8. Bố cục của luận án
4.3.3. Ảnh hưởng của độ ẩm đến khả năng nhận biết khí SO2
Ngoài các yếu tố đã khảo sát trên, hơi nước cũng là một thành phần quan trọng ảnh hưởng đến khả năng làm việc của cảm biến. Một số các công bố đã nhận định phản hồi của cảm biến đã giảm nhẹ khi độ ẩm tương đối tăng lên [173], [155], [174]. Trong nghiên cứu này, để xác định ảnh hưởng của độ ẩm đến đặc tính cảm nhận khí của các cảm biến, chúng tôi đã khảo sát khả năng đáp ứng của các cảm biến đối với SO2 sau bốn chu kì liên tiếp và tăng độ ẩm tương đối trong buồng đo từ 45% lên đến 60%, 70% và 80%. Hình 4.21 biểu diễn độ dịch tần số của cảm biến sử dụng thanh
132
[126] Hexiong, G. Costin and et al., (2006), “Goethite, α-FeO(OH), from single- crystal data”, Acta Crystallogr. Sect. E Struct. Reports Online, vol. 62, no. 12, pp. 250–252.
[127] H. Liu, T. Chen, and R. L. Frost (2014), “An overview of the role of goethite surfaces in the environment”, Chemosphere, vol. 103, pp. 1–11.
[128] P. Senthil Kumar, K. Grace Pavithra, and M. Naushad (2019), "Characterization techniques for nanomaterials". Nanomaterials for Solar Cell Applications, pp 97 - 124.
[129] Raijiv Kohli and K.L.Mital (2019), “X-Ray Diffraction Methods for Assessing Surface Cleanliness Characterization, testing, and reinforcing materials of biodegradable composites Thin Film Deposition for Front End of Line”, Developments in Surface Contamination and Cleaning, Vol. 12.
[130] H. M. Rietveld (1969), “A profile refinement method for nuclear and magnetic structures”, J. Appl. Crystallogr., vol. 2, no. 2, pp. 65–71.
[131] S. Diaz-Castanon, J. C. Faloh-Gandarilla, E. Munoz-Sandoval, and M. Terrones (2008), “Vibration sample magnetometry, a good tool for the study of nanomagnetic inclusions”, Superlattices Microstruct., vol. 43, no. 5–6, pp. 482–486.
[132] T. Zelinka, P. Hejda, and V. Kropáček (1987), “The vibrating-sample magnetometer and Preisach diagram”, Phys. Earth Planet. Inter., vol. 46, no. 1–3, pp. 241–246.
[133] M. A. Mohamed, J. Jaafar, A. F. Ismail, M. H. D. Othman, and M. A. Rahman (2017), "Fourier Transform Infrared (FTIR) Spectroscopy". Elsevier B.V. [134] E. Smith and G. Dent (2005), "Modern Raman Spectroscopy - A Practical
Approach", John Wiley & Sons, Lts, vol. 5, pp 1 - 210.
[135] M. Naderi (2015), “Surface Area: Brunauer-Emmett-Teller (BET)”, Prog. Filtr. Sep., pp. 585–608.
[136] J. Villarroel-Rocha, D. Barrera, and K. Sapag (2014), “Introducing a self- consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination”, Microporous Mesoporous Mater., vol. 200, pp. 68–78.
[137] E. P. Barrett, L. G. Joyner, and P. P. Halenda (1951), “The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms”, J. Am. Chem. Soc., vol. 73, no. 1, pp. 373–380. [138] C. Özbek, S. Okur, Ö. Mermer, M. Kurt, S. Sayin, and M. Yilmaz (2015),
“Effect of Fe doping on the CO gas sensing of functional calixarene molecules measured with quartz crystal microbalance technique”, Sensors Actuators, B Chem., vol. 215, pp. 464–470.
[139] L. Zhang, Z. Huang, H. Shao, Y. Li, and H. Zheng (2016), “Effects of γ-Fe2O3 on γ-Fe2O3/Fe3O4 composite magnetic fluid by low-temperature low-vacuum
133
oxidation method”, Materials and Design, vol. 105. pp. 234–239.
