquy mẫu là nhỏ nhất
(phương trình 7.29 và 7.30).
Công thức ở phương trình (7.19) có thể được viết lại như sau:
2
t
tt
2
x
Yx
ˆ
=
tt
Yk
(7.20)
trong đó,
2
t
t
t
x
x
k
(7.21)
Phương trình (7.20) cho thấy
2
ˆ
là một ước lượng tuyến tính bởi vì nó là
một hàm tuyến tính của Y
t
. Nói cách khác, các ước lượng OLS là một trung
bình có trọng số của Y
t
, với k
t
đóng vai vai trò như các trọng số. Tương tự,
2
ˆ
cũng là một ước lượng tuyến tính theo Y
t
.
1
ˆ
=
X
ˆ
Y
2
=
tt
YkXY
(7.22)
Tính chất của k
t
1. Do X
t
được giả định là phi ngẫu nhiên (cố định), nên k
t
cũng phi
ngẫu nhiên
2.
0k
t
(do
0x
t
)
3.
2
t
2
t
x
1
k
(do
2
t
2
t
2
t
2
t
x
1
.
x
x
k
)
4.
1Xkxk
tttt
(do
ttttttttt
xkkXXk)XX(kxk
)
Dựa vào các tính chất của k
t
ta suy ra các công thức của
1
ˆ
và
2
ˆ
như sau.
Thế công thức Y
t
=
1
+
2
X
i
+ u
t
vào công thức (7.20), ta có
2
ˆ
=
)uX(k
tt21t
=
tttt2t1
ukXkk
=
tt2
uk
(7.23)
Thế các công thức
XY
21
và công thức Y
t
=
1
+
2
X
t
+ u
t
vào
công thức (7.22), ta có:
tt11
ukX
ˆ
(7.24)
8
Như vậy,
1
ˆ
và
2
ˆ
là các hàm tuyến tính theo các hạng nhiễu ngẫu nhiên
u
t
. Chính vì thế
1
ˆ
và
2
ˆ
sẽ có phân phối theo u
t
.
Trung bình của các ước lượng OLS
Từ hai phương trình (7.23) và (7.24), ta thấy rằng nếu lấy giá trị trung bình
của các ước lượng
1
ˆ
và
2
ˆ
ta sẽ có:
E(
1
ˆ
) =
1tt1
)ukX(E
(7.25)
E(
2
ˆ
) =
2tt2
)uk(E
(7.26)
Như vậy, các ước lượng OLS có một tính chất rất quan trọng là có giá trị
trung bình đúng bằng giá trị thực của tổng thể. Chính nhờ điều này mà
người ta gọi các ước lượng OLS là các ước lượng không chệch.
Phương sai của các ước lượng OLS
Từ định nghĩa về phương sai ta có:
Var(
2
ˆ
) = E[
2
ˆ
– E(
2
ˆ
)]
2
= E(
2
ˆ
–
2
)
2
(7.27)
Thế công thức (7.26) vào (7.27), ta có:
Var(
2
ˆ
) = E(
2
+
n
1t
tt
uk
-
2
)
2
=
2
n
1t
tt
ukE
=
n1nn1n2121
2
n
2
n
2
2
2
2
2
1
2
1
uukk2 uukk2uk ukukE
Do ta giả định phương sai nhiễu không đổi, nên
22
t
)u(E
tại mỗi giá trị t
và không có tự tương quan nên E(u
t
u
s
) = 0, với t s, nên ta có:
Var(
2
ˆ
) =
22
n
22
2
22
1
k kk
=
2
t
2
k
(7.28)
Thế tính chất số (3) của k
t
vào (7.28) ta có:
Var(
2
ˆ
) =
2
t
2
x
(7.29)
Thực hiện tương tự, ta có:
Var(
1
ˆ
) =
2
2
t
2
t
xn
X
(7.30)
9
Lấy căn bậc hai các phương trình (7.29) và (7.30) ta có các sai số chuẩn
của các hệ số hồiquy
1
ˆ
và
2
ˆ
như sau:
se(
2
ˆ
) =
2
t
x
(7.31)
se(
1
ˆ
) =
2
t
2
t
xn
X
(7.32)
Trong đó,
2
là một hằng số do ta giả định phương sai nhiễu không đổi.
