CHƯƠNG 2: CƠ SỞ LÝ THUYẾT VỀ MÔ HÌNH KEYNES MỚI
2.3. Các công trình nghiên cứu trước đây
2.3.3. Các công trình nghiên cứu về DSGE
2.3.3.1. Nghiên cứu quốc tế
Một số lượng lớn các nghiên cứu chính thức và không chính thức về việc tham số hóa và ước lượng mô hình DSGE, từ hiệu chuẩn (Kydland and Prescott, 1982), thông qua phương pháp GMM (Generalized Method of Moments) để ước lượng mối quan hệ cân bằng (Christiano & Eichenbaum, 1992), tối thiểu hóa khoảng cách ước lượng dựa trên hàm phản ứng xung của mô hình VAR và DSGE (Rotemberg & Woodford, 1997;
Christiano, Eichenbaum, & Evans, 2005), ước lượng dựa trên khả năng có đầy đủ thông tin (Altug, 1989; McGrattan, 1994; Leeper & Sims, 1994 và Kim, 2000). Phần lớn các cuộc tranh cãi về phương pháp xoay quanh các kỹ thuật ước lượng khác nhau (và đánh giá mô hình) được tập hợp lại trong bài nghiên cứu của Kydland & Prescott (1996).
Bernanke, Gertler và Gilchrist (1998) - “The financial accelerator in a quantitative business cycle framework” - đã phát triển mô hình DSGE cho phép phân tích các ma sát trên thị trường tài chính và cho thấy: (i) dòng vốn có những lợi ích nhất định nhưng cũng tạo ra những thách thức cho nền kinh tế vĩ mô; (ii) rào cản tài chính gây ra hiệu ứng khuếch đại trong chu kỳ kinh doanh, đặc biệt đối với các nền kinh tế mở nó có thể phóng đại các chu kỳ của dòng vốn và tạo ra sự đảo chiều dòng vốn; (iii) mặc dù những rào cản tài chính và sự truyền dẫn CSTT không ảnh hưởng đến những ích lợi của chính sách tỷ giá linh hoạt, tuy nhiên sự giới hạn phân bổ lại nguồn lực trong ngắn hạn là lý do để ủng hộ cho chế độ tỷ giá cố định tạm thời; (iv) các chính sách vĩ mô (ATVM, CSTK, kiểm soát vốn…) có thể giúp hạn chế sự biến động của dòng vốn nhưng không dễ để phân tách giữa tăng trưởng tín dụng/dòng vốn vào tốt hoặc xấu.
Erceg, Henderson và Levin (2000) – “Optimal monetary policy with staggered wage and price contracts” – Nghiên cứu xây dựng mô hình DSGE với yếu tố tiền lương cứng nhắc (mô hình cân bằng tối ưu hóa Pareto). Trên thực tế, trong ngắn hạn có sự đánh đổi giữa mục tiêu sản lượng và lạm phát, điều này được lý giải là do sự cứng nhắc của giá và lương, cũng bởi đặc điểm này mà CSTT phát huy vai trò bình ổn kinh tế vĩ mô trong ngắn hạn. Do đó, để phản ánh thực tế này, mô hình DSGE cơ sở được mở rộng và thêm các thông tin/tham số đại diện cho sự cứng nhắc này trên thị trường lao động.