[140] T. T. Loan et al. (2021), “Structure and magnetic properties of magnetic iron oxide/zinc oxide core/shell nanocomposites: Effect of ZnO coating”, Mater. Today Commun., vol. 26, p. 101733.
[141] M. I. Dar and S. A. Shivashankar (2014), “Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity”, RSC Adv., vol. 4, no. 8, pp. 4105–4113.
[142] R. Arbi et al.(2021), “Role of hydration and micellar shielding in tuning the structure of single crystalline iron oxide nanoparticles for designer applications”, Nano Sel., no. February, pp. 1–13.
[143] Z. Lin, C. Du, B. Yan, and G. Yang (2019), “Amorphous Fe2O3 for photocatalytic hydrogen evolution”, Catal. Sci. Technol., vol. 9, no. 20, pp. 5582–5592.
[144] A. Sirivat and N. Paradee (2019), “Facile synthesis of gelatin-coated Fe3O4
nanoparticle: Effect of pH in single-step co-precipitation for cancer drug loading”, Mater. Des., vol. 181, p. 107942.
[145] N. D. Cuong, T. T. Hoa, D. Q. Khieu, T. D. Lam, N. D. Hoa, and N. Van Hieu (2012), “Synthesis, characterization, and comparative gas-sensing properties of Fe2O3 prepared from Fe3O4 and Fe3O4-chitosan”, J. Alloys Compd., vol. 523, pp. 120–126.
[146] C. Wang, A. Li, and C. Shuang (2018), “The effect on ozone catalytic performance of prepared-FeOOH by different precursors”, J. Environ. Manage., vol. 228, no. 163, pp. 158–164.
[147] C. Liang, H. Liu, J. Zhou, X. Peng, and H. Zhang (2015), “One-Step Synthesis of Spherical γ-Fe2O3”, Journal of Chemistry, Vol. 2015, no. ii, pp 1- 8.
[148] D. Maity, S. Choo, J. Yi, J. D. Ã, and J. M. X. Ã (2009), “Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route”, Journal of Magnetism and Magnetic Materials, vol. 321, pp. 1256–1259.
[149] R. Sakthivel, B. Das, B. Satpati, and B. K. Mishra (2009), “Gold supported iron oxide-hydroxide derived from iron ore tailings for CO oxidation”, Appl. Surf. Sci., vol. 255, no. 13–14, pp. 6577–6581.
[150] X. Mou et al. (2012), “Crystal-phase- and morphology-controlled synthesis of Fe2O3 nanomaterials”, Eur. J. Inorg. Chem., no. 16, pp. 2684–2690.
[151] M. Su, C. He, and K. Shih (2016), “Facile synthesis of morphology and size- controlled α-Fe2O3 and Fe3O4 nano-and microstructures by hydrothermal/solvothermal process: The roles of reaction medium and urea dose”, Ceramics International, vol. 42, no. 13. pp. 14793–14804.
[152] D. P. Rall (1974), “Review of the health effects of sulfur oxides”, Environ. Health Perspect., Vol. 8, no. August, pp. 97–121.
134
Values ( TLV ) and Immediately Dangerous to Life and Health ( IDLH ) values”, Saf. Heal., p. 1.
[154] A. S. Teja and P. Y. Koh (2009), “Synthesis, properties, and applications of magnetic iron oxide nanoparticles”, Prog. Cryst. Growth Charact. Mater., vol. 55, no. 1–2, pp. 22–45.
[155] X. Wang et al. (2020), “Oxygen vacancy defects engineering on Ce-doped α- Fe2O3 gas sensor for reducing gases”, Sensors Actuators B Chem., vol. 302, p. 127165.
[156] M. Al-Hashem, S. Akbar, and P. Morris (2019), “Role of Oxygen Vacancies in Nanostructured Metal-Oxide Gas Sensors: A Review”, Sensors Actuators, B Chem., vol. 301, no. July, p. 126845.
[157] E. Herrero and et al. (1997), “Influence of synthesis conditions on the γ-Fe203 properties”, Solid State Ionics, vol. 101 - 103, pp. 213–219.