Với một dữ liệu mẫu nhất định thì ta có thể dễ dàng tính được
2
t
X
và
2
t
x
, trừ
2
. Nếu có được một giá trị phương sai nhất định thì các sai số
chuẩn của các hệ số hồiquy sẽ có một giá trị xác định. Trên thực tế, ta chỉ
có ước lượng của
2
được tính theo công thức sau đây:
2n
u
ˆ
ˆ
2
t
2
(7.33)
Ở đây,
2
ˆ
cũng là một ước lượng không chệch của phương sai nhiễu
2
. Ở
công thức (7.33), (n-2) là bậc tự do, ký hiệu là d.f., và
2
t
u
ˆ
là tổng bình
phương phần dư, ký hiệu là RSS. Chắc chắn chúng ta sẽ thắc mắc tại sao
bậc tự do của RSS là (n-2), hay bằng số quan sát trong mẫu trừ số hệ số
ước lượng trong mô hình hồi quy. Có nhiều cách giải thích số bậc tự do,
như ta có thể giải thích đơn giản như sau. Ta thấy rằng, trước khi có thể
tính được RSS như ở công thức (7.5), trước tiên ta phải có các hệ số
1
ˆ
và
2
ˆ
vì các giá trị của Y
t
và X
t
đã có sẵn từ dữ liệu mẫu. Để ước lượng được
1
ˆ
và
2
ˆ
, ta cần ít nhất hai cặp quan sát (Y
t
,X
t
) bất kỳ (nghĩa là xác định
phương trình đường thẳng qua hai điểm). Như vậy, hai giá trị ước lượng
này là hai ràng buộc lên RSS. Nói cách khác, trong tập hợp tất cả các cặp
quan sát (Y
t
,X
t
) trong miền giá trị của mẫu dữ liệu sẽ có ít nhất hai cặp
quan sát nào đó nằm trên (hoặc rất gần với) đường hồiquy mẫu. Chính vì
thế, phầndư tương ứng sẽ bằng không hoặc rất nhỏ. Như vậy, thực sự giá
trị của RSS chỉ do (n-2) giá trị
2
t
u
ˆ
tạo thành. Như vậy, (n-2) chính là số
nguồn thông tin để tính RSS.
Lấy căn bậc hai của công thức (7.33) ta sẽ có sai số chuẩn của giá trị
ước lượng hay sai số chuẩn của hồiquy (
ˆ
) như sau:
2n
RSS
ˆ
(7.34)
Đây chính là độ lệch chuẩn của các giá trị Y quanh đường hồiquy mẫu và
được sử dụng như một thước đo “mức độ phù hợp” của đường hồiquy so
với các giá trị thực tế từ mẫu dữ liệu.
10
HỆ SỐ XÁC ĐỊNH r
2
Cho đến đây chúng ta đã xem xét xong vấn đề ước lượng các hệ số hồi quy,
các sai số chuẩn, và tính chất của các ước lượng OLS. Bây giờ chúng ta sẽ
xem xét mức độ phù hợp của đường hồiquy mẫu với dữ liệu thực tế; nghĩa
là, ta sẽ xem đường hồiquy mẫu phù hợp với dữ liệu mẫu như thế nào. Hệ
số xác định r
2
(cho trường hợp mô hình hồiquy đơn) và R
2
(cho trường hợp
mô hình hồiquy bội) là một thước đo chung cho biết một đường hồiquy
nhất định sẽ phù hợp với dữ liệu mẫu như thế nào.
