Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 29 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
29
Dung lượng
1,71 MB
Nội dung
CHỦ ĐỀ HAI ĐƯỜNG THẲNG SONG SONG I KIẾN THỨC TRỌNG TÂM 1) Các hệ thức lượng giác Vị trí tương đối hai đường thẳng phân biệt - Hai đường thẳng gọi đồng phẳng chúng nằm mặt phẳng - Hai đường thẳng gọi chéo chúng không đồng phẳng - Hai đường thẳng gọi song song chúng đồng phẳng khơng có điểm chung Kết luận: Hai đường thẳng a b song song với xác định mặt phẳng ký hiệu mp a; b 2) Hai đường thẳng song song Tính chất 1: Trong khơng gian, qua điểm nằm ngồi đường thẳng cho trước, có đường thẳng song song với đường thẳng cho Tính chất 2: Hai đường thẳng phân biệt song song với đường thẳng thứ ba song song với Định lý: Nếu ba mặt phẳng đôi cắt theo ba giao tuyến ba giao tuyến đồng quy đôi song song với Hệ 1: Hai mặt phẳng phân biệt chứa hai đường thẳng song song giao tuyến (nếu có) hai mặt phẳng nói song song với hai đường thẳng trùng với hai đường thẳng Trang Hệ 2: Hai đường thẳng phân biệt song song với đường thẳng song song với II HỆ THỐNG VÍ DỤ MINH HỌA Ví dụ Cho hình chóp S ABCD , có đáy hình thang với đáy lớn AB Gọi M , N trung điểm SA SB a) Chứng minh: MN / / CD b) Tìm giao điểm P SC với AND Kéo dài AN DP cắt I Chứng minh SI / / AB / / CD Tứ giác SIBA hình gì? Vì sao? Lời giải: a) Ta có MN đường trung bình tam giác SAB nên MN / / AB mặt khác AB / /CD MN / /CD b) Gọi O AC CD E SO ND SE cắt SC P Xét mặt phẳng SAB ; SCD ABCD có giao tuyến chung SI , AB CD song song đồng quy Do AB / / CD nên SI / / AB / / CD Ta có: SI / / AB Khi đó: NS NI SI 1 NB NA AB SI / / AB SIBA hình bình hành SI AB Ví dụ Cho tứ diện ABCD Gọi M , N , P, Q, R, S trung điểm AB, CD, BC , AD, AC , BD a) Chứng minh MNPQ hình bình hành b) Từ suy ba đoạn MN , PQ, RS cắt trung điểm đoạn Lời giải: Trang MQ / / BD a) Vì MQ đường trung bình tam giác ABD nên ta có MQ BD NP / / BD Tương tự ta có: NP BD Do MQNP hình bình hành từ suy MN PQ cắt trung điểm I đường b) Tương tự chứng minh ta có tứ giác RNSM hình bình hành có RN / / MS RN MS AD suy RS MN cắt trung điểm I MN Vậy ba đoạn MN , PQ, RS cắt trung điểm I đoạn Ví dụ Cho hình chóp S ABCD có đáy hình bình hành, gọi M , N , P, Q nằm BC , SC , SD , AD cho MN / / SB, NP / / CD, MQ / /CD a) Chứng minh rằng: PQ / / SA b) Gọi K giao điểm MN PQ Chứng minh rằng: SK / / AD / / BC Lời giải: Ta có: MN / / SB CN CM DQ (1) SC CB AD Lại có: NP / / CD CN DP (2) (Định lý Ta-let) CS DS Từ (1) (2) suy DP DQ SA / / PQ DS AD b) Xét mặt phẳng SAD ; SBC ABCD cắt theo giao tuyến SK , AD, BC Suy SK , AD, BC song song đồng quy Mặt khác AD / / BC SK / / AD / / BC Ví dụ Cho hình chóp S ABCD đáy hình bình hành Trang a) Tìm giao tuyến cặp mặt phẳng SAD SBC ; SAB SCD b) Lấy M thuộc SC Tìm giao điểm N SD ABM Tứ giác ABMN hình gì? Lời giải: a) Trong SAD dựng đường thằng d qua S song song với AD Ta có: d / / AD , AD / / BC d / / BC Suy d thuộc SBC Nên d giao tuyến SAD SBC Tương tự, SAB dựng đường thẳng d1 qua S , song song với AB d1 giao tuyến SAB với SCD b) Giả sử SD ABM N ABM SCD MN Xét ba mặt phẳng ABM ; ABCD ; SCD cắt theo giao tuyến AB, MN , CD nên chúng song song đồng quy Mà AB / / CD AB / / CD / / MN ABMN hình thang Ví dụ Cho hình chóp S ABCD đáy hình thang ( AB đáy lớn) Gọi