Xây dựng mô hình hồi quy

Một phần của tài liệu nghiên cứu sự hài lòng của khách hàng đối với dịch vụ giám định bồi thường tại công ty bảo hiểm bidv bắc trung bộ trong lĩnh vực bảo hiểm xe ô tô (Trang 50)

Các bước xây dựng mô hình:

Bước 1: Xem xét ma trận hệ số tương quan

Để xem xét mối quan hệ giữa biến phụ thuộc và các biến độc lập thông qua xây dựng ma trận tương quan. Đồng thời ma trận tương quan là công cụ xem xét mối quan hệ

giữa các biến độc lập với nhau nếu các biến này có tương quan chặt thì nguy cơ xảy ra hiện tượng đa cộng tuyến cao dẫn đến việc vi phạm giả định của mô hình.

Bước 2: Đánh giá độ phù hợp của mô hình

Thông qua hệ số R2ta đánh giá độ phù hợp của mô hình xem mô hình trên giải thích bao nhiêu % sự biến thiên của biến phụ thuộc.

Bước 3: Kiểm định sự phù hợp của mô hình

Sử dụng kiểm định F để kiểm định với giả thiết Ho: B1 = B2 = Bn = 0

Nếu giả thiết này bị bác bỏ thì ta có thể kết luận mô hình ta xây dựng phù hợp với tập dữ liệu.

Bước 4: Xác định tầm quan trọng của các biến

Ý tưởng đánh giá tầm quan trọng tương đối của các biến độc lập trong mô hình thông qua xem xét mức độ tăng của R2 khi một biến giải thích được đưa thêm vào mô hình. Nếu mức độ thay đổi này mà lớn thì chứng tỏ biến này cung cấp thông tin độc nhất về sự phụ thuộc mà các biến khác trong phương trình không có được.

Bước 5: Lựa chọn biến cho mô hình

Đưa nhiều biến độc lập vào mô hình hồi quy không phải lúc nào cũng tốt vì những lý do sau (trừ khi chúng có tương quan chặt với biến phụ thuộc):

- Mức độ tăng R2 quan sát không hẳn phản ảnh mô hình hồi quy càng phù hợp hơn

với tổng thể.

- Đưa vào các biến không thích đáng sẽ làm tăng sai số chuẩn của tất cả các ước

lượng mà không cải thiện được khả năng dự đoán.

- Mô hình nhiều biến thì khó giải thích và khó hiểu hơn mô hình ít biến. Ta sử dụng SPSS để giải quyết vấn đề trên. Các thủ tục chọn biến trên SPSS:

Phương pháp đưa vào dần, phương pháp loại trừ dần, phương pháp từng bước (là sự

kết hợp của hai phương pháp loại trừ dần và đưa vào dần).

Bước 6: Dò tìm sự vi phạm các giả các giả thiết (đã nêu ở trên bằng các xử lý của SPSS).

Ngoài ra, sử dụng phân tích chi bình phương một mẫu để tìm ra quy luật phân phối của mẫu và đánh giá độ tin cậy của thang đo thông qua hệ số Cronbach Alpha.

Dữ liệu được nhập và làm sạch thông qua phần mềm SPSS 16.

Một phần của tài liệu nghiên cứu sự hài lòng của khách hàng đối với dịch vụ giám định bồi thường tại công ty bảo hiểm bidv bắc trung bộ trong lĩnh vực bảo hiểm xe ô tô (Trang 50)

Tải bản đầy đủ (PDF)

(127 trang)