Mặc dù việc đưa sự cứng nhắc của giá và lương vào trong mô hình khiến cho tác động của các cú sốc trở nên lâu dài hơn nhưng không làm thay đổi cơ chế truyền dẫn của CSTT và CSTT tối ưu. Mô hình DSGE mở rộng cho nền kinh tế mở, mô hình hóa những vấn đề của nền kinh tế mở như tình trạng đô la hóa, tự do hóa tài khoản vốn và sự truyền dẫn của tỷ giá lên lạm phát (mô hình của Gali và Monacelli, 2005). Đặc biệt, trong nền kinh tế mở, tỷ giá đóng vai trò quyết định trong phân bổ giữa tổng cầu, nguồn lực trong nước và nhập khẩu. Do đó, những cú sốc lên nền kinh tế đòi hỏi phải có những điều chỉnh tỷ giá phù hợp (kênh truyền dẫn tỷ giá của CSTT). Như vậy, một CSTT tối ưu cần kiểm soát lạm phát trong nước ở mức mục tiêu nhờ cơ chế tỷ giá linh hoạt. Tuy nhiên, vẫn có thể xem xét sự ổn định tỷ giá trong ngắn hạn do sự tồn tại của yếu tố cứng nhắc trong nền kinh tế. Do các quyết định của CSTK không hoàn toàn “ngoại sinh” và hiệu quả của CSTK thường có độ trễ dài, phụ thuộc vào rất nhiều các vấn đề như trạng thái của nền kinh tế (mở rộng/thu hẹp), mục đích chi (mua hàng hóa/ tạo việc làm/ đầu tư hạ tầng…), cách thức tài trợ (tăng thuế/ vay nợ…), khuôn khổ CSTT và chính sách tỷ giá…
Do đó với ưu điểm của DSGE, mô hình có thể được sử dụng để phân tích CSTK. Theo đó, Smets và Wouters (2003, 2007) đã nghiên cứu và bổ sung các phương trình về đầu tư và chi phí điều chỉnh đầu tư, phương trình về vốn và sử dụng vốn, phương trình về tiêu dùng tư nhân chịu tác động của hành vi thói quen.
Ruge - Murcia (2007), Ingram & Whiteman (1994) – “Methods to estimate dynamic stochastic general equylibrium models” & “Supplanting the minnesota prior - forecasting macroeconomic time series using real business cycle model priors” sử dụng mô hình DSGE để hỗ trợ phân tích vĩ mô theo chuỗi thời gian, nền tảng nghiên cứu phát triển từ Doan và cộng sự (1984). Những tác giả này đã đặt nền móng thực hiện cải thiện dự báo chuỗi thời gian bằng cách rút gọn hệ số hồi quy ước lượng hướng đến các tiền nghiệm mà vector chuỗi thời gian mô tả tốt nhất, các tiền nghiệm hỗ trợ dự báo của mô hình RBC. Bên cạnh đó, Ruge-Murcia (2007), Ingram & Whiteman (1994) cũng cung cấp một nền tảng hữu ích về các nguyên tắc ước lượng dễ hiểu Bayesian. Với cách thức tiếp cận mô hình lí thuyết từ các thông tin tiền nghiệm và kết hợp chúng với các thông tin từ dữ liệu thông qua quy tắc Bayes cung cấp các thông tin hậu nghiệm hơn là cách tiếp cận lý thuyết đơn thuần như của Hansen & Prescott (1993) hay Sims (1986), và tái khẳng định các nhà kinh tế đồng ý các mô hình lý thuyết bộc lộ những khiếm khuyết chính là cơ hội để phương pháp Bayesian phát huy thế mạnh.
Smets & Wouters (2003) – “An estimated dynamic stochastic general equilibrium model of the Euro area” - là mô hình DSGE quy mô lớn theo trường phái Keynes mới, tương tự là công trình nghiên cứu của Christiano, Eichenbaum, và Evans (2004), đối với giá cả cứng nhắc và tiền lương cứng nhắc, phù hợp với dữ liệu của khu vực EU. Bên cạnh các độ cứng danh nghĩa này, mô hình chứa đựng một số lượng lớn độ cứng thực – một cách đặc biệt, thói quen hành vi trong tiêu dùng, chi phí điều chỉnh trong việc tích lũy vốn, và khả năng tối ưu khác nhau. Một trong những kết quả thực nghiệm đáng chú ý là mô hình DSGE hoạt động tốt hơn so với vectơ hồi quy được ước lượng bằng một mẫu tiền nghiệm được tinh chỉnh khá phổ biến trước khi xem xét xác suất có điều kiện.