I , J , K trung điểm AD, BC , SB a) Tìm giao tuyến SAB SCD ; SCD IJK b) Tìm giao điểm M SD IJK c) Tìm giao điểm N SA IJK d) Xác định thiết diện hình chóp IJK Thiết diện hình gì? Lời giải: a) Do AB / / CD giao tuyến SAB SCD qua điểm S song song với AB CD Giả sử IJK SAB KP với P SA Ba mặt phẳng ABC ; IJK SAB cắt theo giao tuyến IJ , AB PK nên chúng song song đồng quy Mặt khác AB / / IJ PK / / AB / / IJ b) Do PK / / AB mà KS KB P trung điểm SA Khi PI đường trung bình tam giác SAD suy PI / / SD SD không cắt IJKP c) Chứng minh câu b, ta có N trùng với P tức N trung điểm SA Trang d) Ta có thiết diện hình chóp với mặt phẳng IJK tứ giác IPKJ Có KP / / IJ (chứng minh trên) suy thiết diện IPKJ hình thang Ví dụ Cho hình chóp S ABCD , đáy bình hành Gọi M , N , P trung điểm SB , BC , SD a) Tìm giao tuyến SCD MNP b) Tìm giao điểm CD MNP c) Tìm giao điểm AB MNP d) Tìm giao tuyến SAC MNP suy thiết diện hình chóp với mặt phẳng MNP Lời giải: a) Do MN / / SC (tính chất đường trung bình) nên giao tuyến SCD MNP phải d / / MN / / SC Do d qua P song song với SC nên d đường trung bình tam giác SCD Gọi Q trung điểm CD PQ giao tuyến cần tìm b) Ta có Q CD, Q MNP Suy Q giao điểm CD MNP c) Trong mp ABCD , gọi K giao điểm NQ AB Ta có K AB , K NQ MNPQ K MNP Vậy K giao điểm AB với MNP d) Gọi I giao điểm AC BD Trong mp SCD có MP đường trung bình tam giác SBD Gọi E MP SI SAC MNP EF Trong mp SAC , gọi R EF SA thiết diện mặt phẳng MNP với khối chóp ngũ giác MNQPR Ví dụ Cho hình chóp S ABCD , đáy hình thang với cạnh đáy AB CD Gọi I , J trung điểm AD BC G trọng tâm tam giác SAB a) Tìm giao tuyến SAB IJG b) Xác định thiết diện hình chóp với mặt phẳng IJG Thiết diện hình gì? Tìm điều kiện AB CD để thiết diện hình bình hành Lời giải: a) Giả sử SAB IJG MN với M SB N SA Ba mặt phẳng SAB ; IJG ABCD cắt theo ba giao tuyến đường thẳng MN , AB IJ nên chúng song song đồng quy Trang Mặt khác AB / / IJ MN / / AB / / IJ Do SAB IJG MN với MN đường thẳng qua G song song với AB b) Thiết diện hình chóp với mặt phẳng IJG tứ giác MNIJ Ta có: MNIJ hình bình hành MN IJ Lại có: MN SN SG 2 AB CD MN AB; IJ AB SA SK 3 Do đó: MN IJ AB AB CD AB 3CD Vậy AB 3CD thiết diện hình bình hành Ví dụ Cho hình chóp S ABCD có đáy hình bình hành Gọi M , N , P, Q điểm nằm BC , SC , SD, AD cho MN / / BS , NP / / CD, MQ / /CD a) Chứng minh PQ / / SA b) Gọi K MN / / PQ Chứng minh SK / / AD / / BC c) Qua Q dựng đường thẳng Qx / / SC, Qy/ / SB Tìm Qx SAB Qy / / SCD Lời giải: a) Ta có: MN / / BS Tương tự ta có CM CN (1) CB CS CM DQ CN DP (2) CB DA CS DS Từ (l) (2) suy DQ DP PQ / / SA DA DS b) Hai mặt phẳng SBC chung S K nên SAD có SK SBC SAD điểm Mặt khác mặt phẳng SBC , SAD ABCD đôi cắt theo giao tuyến SK , BC , AD mà BC / / AD nên giao tuyến đôi song song hay SK / / AD / / BC c) Trong mặt phẳng ABCD , gọi E CQ BA, G BQ CD Trong mặt phẳng SCQ dựng Qx / / CS cắt SE F Qx SAB F Tương tự mặt phẳng SBG dựng Qy / / BS cắt SG H Qy SCD G Ví dụ Cho hình chóp S ABCD có ABCD hình vuông Trên cạnh BC , AD, SD lấy điểm M , N , P di động cho BM AN SP BC AD SD a) Tìm Q SC MNP Suy thiết diện hình chóp với MNP Thiết diện hình gì? Trang b) Tìm tập hợp điểm K MQ NP , M di động đoạn BC c) Chứng minh SB / / MQ Lời giải: a) Ba mặt phẳng MNP SCD , ABC cắt đôi theo giao tuyến MN , PQ CD BM