L R= 2(R – U) (7.106) Trong đó, R và U là các giá trị tối đa hóa của hàm log-likelihood của ha
NGUYÊN NHÂN CỦA TỰ TƯƠNG QUAN
Có nhiều cách lý giải hiện tượng tự tương quan, nhưng thường có ba nhóm nguyên nhân sau đây. Nguyên nhân thứ nhất có thể dẫn đến hiện tượng tự tương quan là do bỏ sót biến quan trọng. Ví dụ, Yt thực sự phụ thuộc vào X2t và X3t, vì một lý do nào đó mà người nghiên cứu không đưa X3t vào mô hình. Như vậy, ảnh hưởng của X3t sẽ được bao hàm trong hạng nhiễu ut. Nếu X3t, cũng như nhiều chỉ báo kinh tế khác có phụ thuộc vào X3,t-1, X3,t-2, v.v. Điều này sẽ dẫn đến một hệ quả không thể tránh khỏi là tồn tại mối
5
44
tương quan giữa ut và ut-1, ut-2, v.v. Như vậy, các biến bị bỏ sót là một nguyên nhân của tự tương quan.
Tự tương quan cũng có thể xảy ra do lỗi sai dạng hàm. Giả sử, Yt phụ thuộc vào X2t theo dạng hàm bậc hai, nghĩa là
t 2 t 2 3 t 2 2 1 t X X u
Y , nhưng người phân tích lại giả sử và ước lượng mô hình tuyến tính Yt 1 2X2t ut. Như vậy, hạng nhiễu từ mô hình tuyến tính sẽ phụ thuộc vào 2
t 2
X . Nếu X2t là một hàm tăng hoặc giảm theo thời gian, thì ut cũng sẽ là một hàm tăng hoặc giảm theo thời gian. Điều này chứng tỏ tự tương quan là do xác định sai dạng hàm.
Nguyên nhân thứ ba là do lỗi sai sót hệ thống trong việc đo lường. Giả sử một công ty cập nhật tồn kho của mình định kỳ theo thời gian, nếu một lỗi hệ thống xảy ra trong việc đo lường (ví dụ do ước lượng quá cao tồn kho ở một giai đoạn nào đó sẽ dẫn đến ước lượng quá cao ở các giai đoạn tiếp theo), thì lượng tồn kho tích lũy sẽ thể hiện các sai số do đo lường.
Trong kinh tế lượng chuỗi thời gian, người ta rất quan tâm đến việc phân loại hiện tượng tự tương quan do sai dạng mô hình với hiện tượng tự tương quan thuần túy. Hiện tượng tự tương quan do sai dạng mô hình có thể dễ dàng khắc phục bằng việc kiểm tra và xác định lại dạng mô hình thích hợp. Ngược lại, hiện tượng tự tương quan thuần túy là do bản chất nội tại của các chuỗi thời gian, khi đó, dù đã chuyển đổi dạng mô hình nhưng vẫn tồn tại tự tương quan. Đây là vấn đề chúng ta quan tâm nhiều hơn trong quá trình phân tích.
Một điểm quan trọng nữa cần lưu ý khi phân tích hồi quy chuỗi thời gian là chúng ta nên để ý đến việc phân tích chẩn đoán phần dư. Vì nếu phần dư không ngẫu nhiên, không có phân phối chuẩn là một dấu hiệu của khả năng tự tương quan. Và nếu đều này xảy ra, thì chúng ta trước hết nên xem xét lại dạng mô hình. Chỉ khi nào mô hình được xác định đúng, không có tự tương quan (và không có phương sai thay đổi) thì chúng ta mới có thể sử dụng kết quả hồi quy cho các mục đích phân tích chính sách và dự báo.