Ứng dụng kết quả nghiên cứu đề xuất xây dựng qui trình xử lý 2,4-D

Một phần của tài liệu Nghiên cứu đặc điểm hấp phụ một số hợp chất hữu cơ hòa tan trong nước trên nền vật liệu sắt hydroxit có mặt phụ gia sio2 và sắt kim loại (Trang 150 - 183)

sắt kim loại.

Từ các kết quả nghiên cứu thu được cho thấy quá trình xử lý loại bỏ 2,4-D hoặc TNT bằng phương pháp hấp phụ chịu ảnh hưởng của rất nhiều yếu tố như: pH môi trường, nhiệt độ dung dịch, thời gian tiếp xúc cũng như nồng độ ban đầu của chất ô nhiễm .v.v. Để áp dụng phương pháp hấp phụ sử dụng vật liệu trên cơ sở Fe(OH)3 có chứa các phụ gia SiO2 và sắt kim loại xử lý loại bỏ 2,4-D hoặc TNT hòa tan trong nước, ngoài các yếu tố cơ bản như đã trình bày trong nghiên cứu này còn cần xác định thêm một số các thông số khác của quá trình như lưu lượng hay thể tích nước cần xử lý, nồng độ đầu vào .v.v. Trong phần này sẽ trình bày mô hình xử lý (đề xuất) nguồn nước bị nhiễm 2,4-D hoặc TNT dựa trên các kết quả thu được trong nghiên cứu này.

Cơ sở tính toán để thiết lập mô hình xử lý theo mẻ dựa trên các thông số bao gồm: nồng độ chất ô nhiễm ban đầu là Ci (mg/l) với thể tích cần xử lý là V (lít) và nồng độ sau xử lý là Ct (mg/l). Sơ đồ cân bằng khối của quá trình được trình bày trong hình 3.45.

Phương trình xác định cân bằng:

𝑚𝑞𝑒 = 𝑉(𝐶𝑖 − 𝐶𝑡) (3.6)

Trong đó:

m : Khối lượng vật liệu cần sử dụng (g).

138

V : Thể tích nước cần xử lý (lít).

Ci : Nồng độ chất ô nhiễm ban đầu (mg/l).

Ct : Nồng độ chất ô nhiễm ở thời điểm cân bằng (mg/l).

Hình 3.46: Sơ đồ cân bằng khối của mô hình xử lý theo mẻ

Do quá trình hấp phụ bằng vật liệu tuân theo mô hình đẳng nhiệt hấp phụ Freudlich nên ta có: 𝑞𝑒 = 𝐾𝐹𝐶𝑡1 𝑛⁄ (3.7) Thay 3.7 vào 3.6 ta sẽ có: 𝑚 𝑉 = 𝐶𝑖− 𝐶𝑡 𝐾𝐹𝐶𝑡1 𝑛⁄ (3.8)

Từ biểu thức 3.8 ta sẽ xác định được khối lượng vật liệu cần thiết để xử lý V (lít) nước chứa chất ô nhiễm có nồng độ ban đầu là Ci (mg/l) xuống tới nồng độ Ct (mg/l).

Trên đây là sơ đồ nguyên lý chung áp dụng để xử lý các chất ô nhiễm trong nước thải bằng phương pháp hấp phụ theo mẻ. Trên thực tế, muốn có một công thức xử lý hay mô hình xử lý hiệu quả, trước tiên phải thử nghiệm, xác định chính xác điều kiện thực nghiệm tìm được giá trị qe (dung lượng hấp phụ cực đại) của vật liệu đối với mẫu nước thải nghiên cứu. Thực tế, giá trị qe thực nghiệm sẽ nhỏ hơn rất nhiều so với lý thuyết do có sự cạnh tranh hấp phụ giữa chất cần xử lý với các chất khác có mặt trong mẫu nghiên cứu.

m (g) vật liệu V (lít) dung dịch Cf (mg/l) chất ô nhiễm V (lít) dung dịch Ci (mg/l) chất ô nhiễm m (g) vật liệu qe (mg/g) chất ô nhiễm/vật liệu

KẾT LUẬN

1. Đã nghiên cứu chế tạo thành công vật liệu hấp phụ 3TP dựa trên cơ sở Fe(OH)3 với phụ gia là SiO2 và bột sắt kim loại, có khả năng hấp phụ loại bỏ 2,4-D và TNT từ dung dịch nước:

 Đã nghiên cứu và xây dựng qui trình chế tạo vật liệu 3TP trong phòng thí nghiệm với các điều kiện cơ bản như: pH dung dịch sau kết tủa là khoảng 4 – 5 với thời gian già hóa tối thiểu là 24 giờ ở nhiệt độ phòng. Tỷ lệ SiO2 cũng như sắt kim loại không vượt quá 10% và nhiệt độ sấy khô < 1500C trong thời gian 2 giờ

 Bằng các phương pháp phân tích hiện đại đã xác định các thông số lý hóa của vật liệu hấp phụ và khẳng định vật liệu hấp phụ ở dạng vô định hình, có cấu trúc mao quản, với thành phần chủ yếu là sắt và các chất phụ gia; diện tích bề mặt riêng của các vật liệu lớn hơn 200 m2/g.