[158] L. Machala, R. Zboril, and A. Gedanken (2007), “Amorphous iron(III) oxide - A review”, J. Phys. Chem. B, vol. 111, no. 16, pp. 4003–4018.
[159] X. Song and J. F. Boily (2013), “Water vapor interactions with FeOOH particle surfaces”, Chem. Phys. Lett., vol. 560, pp. 1–9.
[160] M. Nishiyama and K. Watanabe (2014), “Frequency characteristics of hetero- core fiber optics sensor for mechanical vibration”, Sensors Actuators, A Phys., vol. 209, pp. 154–160.
[161] I. Urriza-Arsuaga, M. Bedoya, and G. Orellana (2019), “Tailored luminescent sensing of NH3 in biomethane productions”, Sensors Actuators, B Chem., vol. 292, no. 2019, pp. 210–216.
[162] M. Zhang and J. Li (2019), “Synthesis and characterization of a novel porphyrin derivative for optical sensor”, Mater. Lett., vol. 247, no. February, pp. 119–121.
[163] F. Ejeian et al. (2019), “Design and applications of MEMS flow sensors: A review”, Sensors Actuators, A Phys., vol. 295, pp. 483–502.
[164] D. Patil, V. Patil, and P. Patil (2011), “Highly sensitive and selective LPG sensor based on α-Fe2O3 nanorods”, Sensors Actuators B Chem., vol. 152, no. 2, pp. 299–306.
[165] Y Y. Ma, B. Wang, Q. Wang, and S. Xing (2018), “Facile synthesis of α - FeOOH /γ-Fe2O3 by a pH gradient method and the role of γ-Fe2O3 in H2O2
activation under visible light irradiation”, Chem. Eng. J., vol. 354, no. May, pp. 75–84.
[166] B. Qiao, L. Liu, J. Zhang, and Y. Deng (2009), “Preparation of highly effective ferric hydroxide supported noble metal catalysts for CO oxidations : From gold to palladium”, J. Catal., vol. 261, no. 2, pp. 241–244.
[167] L. Liu, F. Zhou, L. Wang, X. Qi, F. Shi, and Y. Deng (2010), “Low-temperature CO oxidation over supported Pt, Pd catalysts : Particular role of FeOx support
135
for oxygen supply during reactions”, J. Catal., vol. 274, no. 1, pp. 1–10.
[168] A. E. R. S. Khder, S. S. Ashour, H. M. Altass, and K. S. Khairou (2016), “Pd nanoparticles supported on iron oxide nanorods for CO oxidation: Effect of preparation method”, J. Environ. Chem. Eng., vol. 4, no. 4, pp. 4794–4800. [169] G. Neri et al (2001)., “HREELS study of Au/Fe2O3 thick film gas sensors”,
Sensors Actuators, B Chem., vol. 80, no. 3, pp. 222–228.
[170] P. Li, D. E. Miser, S. Rabiei, R. T. Yadav, and M. R. Hajaligol (2003), “The removal of carbon monoxide by iron oxide nanoparticles”, Applied Catalysis B: Environmental, vol. 43, pp. 151–162.
[171] R. Naumann et al.( 2014), “Strong metal – support interactions between palladium and iron oxide and their effect on CO oxidation”, J. Catal., vol. 317, pp. 220–228.
[172] C. Marius, M. Chirita, and I. Grozescu (2009), “Fe2O3 – Nanoparticles , Physical Properties and Their Photochemical And Photoelectrochemical Applications Fe2O3 – Nanoparticles , Physical Properties and Their Photochemical”, Chem Bull Politeh. Univ Timsisoara, vol. 54, no. January 2009, pp. 1–8, 2015.
[173] M. E. Azim-Araghi and M. J. Jafari (2010), “Electrical and gas sensing properties of polyaniline-chloroaluminium phthalocyanine composite thin films”, EPJ Appl. Phys., vol. 52, no. 1, pp 10402.
[174] Y. Zhihua, Z. Liang, S. Kaixin, and H. Weiwei (2012), “Characterization of quartz crystal microbalance sensors coated with graphene films”, Procedia Eng., vol. 29, pp. 2448–2452.