AN MN / /CD BC AC MN / / CD / / PQ Lại có nên Trong mặt phẳng SCD dựng Px / / SC cắt SC Q Khi thiết diện tứ giác MNPQ có MN / / PQ nên tứ giác hình thang b) Gọi K MQ NP SK SBC SAD Mặt khác mặt phẳng SBC , SAD ABCD đôi cắt theo giao tuyến SK , BC , AD mà BC / / AD nên giao tuyến đôi song song hay SK / / AD / / BC Vậy K nằm đường thẳng qua S song song với AD Khi M B S K K nằm tia St hình vẽ c) Ta có: Do BM AN SP SQ SP Mặt khác MN / / PQ BC AD SD SC SD SQ BM SB / / MQ SC BC Ví dụ 10 Cho tứ diện ABCD Gọi M , N , P, Q, R, S trung điểm AB, CD, AC , BD, AD, BC Gọi A, B, C , D trọng tâm tam giác BCD, ACD, ABD, ABC Chứng minh đoạn thẳng MN , PQ, RS , AA, BB, CC , DD đồng quy G GA 3GA Lời giải: Trang MR / / BD Do M , R trung điểm AB AD nên MR BD SN / / BD Tương tự ta có suy MRNS hình bình hành MN cắt RS trung điểm G SN BD đường Tương tự chứng minh suy PQ qua điểm G Gọi M trung điểm AB BM M A AN MM đường trung bình tam giác ABA nên MM / / AA Lại có: GA đường trung bình tam giác MNM nên MM / / GA Suy A, G , A thẳng hàng hay AA qua G , tương tự ta chứng minh BB, CC , DD qua G , MN , PQ, RS , AA, BB, CC , DD đồng quy G Lại có: AA MM AA 4GA GA 3GA MM 2GA Ví dụ 11 Cho hình chóp S ABCD , có đáy ABCD hình bình hành Gọi I , J trọng tâm tam giác SAB, SAD; M trung điểm CD Xác định thiết diện hình chóp với mặt phẳng IJM Lời giải: Trang Gọi E SI AB , F SJ AD , gọi N IJM BC Ta có: SI SJ IJ / / EF nên mặt phẳng IJM cắt ABCD theo giao tuyến MN MN / / EF SE SF Trong mặt phẳng ABCD gọi P, Q giao điểm MN với AB MN với AD Gọi L SB IP, R SD QJ thiết diện hình chóp với mặt phẳng IJM ngũ giác MNLIJR Ví dụ 12 Cho hình chóp S ABCD đáy hình thang với đáy AD a, BC b Gọi I , J trọng tâm tam giác SAD, SBC a) Tìm đoạn giao tuyến ADJ với mặt SBC đoạn giao tuyến BCI với mặt SAD b) Tìm độ dài đoạn giao tuyến hai mặt phẳng ADJ BCI giới hạn hai mặt phẳng SAB SCD Lời giải: a) Do AD / / BC nên giao tuyến ADJ với mặt SBC đường thẳng qua J song song với BC , tương tự giao tuyến BCI với mặt SAD đường thẳng qua I song song với AD Trang b) Gọi E , F trung điểm AD, BC JF , JE cắt G Qua J kẻ đường thẳng song song với BC cắt SB, SC H , K Do AD / / BC nên giao tuyến hai mặt phẳng ADJ BCI đường thẳng qua G song song với BC Qua G kẻ đường thẳng song song với HK cắt AH , DK L, M Giao tuyến ADJ BCI giới hạn hai mặt phẳng SAB SCD đoạn thẳng LM Áp dụng định lý Menelaus cho điểm thẳng hàng I , G , F tam giác SJE ta có GJ IE FS GJ 1 GE IS FJ GE Gọi N JM AD EN ED DN DN MD MD GE b b DN JK FC JK MK MK GJ 3 2 ab GJ ab ab , GM EN EJ 5 Do LM 2GM a b Ví dụ 13 Cho hình chóp S ABCD có đáy hình thang với đáy lớn AB Gọi I , J trung điểm AD, BC G trọng tâm SAB Xác định thiết diện hình chóp với mặt phẳng IJG Thiết diện hình gì? Tìm điều kiện AB CD để thiết diện hình bình hành Lời giải: Ta có: AB / /CD / / IJ giao tuyến mặt phẳng GIJ SAB đường thẳng song song với AB Qua G dựng đường thẳng song song với AB cắt đường thẳng SA F , cắt SB E Thiết diện tứ giác EFIJ có EF / / IJ nên EFIJ hình thang EF SG (với M trung điểm AB SM AB ) Ta có: AB CD AB , mặt khác IJ (tính chất đường trung bình hình thang) Suy EF Để EFIJ hình bình hành EF IJ AB AB CD AB AB 3CD AB 2CD Ví dụ 14 Cho tứ diện ABCD , cạnh a Gọi I , J trung điểm AC , BC , gọi K điểm cạnh BD với KB KD a) Xác định