del Negro và Schorfheide (2004) - “Prior from General Equylibrium Models for VARS” - lấy ý tưởng từ nghiên cứu của Ingram và Whiteman (1994) và phát triển thành một mô hình tương đối đầy đủ, cũng như đưa ra các thuật toán hiệu quả để hỗ trợ phân tích chính sách. Cách tiếp cận có thể được thực hiện như sau: (1) Chọn một mô hình DSGE và phân phối tiền nghiệm cho các thông số trong mô hình; (2) Ước lượng mô hình và ánh xạ phân phối tiền nghiệm của các thông số trong mô hình DSGE thành phân phối tiền nghiệm cho các thông số trong mô hình VAR; và (3) Bằng cách sử dụng phương pháp Monte Carlo để tính toán phân bố xác suất kết hợp của các thông số trong mô hình DSGE và VAR, sau đó xác suất kết hợp này được sử dụng cho việc tính toán dự báo. Nhóm tác giả đã áp dụng cách tiếp cận này để dự báo cho mô hình VAR gồm 3 biến là tốc độ tăng trưởng của tổng sản phẩm quốc nội, lạm phát và lãi suất. Kết quả cho thấy DSGE - VAR có hiệu quả vượt trội so với mô hình VAR tổng quát cũng như mô hình DSGE thuần túy. Ngoài ra, khả năng dự báo của cách tiếp cận này có thể so sánh với Minnesota VAR và thậm chí tốt hơn với một số biến trong mô hình.
An và Schorfheide (2006) – “Bayesian analysis of DSGE models” - cho thấy phương pháp Bayesian được phát triển trong một vài năm gần đây trong lĩnh vực ước lượng và đánh giá mô hình DSGE. Từ đó, nghiên cứu sử dụng mô hình DSGE tuyến tính, đánh giá mô hình dựa trên việc kiểm tra mô hình Bayesian, so sánh tỉ lệ hậu nghiệm và so sánh vectơ hồi quy, cũng như ước lượng các mô hình phi tuyến dựa trên việc giải quyết các mô hình bậc 2. Trong khi mô hình DSGE cung cấp một quá trình ngẫu nhiên đầy đủ để biểu diễn dữ liệu, các mô hình đơn giản ảnh hưởng rất mạnh các hạn chế vào chuỗi thời gian thực và trong nhiều trường hợp chối bỏ các hạn chế đặc thù như mô hình
VAR. Sau đó, nhiều tác giả đã phát triển các khuôn khổ kinh tế lượng để chính thức hóa các khía cạnh của phương pháp hiệu chuẩn (caliberation) bằng cách tính rõ ràng mô hình sai số rõ ràng (Lees & cộng sự, 2007; Ingram & Whiteman, 1994; Diebold & cộng sự, 1998). An và Schorfheide (2006) cho thấy các mô hình DSGE không chỉ hữu dụng từ quan điểm lí thuyết mà còn nổi lên như một công cụ hữu ích để dự báo và phân tích định lượng trong kinh tế vĩ mô. Hơn nữa, chuỗi dữ liệu thời gian đang được cải thiện để phù hợp với các mô hình này làm tăng độ tín nhiệm trong cơ chế hoạch định chính sách của NHTW. Hầu hết các kĩ thuật được mô tả trong nghiên cứu của An và Schorfheide (2006) đều được phát triển và ứng dụng trong các nghiên cứu khác, cung cấp bằng chứng thực nghiệm về phương pháp Markov Chain Monte Carlo (MCMC) được dùng để ước lượng Bayesian mô hình DSGE (Hastings, 1970). Kết quả nghiên cứu cung cấp nền tảng cơ bản để phát triển các mô hình lớn phục vụ cho việc phân tích CSTT trong giới học thuật và NHTW. Nghiên cứu của An và Schorfheide (2006) bỏ qua yếu tố phức tạp trong tính toán của mô hình DSGE phi tuyến cho nên hầu hết các tài liệu thực nghiệm đều ước tính mô hình DSGE tuyến tính. Bài nghiên cứu sử dụng 3 kĩ thuật ước lượng: Kiểm tra dự báo mô hình hậu nghiệm, so sánh mô hình dựa vào tỉ lệ hậu nghiệm và so sánh mô hình DSGE và VARs. Về mô hình kinh tế bao gồm: Công ty sản xuất hàng hóa cuối cùng (final good producing firm), công ty sản xuất hàng hóa trung gian (intermediate goods producing firms), đại diện hộ gia đình, và CSTT cũng như là CSTK. Mô hình này cũng như là chuẩn cho phân tích CSTT và phân tích chi tiết (Woodford, 2003). Để đơn giản, tác giả loại bỏ sự cứng nhắc tiền lương và tích lũy vốn. Các phiên bản phức tạp hơn của mô hình DSGE có thể tìm thấy ở các nghiên cứu của Smets và Wouters (2003), Gerali và cộng sự (2009), Gambacotta và Signoretti (2013).