Để có thước đo độ phù hợp, trước hết ta cần phântích giá trị thực Y
t
theo các các trị ước lượng và phầndư như ở phương trình (7.3):
Y
t
=
t
Y
ˆ
+
t
u
ˆ
(7.3)
Cả trừ cả hai vế của phương trình (7.3) cho
Y
, ta có:
Y
t
-
Y
=
t
Y
ˆ
-
Y
+
t
u
ˆ
(7.35)
Do chúng ta cần một thước đo về tổng biến thiên của Y
t
quanh giá trị trung
bình
Y
, nên phương trình (7.35) được viết lại như sau:
)u
ˆ
YY
ˆ
()YY(
ttt
(7.36)
Lấy bình phương hai vế của (7.36), ta có:
2
tt
2
t
)u
ˆ
YY
ˆ
()YY(
(7.37)
Tương đương với,
2
t
2
t
2
t
)u
ˆ
y
ˆ
(y
(7.38)
tt
2
t
2
t
u
ˆ
y
ˆ
2u
ˆ
y
ˆ
(7.39)
Do
0u
ˆ
y
ˆ
tt
và
t2t
x
ˆ
y
ˆ
, nên phương trình (7.39) có thể được viết lại
như sau:
2
t
2
t
2
t
u
ˆ
y
ˆ
y
2
t
2
t
2
2
u
ˆ
x
ˆ
(7.40)
Trong đó,
2
t
2
t
)YY(y
là tổng biến thiên của giá trị Y thực tế quanh
giá trị trung bình mẫu và được gọi là tổng bình phương (TSS).
2
t
2
2
2
t
2
t
2
t
x
ˆ
)YY
ˆ
()Y
ˆ
Y
ˆ
(y
ˆ
là tổng biến thiên của giá trị Y
ước lượng quanh giá trị ước lượng trung bình
)YY
ˆ
(
và được gọi là tổng
bình phương được giải thích bởi hàm hồi quy, hay đơn giản hơn là tổng
bình phương phần được giải thích (ESS).
2
t
u
ˆ
là tổng biến thiên phầndư
hay phần không được giải thích của các giá trị Y quanh đường hồi quy, hay
[...]... rằng, chúng ta cần thiết phải kiểm định một hệ số hồiquy có ý nghĩa thống kê hay không vì đó là cơ sở quan trọng cho việc có thể sử dụng kết quả ước lượng cho các mục đích dựbáo hệ số co giãn hoặc phântích chính sách đối với các mô hình nhân quả Ngoài ra, điều này cũng đúng đối với các mô hình dựbáobằnghồiquy hàm xu thế (ở chương 5) ƯỚC LƯỢNG HỒIQUY ĐƠN TRÊN EVIEWS Giả sử ta bắt đầu từ việc nhập... ta có thể nhận thấy rằng các giá trị skewness và kurtosis là -0 .18 và 2.86, gần bằng giá trị phân phối chuẩn là 0 và 3 31 10 Series: RESID Sample 1990Q1 2001Q3 Observations 47 8 Mean Median Maximum Minimum Std Dev Skewness Kurtosis Jarque-Bera Probability 6 4 2 0 -0 .06 -0 .04 -0 .02 0.00 0.02 0.04 -2 .62e-15 0.000724 0.051238 -0 .057621 0.024457 -0 .181923 2.864133 0.295401 0.862689 0.06 HÌNH 7.2: Đồ thị... hồiquy riêng bất kỳ sẽ được thể hiện như sau: 2 var(ˆ j ) x 2 j 1 1 R2 j (7.87) Trong đó, ˆ j là hệ số hồiquy riêng của Xj và R2j là R2 trong phương trình hồiquy của Xj theo (k-2) biến giải thích còn lại Phương trình này rất có ý nghĩa khi ta phântích vấn đề hiện tượng đa cộng tuyến R2 VÀ R2 ĐIỀU CHỈNH Như đã trình bày ở trên, hệ số xác định R2 vẫn là một thước đo mức độ phù hợp trong mô hình hồi. .. Bước 2: Hồiquy yt theo u t yt ˆ ˆu t ˆ vt ˆ yt u t ˆt u2 ˆ là ảnh hưởng của biến “X2t điều chỉnh” lên Yt, và đó chính là thước đo ảnh hưởng của riêng X2t lên Yt, khi X3t được giữ 20 nguyên4 Và ˆ sẽ đúng bằng ˆ 2 Chúng ta có thể làm tương tự cho X3t và có thể mở rộng cho mô hình hồiquy k biến ĐẶC ĐIỂM CỦA CÁC ƯỚC LƯỢNG OLS Dựa trên các giả định của CLRM, thì các hệ số hồiquy của mô hình hồiquy bội... tức phầndư của phương trình hồiquy Từ kết quả hồiquy mô hình về