thiết diện tứ diện với mặt phẳng IJK Thiết diện hình gì? Trang 10 Câu 18 Cho ba mặt phẳng phân biệt , , có d1 , d , d Khi ba đường thẳng d1 , d , d3 A đôi cắt B đôi song song C đồng quy D đôi song song đồng quy Câu 19 Trong không gian, cho đường thẳng a, b, c biết a / / b , a c chéo Khi hai đường thẳng b c A trùng chéo B cắt chéo C chéo song song D song song trùng Câu 20 Trong không gian, cho đường thẳng a, b, c biết a / / b Khẳng định sau sai? A Nếu a / / c b / / c B Nếu c cắt a c cắt b C Nếu A a B b ba đường thẳng a, b, AB nằm mặt phẳng D Tồn mặt phẳng qua a b Câu 21 Trong khẳng định sau, khẳng định đúng? A Hai đường thẳng phân biệt khơng cắt song song B Hai đường thẳng không nằm mặt phẳng chéo C Hai đường thẳng khơng có điểm chung chéo D Hai đường thẳng khơng có điểm chung song song với Câu 22 Cho hình chóp S ABCD đáy ABCD hình thang với AD / / BC Giao tuyến SAD SBC A Đường thẳng qua S song song với AB B Đường thẳng qua S song song với AC C Đường thẳng qua S song song với AD D Đường thẳng qua S song song với CD Câu 23 Nếu hai mặt phẳng phân biệt chứa hai đường thẳng song song giao tuyến chúng (nếu có) : A Song song với hai đường thẳng B Song song với hai đường thẳng trùng với hai đường thẳng C Trùng với hai đường thẳng D Có hai đường thẳng Câu 24 Cho hình chóp S ABCD có đáy hình bình hành Giao tuyến SAB SCD A Đường thẳng qua S song song với AB B Đường thẳng qua S song song với BD C Đường thẳng qua S song song với AD Trang 15 D Đường thẳng qua S song song với AC Câu 25 Cho hình chóp S ABCD , đáy ABCD hình bình hành Giao tuyến hai mặt phẳng SAD SBC đường thẳng song song với đường thẳng sau đây? A AC B DC C AD D BD Câu 26 Cho tứ diện ABCD có M , N hai điểm phân biệt cạnh AB Mệnh đề sau đúng? A CM DN chéo B CM DN cắt C CM DN đồng phẳng D CM DN song song Câu 27 Cho tứ diện ABCD Gọi I , J trọng tâm tam giác ABC ABD Chọn khẳng định khẳng định sau? A IJ song song với CD B IJ song song với AB C IJ chéo CD D IJ cắt AB Câu 28 Cho hình chóp S ABCD có AD khơng song song với BC Gọi M , N , P, Q, R, T trung điểm AC , BD, BC , CD, SA, SD Cặp đường thẳng sau song song với nhau? A MP RT B MQ RT C MN RT D PQ RT Câu 29 Cho hình chóp S ABCD có đáy ABCD hình bình hành Gọi I , J , E , F trung điểm SA, SB, SC , SD Trong đường thẳng sau, đường thẳng không song song với IJ ? A EF B DC C AD D AB Câu 30 Cho tứ diện ABCD Gọi M , N hai điểm phân biệt thuộc đường thẳng AB P, Q hai điểm phân biệt thuộc đường thẳng CD Xét vị trí tương đối hai đường thẳng MP, NQ A MP / / NQ B MP NQ C MP cắt NQ D MP, NQ chéo Câu 31 Cho hình chóp S ABCD có đáy ABCD hình bình hành Gọi d giao tuyến hai mặt phẳng SAD SBC Khẳng định sau đúng? A d qua S song song với BC B d qua S song song với DC C d qua S song song với AB D d qua S song song với BD Câu 32 Cho hình chóp S ABCD có đáy ABCD hình thang với đáy lớn AB đáy nhỏ CD Gọi M , N trung điểm SB SA Gọi P giao điểm SC AND Gọi I giao điểm AN DP Hỏi tứ giác SABI hình gì? A Hình bình hành B Hình chữ nhật C Hình vng D Hình thoi Câu 33 Cho tứ diện ABCD Các điểm P , Q trung điểm AB CD ; điểm R nằm cạnh BC cho BR RC Gọi S giao điểm mặt phẳng PQR cạnh AD Tính tỉ số A B C D SA SD Trang 16 Câu 34 Cho tứ diện ABCD ba điểm P , Q , R lấy ba cạnh AB, CD, BC Cho PR / / AC CQ 2QD Gọi giao điểm AD PQR S Chọn