del Negro, Schorfheide, Smets & Wouters (2005) – “On The Fit And Forecasting Performance Of New Keynesian models” - Các tác giả cung cấp một công cụ đánh giá mô hình DSGE quy mô lớn theo trường phái Keynes mới với giá cả, tiền lương cứng nhắc và vốn tích lũy. Các tác giả tiếp cận phương pháp đánh giá mô hình dựa trên nghiên cứu của del Negro và Schorfheide (2004) với siêu tham số kiểm soát các ràng buộc trong mô hình DSGE. Và mô hình DSGE - VAR được sử dụng như là mô hình chuẩn hóa cho đánh giá các biến động của mô hình DSGE và khắc phục một vài quan điểm nhằm cải thiện mô hình cấu trúc. Tất cả kết quả nghiên cứu dựa trên mô phỏng MCMC. Nghiên cứu cho thấy sự tương thích về trạng thái tĩnh của mô hình DSGE
tương thích với VAR ở độ trễ 4 với tăng trưởng sản lượng, tiêu dùng, đầu tư, tiền lương thực, giờ làm việc, lạm phát và lãi suất danh nghĩa. Nghiên cứu cũng chỉ ra các ma sát thị trường (chỉ số lạm phát, hành vi thói quen, etc) tồn tại trong dữ liệu là không đủ để phù hợp với các phản ứng xung VAR.
Nghiên cứu chỉ ra kỹ thuật ước lượng Bayesian với việc ước lượng mô phỏng tiền nghiệm đáng tin cậy. Nghiên cứu đã tiến hành thử nghiệm dự báo ngoài mẫu giả. Hơn nữa, sử dụng các kỹ thuật được phát triển ở Del Negro và Schorfheide (2004), nghiên cứu xây dựng một tiêu chuẩn đáng tin cậy bằng cách nới lỏng một cách có hệ thống các ràng buộc mà mô hình DSGE đặt ra trên một véc tơ tự hồi quy để tối ưu hóa sự phù hợp của nó được đo bằng hàm hợp lý cực đại biên.
Canova (1994), DeJong & ctg. (2000), and Geweke (1999a) – “Statistical Inference in Calibrated Models”, “A Bayesian Approach to Dynamic Macroeconomics” & “Using Simulation Methods for Bayesian Econometric Models:
Inference, Development and Communication” - đề xuất phương pháp Bayesian để hiệu chuẩn (calibration) mà không làm rõ hàm ước lượng hợp lý likelihood (likelihood maximum function) của mô hình DSGE và cung cấp các ứng dụng thực nghiệm đánh giá mô hình RBC và định giá tài sản hàm ý của mô hình tăng trưởng ngẫu nhiên đơn giản. Các tài liệu nghiên cứu về ước lượng Bayesian về các mô hình DSGE bắt đầu với công trình của Landon - Lane (1998), DeJong & ctg. (2000), Schorfheide (2000), Otrok (2001) và DeJong & ctg., (2000) ước lượng một mô hình tăng trưởng ngẫu nhiên và kiểm tra khả năng dự báo của nó. Otrok (2001) phù hợp với chu kỳ kinh doanh thực tế với tạo lập hành vi và chuỗi dữ liệu thời gian để đánh giá chi phí phúc lợi của chu kỳ kinh doanh và Schorfheide (2000) xem xét mô hình DSGE tiền tệ. Dejong & Ingram (2001) nghiên cứu chu kỳ hành vi của việc tích lũy kỹ năng, trong khi đó Chang & ctg., (2002) ước lượng mô hình tăng trưởng ngẫu nhiên hiệu chỉnh với cơ chế học thông qua thực hành (learning – by – doing) để khuếch đại ảnh hưởng của các cú sốc. Chang &
Schorfheide (2003) nghiên cứu tầm quan trọng của các cú sốc cung và ước lượng mô hình nhà sản xuất (home-production). Fernández-Villaverde và Rubio Ramírez (2004) sử dụng các kỹ thuật ước lượng của Bayesian để phù hợp với mô hình cattle-cycle cho dữ liệu. Các biến thể của mô hình DSGE Keynes mới quy mô nhỏ được ước lượng bởi Rabanal & Rubio-Ramírez (2005a, b) cho US và EU.