IMPORTS, ta có đồ thị phầndư như ở Hình 7.2 Đồ thị này cho thấy phầndư từ mô hình hồiquy có phân phối chuẩn Chúng ta cũng tính được giá trị thống kê Jarque-Bera (JB) cho việc kiểm định tính chuẩn Trong ví dụ này, giá trị JB là 0.295 với xác suất p là 0.863 Như vậy, hạng nhiễu trong mô hình của chúng ta có phân phối chuẩn Dĩ nhiên, lưu... trình hồiquy mẫu Chính vì thế, phầndư tương ứng sẽ bằng không hoặc rất nhỏ Như vậy, thực sự giá trị của RSS chỉ do (n-3) giá ˆt trị u 2 tạo thành Như vậy, (n-3) chính là số nguồn thông tin của RSS Lấy căn bậc hai của công thức (7.75) ta sẽ có sai số chuẩn của giá trị ước lượng hay sai số chuẩn của hồiquy ( ˆ ) như sau: ˆ ˆt u2 n 3 (7.77) 22 Đây chính là độ lệch chuẩn của các giá trị Y quanh đường hồi. .. tính được các ước lượng khoảng của các ước lượng OLS HỆ SỐ XÁC ĐỊNH R2 MÔ HÌNH HỒIQUY BỘI Ta biết rằng, trong mô hình hồiquy đơn, r2 là thước đo mức độ phù hợp của hàm hồi quy; nghĩa là, nó cho biết tỷ lệ hay phần trăm tổng biến thiên của biến phụ thuộc Y được giải thích bởi biến giải thích X Tương tự, trong mô hình hồiquy bội, ta cũng muốn biết tỷ lệ phần trăm biến thiên trong Y được giải thích... trung bình Độ lệch chuẩn của Y Sai số chuẩn của ước lượng ˆ Giá trị thống kê F RSS n 2 RSS Hệ số ˆ 2 R2 Giá trị thống kê t của ˆ 2 Thống kê d Durbin-Watson ˆ tˆ 2 2 se( ˆ 2 ) 2.9091 0.2505 pr( F >134.85 ) MÔ HÌNH HỒIQUY BỘI Thông thường trong các mối quan hệ kinh tế hay quản trị, biến phụ thuộc, Y, phụ thuộc vào nhiều biến giải thích khác nhau Cho nên, chúng ta cần phải mở rộng phân tíchhồiquy cho... Tuy nhiên, trò chơi này có thể rất nguy hiểm, vì phân tíchhồiquy không nhằm mục tiêu có được một giá R2 điều chỉnh cao, mà mục đích chính là tìm ra được các giá trị ước lượng của các hệ số hồiquy thực của tổng thể và rút ra các suy luận thống kê về các giá trị thực này Nhiều nghiên cứu thực tiễn có R2 điều chỉnh rất cao nhưng có một số hệ số hồiquy không có ý nghĩa 26 thống kê hoặc thậm chí có... bằng các ước lượng của chúng là se( ˆ 1 ) và se( ˆ 2 ), thì các biến t 1 ˆ ˆ 2 2 sẽ theo phân ˆ ) ˆ ) se( 1 se( 2 phối t với n-2 bậc tự do (trong trường hợp hồiquy đơn) Như vậy, chúng ta sẽ sử dụng thống kê t để kiểm định các giả thiết về các hệ số hồiquy 1 1 và t 2 Các bước kiểm định ý nghĩa của các hệ số hồiquy OLS Bước 1: Xác định giả thiết không (H0) và giả thiết khác (H1 hoặc Ha) Thông thường, . DỰ BÁO BẰNG PHÂN TÍCH HỒI QUY Phùng Thanh Bình ptbinh@ueh.edu.vn 1 Chúng ta vừa khảo sát một số mô hình dự báo giản đơn thuộc nhóm các mô hình dự báo chuỗi thời gian quả hồi quy Nhận biết và khắc phục một số vấn đề thường gặp trong phân tích hồi quy Một số ứng dụng của phân tích hồi quy trong việc ra quy t định về chính sách và dự báo 2 MÔ HÌNH HỒI. quy và các ứng dụng của phân tích hồi quy trong dự báo với các nội dung sau đây: Các vấn đề cơ bản về phân tích hồi quy Giải thích ý nghĩa thống kê của các kết quả hồi quy Thực hiện các kiểm