khẳng định đúng? A AD 3DS B AD DS C AS 3DS D AS DS Câu 35 Gọi G trọng tâm tứ diện ABCD Gọi A trọng tâm tam giác BCD Tính tỉ số A B C D GA GA Câu 36 Cho hai mặt phẳng P , Q cắt theo giao tuyến đường thẳng d Đường thẳng a song song với hai mặt phẳng P , Q Khẳng định sau đúng? A a, d trùng B a, d chéo C a song song d D a, d cắt Câu 37 Cho tứ diện ABCD Gọi I J theo thứ tự trung điểm AD AC , G trọng tâm tam giác BCD Giao tuyến hai mặt phẳng GIJ BCD đường thẳng A qua I song song AB B qua J song song BD C qua G song song CD D qua G song song BC Câu 38 Cho hình chóp S ABCD có đáy hình thang với cạnh đáy AB CD Gọi I , J trung điểm AD BC G trọng tâm tam giác SAB Giao tuyến SAB IJG A SC B đường thẳng qua S song song với AB C đường thẳng qua G song song DC D đường thẳng qua G cắt BC Câu 39 Cho hình chóp S ABCD có đáy ABCD hình bình hành Gọi I trung điểm SA Thiết diện hình chóp S ABCD cắt mặt phẳng IBC A Tam giác IBC B Hình thang IBCJ ( J trung điểm SD ) C Hình thang IGBC ( G trung điểm SB ) D Tứ giác IBCD Câu 40 Cho tứ diện ABCD , M N trung điểm AB AC Mặt phẳng qua MN cắt tứ diện ABCD theo thiết diện đa giác T Khẳng định sau đúng? A T hình chữ nhật B T tam giác C T hình thoi D T tam giác hình thang hình bình hành Câu 41 Cho hình chóp S ABCD có đáy ABCD hình bình hành Thiết diện hình chóp cắt mặt phẳng qua trung điểm M BC , song song với BD SC hình gì? A Tam giác B Ngũ giác C Lục giác D Tứ giác Câu 42 Cho hình chóp S ABCD có đáy ABCD hình bình hành Gọi M điểm thuộc đoạn SB ( M khác S B ) Mặt phẳng ADM cắt hình chóp S ABCD theo thiết diện Trang 17 A Hình bình hành B Tam giác C Hình chữ nhật D Hình thang Câu 43 Cho hình chóp S ABCD có đáy ABCD hình bình hành Thiết diện hình chóp cắt mặt phẳng qua trung điểm M BC , song song với BD SC hình gì? A Tam giác B Ngũ giác C Lục giác D Tứ giác Câu 44 Cho hình chóp S ABCD có đáy ABCD hình bình hành Gọi M điểm thuộc đoạn SB ( M khác S B ) Mặt phẳng ADM cắt hình chóp S ABCD theo thiết diện A Hình bình hành B Tam giác C Hình chữ nhật D Hình thang Câu 45 Cho hình chóp S ABCD có đáy ABCD hình bình hành Gọi I trung điểm SA Thiết diện hình chóp S ABCD cắt mặt phẳng IBC A Tam giác IBC B Hình thang IBCJ ( J trung điểm SD ) C Hình thang IGBC ( G trung điểm SB ) D Tứ giác IBCD Câu 46 Cho tứ diện ABCD , M N trung điểm AB AC Mặt phẳng qua MN cắt tứ diện ABCD theo thiết diện đa giác T Khẳng định sau đúng? A T hình chữ nhật B T tam giác C T hình thoi D T tam giác hình thang hình bình hành Câu 47 Cho hình chóp S ABCD có đáy ABCD hình thang với đáy lớn AB đáy nhỏ CD Gọi M , N trung điểm SA SB Gọi P giao điểm SC AND Gọi I giao điểm AN DP Hỏi tứ giác SABI hình gì? A Hình bình hành B Hình chữ nhật C Hình vng D Hình thoi Câu 48 Cho tứ diện ABCD Gọi M , N trung điểm AB , AC , E điểm cạnh CD cho ED 3EC Thiết diện tạo mặt phẳng MNE tứ diện ABCD A Tam giác MNE B Hình thang MNEF với F điểm cạnh BD cho EF / / BC C Tứ giác MNEF với F điểm cạnh BD D Hình bình hành MNEF với F điểm cạnh BD cho EF / / BC Câu 49 Cho hình chóp S ABCD có đáy ABCD hình thang, AD / / BC , AD BC Gọi M trung điểm SA Mặt phẳng MBC cắt hình chóp S ABCD theo thiết diện A hình bình hành B tam giác C hình tứ giác (khơng hình thang) D hình thang (khơng hình bình hành) Trang 18 Câu 50 Cho hình chóp S ABCD có đáy ABCD hình