Lubik & Schorfheide (2004) – “Testing for Indeterminacy: An Application to U.S. Monetary policy” – Nghiên cứu ước lượng tiêu chuẩn mô hình DSGE Keynes mới mà không ràng buộc các tham số trong khu vực xác định (determinacy region) của không gian tham số (parameter space). Schorfheide (2005) cho phép cơ chế chuyển đổi (regime – switching) của mức lạm phát mục tiêu trong quy tắc CSTT. Canova (2004) ước lượng mô hình Keynes mới quy mô nhỏ theo cấu trúc đệ quy để đánh giá sự ổn định của các tham số cấu trúc theo thời gian. Gali & Rabanal (2005) sử dụng ước lượng mô hình DSGE để nghiên cứu ảnh hưởng của các cú sốc công nghệ tác động đến giờ công lao động. Các mô hình quy mô lớn bao gồm việc tích lũy vốn và sự cứng nhắc của tiền lương, giá danh nghĩa và thực (Christiano & ctg, 2005; Smets & Wouter, 2003 & 2005) cho cả U.S. và EU. Các mô hình tương tự của Smets & Wouters (2003) được ước lượng bởi Laforte (2004), Onatski & Williams (2004), và Levin & ctg., (2006) để nghiên cứu CSTT.
Berg, Karam & Laxton (2006) – “Practical Model-Based Monetary Policy Analysis—A How-To Guide” - Nhóm nghiên cứu cung cấp hướng dẫn sử dụng đối với hệ thống dự báo và phân tích chính sách (FPAS). Bài phân tích một mô hình cấu trúc đơn giản, dựa trên các nghiên cứu của NHTW. Mô hình này bao gồm đường cong tổng cầu (IS curve), đường cong Phillips thiết lập mức giá, phiên bản của phương trình ngang giá lãi suất không bảo hiểm rủi ro tỷ giá (UIP) với kỳ vọng mong đợi (backward – looking expectations) và hàm phản ứng của lãi suất được biểu diễn như là hàm số của độ lệch sản lượng và lạm phát kỳ vọng (Clarida, Gali & Gertler, 1999; Woodford, 2003a) thông qua mô phỏng đối với nền kinh tế Canada. Nhóm tác giả giới thiệu mô hình đơn giản được xây dựng dựa trên nền tảng FPAS cấu trúc, trong đó nhấn mạnh sự kết hợp giữa độ cứng danh nghĩa và thực, cùng với vai trò của tổng cầu trong xác định sản lượng của trường phái Keynes mới, cộng với phương pháp RBC cho mô hình DSGE với kỳ vọng hợp lý (rational expectations). Mô hình xây dựng là mô hình cấu trúc vì mỗi phương trình trong mô hình đều hàm chứa ý nghĩa kinh tế. Đây cũng là mô hình dựa trên nền tảng vi mô, bao gồm các nhân tố quan trọng như tiêu dùng tối đa hóa hữu dụng kỳ vọng và các doanh nghiệp độc quyền cạnh tranh và điều chỉnh giá theo chu kỳ. Tuy nhiên, nhóm tác giả lại không dẫn dắt mô hình theo nền tảng vi mô mà để mô hình thích nghi với các kỳ vọng hợp ký và độ trễ (inertia) trong các phương trình. Nhóm tác giả cũng cho rằng ước lượng Bayesian cho mô hình DSGE có rất nhiều ưu điểm nhưng