 Bằng số liệu thực nghiệm đã chứng minh được vật liệu 3TP (vật liệu mới) có khả năng hấp phụ tốt TNT và 2,4-D.

2. Những đóng góp mới của luận án:

 Đã xác định một cách hệ thống đặc điểm hấp phụ (các thông số nhiệt động và động học) của 2,4-D và TNT lên vật liệu tổ hợp dựa trên Fe(OH)3.  Các kết quả nghiên cứu đặc điểm quá trình hấp phụ 2,4-D và TNT lên 3

loại vật liệu (vật liệu 1TP; 2TP10 và 3TP10) cho thấy:

 Quá trình hấp phụ 2,4-D và TNT bằng các loại vật liệu 1TP, 2TP10 và 3TP10 là quá trình tự diễn biến (G < 0).

 Mức độ mất trật tự của hệ tăng lên (S > 0) đối với tất cả các quá trình hấp phụ 2,4-D và TNT trên các vật liệu đã tổng hợp.

 Quá trình hấp phụ 2,4-D và TNT lên các loại vật liệu nghiên cứu là quá trình thu nhiệt (H > 0).

 Quá trình hấp phụ 2,4-D lên các vật liệu tuân theo mô hình động học hấp phụ giả bậc 2 và đẳng nhiệt hấp phụ Freudlich.

 Quá trình hấp phụ TNT lên vật liệu 3TP10 tuân theo quy luật động học hấp phụ giả bậc 2 và đẳng nhiệt hấp phụ Freundlich. Còn đối với vật liệu 1TP và 2TP10 quy luật này không thể hiện rõ.

 Tất cả các yếu tố như nhiệt độ, pH môi trường, nồng độ đầu của 2,4-D và TNT .v.v. đều có ảnh hưởng tới quá trình hấp phụ.

 Đã xác định được vai trò của SiO2 trong vật liệu hấp phụ và ảnh hưởng của nó tới dung lượng hấp phụ cũng như hiệu suất xử lý của vật liệu. Khối lượng SiO2 trong vật liệu tăng dẫn đến giảm dung lượng hấp phụ của vật liệu một cách rõ rệt. Vì vậy, khối lượng SiO2 trong vật liệu chỉ nên khống chế ở mức 10% đủ để tăng cường độ bền cơ học cho vật liệu mà không ảnh hưởng lớn tới dung lượng hấp phụ của vật liệu. (adsbygoogle = window.adsbygoogle || []).push({});

 Đã xác định được vai trò và ảnh hưởng của sắt kim loại trong thành phần của vật liệu 3TP10 có ảnh hưởng tới quá trình hấp phụ, đặc biệt đối với chất bị hấp phụ TNT. Khi khối lượng bột sắt kim loại trong vật liệu (3TP10) tăng lên thì hiệu suất hấp phụ 2,4-D và TNT cũng tăng theo.

DANH MỤC CÁC CÔNG TRÌNH KHOA HỌC ĐÃ CÔNG BỐ

1. Le Quoc Trung, Nguyen Duc Hung, Nguỵen Hoai Nam, Tran Van Chung, I. Francis Cheng (2010), Oxidation of 2,4,6-Trinitroresorcine using zero-valent iron, Asian Journal of Chemistry, 22 (4), pp. 3200 – 3206.

2. Trần Văn Chung, Lê Quốc Trung, Nguyễn Hoài Nam, Phan Bích Thủy, Nguyễn Văn Tuấn, Phan Văn Cường, Vũ Thị Kim Loan. (2010), Ứng dụng phương pháp Voltammetry nghiên cứu quá trình khử nitrobenzene bằng sắt hóa trị không, Tạp

chí Nghiên cứu Khoa học và Công nghệ Quân sự (Số đặc biệt – HNKHCNMT),

tr. 120 – 126.

3. Nguyễn Hoài Nam và Trần Văn Chung. (2010), Chế tạo vật liệu hấp phụ hai thành phần FeOOH/SiO2 theo phương pháp nhiệt thủy phân, Tạp chí Khoa học -

Khoa học tự nhiên, Đại học Sư phạm Hà nội, 55 (3), Tr. 71 - 81.

4. Nguyễn Hoài Nam, Trần văn Chung, Đỗ Ngọc Khuê. (2012), Xác định các thông số hoá lý của vật liệu hấp phụ trên cơ sở Fe(OH)3, SiO2, sắt kim loại và khả năng ứng dụng để xử lý 2,4,6-Trinitrotoluene nhiễm trong nước, Tạp chí Hóa học, 50 (4), Tr. 477 – 482.

5. Nguyen Hoai Nam, Dao Van Bay, Do Ngoc Khue, Tran Van Chung. (2013), Removal of 2,4-Dichlorophenoxyacetic Acid using Fe(OH)3 based complex adsorbent, Asian Journal of Chemistry, 25 (6), pp. 3479 – 3483.