bình hành Lấy hai điểm M N hai cạnh SB, SD cho SM 2MB, SN ND , đường thẳng SC cắt mặt phẳng k AMN C Tính tỉ số SC SC A k B k C k D k Câu 51 Cho hình chóp S ABCD có đáy ABCD hình thang, gọi O giao điểm hai đường chéo AC BD Biết AB / / CD AB CD Gọi N trung điểm cạnh SB P giao điểm đường thẳng DN với mặt phẳng SAC Tính tỉ số A B PO PS C D Câu 52 Cho tứ diện ABCD Điểm M thuộc cạnh BC cho MC MB , điểm N , P trung điểm BD, AD Gọi Q giao điểm AC với mặt phẳng MNP , tính tỉ số A QC QA B QC QA C QC 2 QA D QC QA QC QA Câu 53 Cho hình chóp S ABCD có đáy ABCD hình bình hành Gọi G trọng tâm tam giác ABC M trung điểm SC Gọi K giao điểm SD với mặt phẳng AGM Tính tỉ số A B C KS KD D Câu 54 Gọi G trọng tâm tứ diện ABCD Gọi A trọng tâm tam giác BCD Tính tỉ số A B C D GA GA Câu 55 Cho tứ diện ABCD , Các điểm P, Q trung điểm AB CD ; điểm R nằm cạnh BC cho BR RC Gọi S giao điểm mặt phẳng PQR cạnh AD Tính tỉ số A B C D SA SD Câu 56 Cho tứ diện ABCD ba điểm P, Q, R lấy ba cạnh AB , CD , BC Cho PR / / AC CQ 2QD Gọi giao điểm AD PQR S Chọn khẳng định đúng? A AD 3DS B AD DS C AS 3DS D AD DS ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN Trang 19 1-A 2-D 3-C 4-B 5-A 6-D 7-C 8-B 9-A 10-B 11-D 12-C 13-C 14-A 15-C 16-D 17-D 18-D 19-B 20-A 21-B 22-C 23-B 24-A 25-C 26-A 27-A 28-B 29-C 30-D 31-C 32-A 33-A 34-A 35-B 36-C 37-C 38-C 39-B 40-D 41-D 42-D 43-D 44-D 45-B 46-D 47-A 48-B 49-A 50-D 51-A 52-C 53-A 54-B 55-A 56-A Câu 1: Hai đường thẳng khơng có điểm chung chéo song song Chọn A Câu 2: Hai đường thẳng chéo chúng không đồng phẳng Hai đường thẳng song song cắt đồng phẳng Chọn D Câu 3: Hai đường thẳng song song với đường thẳng thứ ba song song với trùng Mệnh đề C Chọn C Câu 4: Hai đường thẳng khơng có điểm chung hai đường thẳng song song chéo Chọn B Câu 5: Mặt phẳng qua M chứa a cắt mặt đường thẳng b B , mặt phẳng qua M chứa b cắt đường thẳng a A Khi đường thẳng cần tìm đường thẳng qua điểm M , A, B Chọn A Câu 6: Gọi M đường thẳng nằm c, mặt phẳng qua M chứa a cắt mặt đường thẳng b B , mặt phẳng qua M chứa b cắt đường thẳng a A đường thẳng AB cắt đường thẳng a , b , c Có vơ số điểm M nên có vơ số đường thẳng cần tìm Chọn D Câu 7: Ba mặt phẳng phân biệt cắt đôi theo ba giao tuyến d1 , d , d3 d1 , d , d3 đồng quy d1 / / d / / d3 Mặt khác d1 / / d d1 / / d / / d3 Chọn C Câu 8: Giả sử d1 cắt d M đường thẳng d không nằm mặt phẳng d1; d cắt d1 d nên d3 cắt mặt phẳng d1; d M hay ba đường thẳng đồng quy Chọn B Câu 9: Nếu điểm M d khơng tồn đường thẳng qua M song song với d nên đáp án sai A Chọn A Câu 10: Ba mặt phẳng phân biệt cắt đôi ba giao tuyến chúng song song đồng quy Chọn B Câu 11: Hai đường thẳng song song, đường thẳng thứ ba vng góc với đường thẳng thứ vng góc với đường thẳng thứ hai Chọn D Câu 12: Qua O không thuộc đường thẳng có đường thẳng song song với Chọn C Câu 13: Hai đường thẳng phân biệt nằm mặt phẳng song song cắt Hai đường thẳng phân biệt thuộc hai mặt phẳng khác chéo song song Do mệnh đề C Chọn C Trang 20 Câu 14: Hai đường thẳng a, b khơng gian song song, chéo cắt Chọn A Câu 15: Gọi M đường thẳng nằm c , mặt phẳng qua M chứa a cắt mặt đường thẳng b B , mặt phẳng qua M chứa b cắt đường thẳng a A đường thẳng AB cắt đường thẳng a, b, c Có vơ số điểm M nên có vô số đường thẳng cắt đường thẳng cho Chọn C Câu 16: Vì a / / b nên a, b đồng phẳng Do c cắt a c cắt b Nếu c a chéo c b chéo cắt Khẳng định D Chọn D Câu 17: Do a, b chéo nên A, B, C , D đỉnh tứ diện AD BC chéo Chọn D Câu 18: Ba mặt phẳng phân biệt cắt đơi ba giao tuyến chúng song song đồng quy Chọn D Câu 19: đường thẳng a, b, c biết a / / b , a c chéo b c chéo cắt Chọn B Câu 20: Ta có a / / b a / / c b / / c b trùng với c Khẳng định sai A Chọn A Câu 21: Hai đường thẳng khơng có điểm chung song song chéo Hai đường thẳng phân biệt khơng cắt song song chéo Khẳng định B Chọn B AD SAD Câu 22: Do BC SBC nên giao tuyến SAD SBC đường thẳng qua S song song AD / / BC với AD BC Chọn C Câu 23: Nếu hai mặt phẳng phân biệt chứa hai đường thẳng song song giao tuyến chúng (nếu có) song song với hai đường thẳng trùng với hai đường thẳng Chọn B Câu 24: Ta có S SAB SCD AB / / CD Suy giao tuyến SAB SCD đường thẳng qua S song song với AB Chọn A Câu 25: Ta có S SAD SBC AD / / BC Suy giao tuyến SAD SBC đường thẳng qua S song song với AD Chọn C Câu 26: CM , DN thuộc hai mặt phẳng phân biệt nên chúng chéo Chọn A Câu 27: Gọi M , N trung điểm BC , BD Ta có MN đường trung bình tam giác BCD MN / / CD Lại có AI AJ IJ / / MN IJ song song với CD Chọn A AM AN Câu 28: Ta có MQ đường trung bình tam giác ACD MQ / / CD Lại có RT đường trung bình tam giác SAD RT / / AD MQ / / RT Chọn B Câu 29: Ta có IJ đường trung bình tam giác SAB IJ / / AB Lại có EF đường trung bình tam giác SCD EF / /CD Trang 21 Mà AB / / CD CD / / AB / / EF / / IJ Chọn C Câu 30: Vì M , N , P, Q không đồng phẳng MP, NQ chéo Chọn D Câu 31: Ta có S SAD SBC AD / / BC Suy giao tuyến SAD SBC đường thẳng qua S song song với AD Chọn C Câu 32: Gọi E AD BC , P ME SC P SC AMD Ta có S điểm chung hai mặt phẳng SAB , SCD Lại có I DP AM nên I điểm chung thứ hai Suy SI SAB SCD Mà AB / / CD SI / / AB / /CD Vì MN đường trung bình tam giác SAB tam giác SAI nên SI AB SABI hình bình hành Chọn A Câu 33: Gọi I giao điểm BD RQ Nối P với I , cắt AD S Ta có Mà DI BR CQ 1 IB RC QD CQ DI BR DI RC 2 QD IB RC IB BR Vì PR / / AC suy Lại có RC AP DI AP BR PB IB PB SA DI BP SA AP BP SA 1 1 2 SD IB PA SD PB PA SD Chọn A Câu 34: Gọi I giao điểm BD RQ Nối P với I , cắt AD S Ta có Mà DI BR CQ 1 IB RC QD CQ DI BR DI RC 2 QD IB RC IB BR Vì PR / / AC suy Lại có RC AP DI AP BR PB IB PB SA DI BP SA AP BP SA 1 1 2 SD IB PA SD PB PA SD Chọn A Câu 35: Gọi E trọng tâm tam giác ACD Gọi M trung điểm CD Nối BE AA G Suy G trọng tâm tứ diện ABCD Trang 22 Xét tam giác MAB , có Do ME MA AE / / AB MA MB AE AG GA Chọn B AB AG GA Câu 36: Chọn C Câu 37: Ta có IJG / / BCD G Lại có IJ đường trung bình ACD IJ / / CD Do giao tuyến đường thẳng qua G song song CD Chọn C Câu 38: Ta có IJG / / SAB G Lại có IJ đường trung bình ABCD IJ / / AB Do giao tuyến đường thẳng qua G song song AB Chọn C Câu 39: Qua I kẻ đường thẳng song song AD , cắt SD M Suy IM / / AD mà AD / / BC IM / / BC Do thiết diện cần tìm hình thang IMCB Chọn B Câu 40: Ba trường hợp mặt phẳng cắt tứ diện ABCD theo thiết diện Trang 23 Chọn D Câu 41: Qua M kẻ đường thẳng song song BD , cắt CD N Qua M kẻ đường thẳng song song SC , cắt SB Q Qua M kẻ đường thẳng song song SC , cắt SD P Suy thiết diện cần tìm tứ giác MNPQ Ta có MQ / / SC , NP / / SC MQ / / NP Lại có MQ NP SC MNPQ hình bình hành Chọn D Câu 42: Qua M kẻ đường thẳng song song BC , cắt SC N Suy MN / / BC mà AD / / BC AD / / MN Vậy M , N , D, A đồng phẳng ADM cắt hình chóp S ABCD theo thiết diện hình thang Chọn D Câu 43: Trong mặt phẳng ABCD dựng MN / / BD cắt CD N cắt AC I Dựng MR / / SC , IQ / / SC , NP / / SC R, Q, P thuộc SB, SA SD Khi thiết diện ngũ giác MNPQR Chọn B Câu 44: Do AD / / BC SBC ADM MN nên giao tuyến MN / / AD / / BC AMND hình thang Chọn D Câu 45: Do AD / / BC SBC IBC IJ nên giao tuyến IJ/ / AD / / BC thiết diện hình chóp S ABCD cắt mặt phẳng IBC hình thang IBCJ Chọn B Trang 24 Câu 46: Nếu mặt phẳng cắt AD P thiết diện tam giác Nếu mặt phẳng cắt BD CD I J IJ / / BC (vì MN / / BC mặt khác mặt phẳng BCD chứa MN BC ) Do thiết diện hình thang hình bình hành Chọn D Câu 47: Gọi K AD BC , mặt phẳng AND gọi I DP AM SI giao tuyến hai mặt AB SAB SAB SCD , mặt khác CD SCD SI / / AB / /CD AB / / CD Do SIBA hình thang có đường chéo SB AI cắt trung điểm SB nên SABI hình bình hành Chọn A Câu 48: Mặt phẳng MNE cắt BD CD F E EF / / BC (vì MN / / BC mặt khác mặt phẳng BCD MNE chứa MN BC ) Do thiết diện MNEF Chọn B Trang 25 Câu 49: Do AD / / BC SBC MBC MN nên giao tuyến MN / / AD / / BC thiết diện hình chóp S ABCD cắt mặt phẳng MBC hình thang MNCB Lại có MN đường trung bình tam giác SAD MN AD BC nên thiết diện hình bình hành Chọn A Câu 50: Trong mặt phẳng SBD gọi I MN SO , SO đường trung tuyến tam giác SAC SI SM nên SO SB I trọng tâm tam giác SAC Suy AI SC C SC CC hay k SC SC Chọn D Câu 51: Trang 26 Theo định lý Talet ta có: OA OB AB OC OD CD Áp dụng định lý Medenlaus cho tam giác SOB ta có: NB PS DO PS PO 1 NS PO DB PO PS Chọn A Câu 52: Ba mặt phẳng ABD , MNP , ABC cắt đôi theo giao tuyến NP, MQ AB Mặt khác NP / / AB (tính chất đường trung bình) Do NP / / AB / / MQ Theo định lý Talet ta có: QC MC Chọn C QA MB Câu 53: Gọi O tâm hình bình hành ABCD , gọi I AM SO I trọng tâm tam giác SAC Ta có: SI BG SK BG , gọi K GI SD theo định lý Talet ta có: 2 Chọn A OI GO KD GD Câu 54: M , N trung điểm AB CD Trong mp ABN : Gọi A AG BN A AG BCD Xét mp ABN : Kẻ MM / / AA cắt BN M M BN Do M trung điểm AB nên MM đường trung bình ABA M B M A Trang 27 Do G trung điểm MN mà GA / / MM nên GA đường trung bình MNM suy A trung điểm M N hay M A NA Suy BM M A AN MM AA Ta có: GA MM BM AA MM BA AN MM 2GA M N AA 2MM 4GA AG 3GA Chọn B Câu 55: Trong mặt phẳng BCD , gọi I RQ BD Khi gọi S AD IP Theo định lý Mendelaus tam giác BCD 2.1 ID ID 1 IB IB Lại có: ID PB SA SA 1 IB PA SD SD RB QC ID 1 RC QD IB SA Chọn A SD Câu 56: Trang 28 ABC PQR PR Do ABC ACD AC mà PR / / AC nên giao tuyến PR / / AC / / QS ACD PQR QS Theo định lý Talet ta có: AS CQ SA SD SD QD AD 3SD Chọn A Trang 29 ... song song với đường thẳng thứ ba trùng C Hai đường thẳng song song với đường thẳng thứ ba song song với trùng D Hai đường thẳng song song với đường thẳng thứ ba chúng nằm hai mặt phẳng song song... đúng? A Hai đường thẳng chéo chúng có điểm chung B Hai đường thẳng khơng có điểm chung hai đường thẳng song song chéo C Hai đường thẳng song song với chúng mặt phẳng D Khi hai đường thẳng hai mặt... Nếu hai mặt phẳng phân biệt chứa hai đường thẳng song song giao tuyến chúng (nếu có) : A Song song với hai đường thẳng B Song song với hai đường thẳng trùng với hai đường thẳng C Trùng với hai