6. Nguyen Hoai Nam, Dao Van Bay, Tran Van Chung. (2013), The adsorption characteristics of 2,4,6 - Trinitrotoluene (TNT) onto the FeOOH based complex adsorbent in aqueous media, International Journal of Chemistry, 2 (1), pp. 14 – 24.

TÀI LIỆU THAM KHẢO Tiếng Việt

1. Lê Văn Cát và Lê Hải Đăng (2002), Tổng hợp và xác định đặc trưng cấu trúc một số ôxit sắt, Tạp chí khoa học 47 (4), Trường Đại học Sư phạm Hà Nội, tr. 53 - 57 2. Lê Văn Cát và Lê Hải Đăng (2003), Tổng hợp và nghiên cứu khả năng hấp

phụ Pb2+ của ôxít sắt, Tạp chí khoa học 48 (1), Trường Đại học Sư phạm Hà Nội, tr. 51 - 56

3. Lê Văn Cát và Lê Hải Đăng (2003), Tổng hợp và nghiên cứu khả năng hấp phụ Ni2+ của ôxít sắt, Tạp chí Hóa học 41 (1), tr. 54 - 60

4. Trần Văn Chung (2004), Nghiên cứu tổng hợp vật liệu lọc hấp phụ Asen có

độ bền cao dùng trong công nghệ xử lý nước, Hội nghị Khoa học về Môi

trường lần thứ nhất, tuyển tập các báo cáo khoa học, Trung tâm Khoa học Kỹ thuật và Công nghệ quân sự, Bộ Quốc Phòng, tr. 391 - 395

5. Lưu Minh Đại, Đào Ngọc Nhiệm, Phạm Ngọc Chức, Vũ Thế Ninh, Nguyễn Thị Tố Loan (2010), Ứng dụng mangan ôxít và sắt ôxít kích thước nanomet để hấp

phụ asen, sắt và mangan, Tiểu ban: Môi trường và Năng lượng, Hội nghị Khoa

học kỷ niệm 35 năm Viện Khoa học và Công nghệ Việt Nam. Tr 155 - 160. 6. Lưu Minh Đại và Nguyễn Thị Tố Loan (2011), Chế tạo vật liệu nano gamma-

Fe2O3/cát thạch anh hấp phụ asen, sắt và mangan, Tạp chí Hóa học 49 (2), tr. 153 - 156.

7. Lưu Minh Đại, Đào Ngọc Nhiệm, Phạm Ngọc Chức (2011), Nghiên cứu khả năng sử dụng ôxít hỗn hợp Fe2O3-Mn2O3 cấu trúc nano để hấp phụ sắt, mangan, asen, Tạp chí Hóa học 49 (2), tr. 157 - 161.

8. Lưu Minh Đại và Nguyễn Thị Tố Loan (2011), Nghiên cứu khả năng hấp thụ asen trên vật liệu nano anpha-Fe2O3, Tạp chí Hóa học 49 (3), tr. 282 - 285. 9. Đinh Quang Khiếu, Phạm Thị Kim Oanh, Trần Quốc Việt, Trần Thái Hòa,

Nguyến Đức Cường, Phan Tứ Quí (2009), Nghiên cứu tổng hợp nano ôxít sắt bằng phương pháp thủy nhiệt, Tạp chí Khoa học 50, Đại học Huế, tr. 65 - 70. 10. Đỗ Ngọc Khuê và cộng sự (2000), Nghiên cứu đề xuất một số phương án

công nghệ xử lý môi trường đặc thù cho ngành công nghiệp quốc phòng, kỹ thuật và hậu cần và Nghiên cứu cơ sở khoa học và thực tiễn để xây dựng qui

chuẩn môi trường các khu vực hủy đạn, Báo cáo tổng kết 2 nhiệm vụ bảo vệ

môi trường, Cục KHCN-MT, Bộ quốc phòng.

11. Đỗ Ngọc Khuê, Nguyễn Quang Toại, Nguyễn Văn Đạt, Đinh Ngọc Tấn, Tô Văn Thiệp (2001), Hiện trạng công nghệ xử lý một số chất thải đặc thù của sản xuất quốc phòng, Tạp chí Khoa học Quân sự 5, tr. 83-87

12. Đỗ Ngọc Khuê, Nguyễn Văn Đạt (2002), Các phương pháp phân tích hóa , Tài liệu đào tạo sau đại học, Bộ quốc phòng. (adsbygoogle = window.adsbygoogle || []).push({});

13. Đỗ Ngọc Khuê, Lê Trình (2003), Một số vấn đề về khoa học và công nghệ

môi trường, Trung tâm Khoa học Kỹ thuật và Công nghệ Quân sự, Nhà xuất

bản Quân đội nhân dân, Hà nội.

14. Đỗ Ngọc Khuê và cộng sự (2005), Nghiên cứu công nghệ sinh học xử lý các

chất thải quốc phòng đặc chủng và sự ô nhiễm vi sinh vật, Báo cáo tổng kết

đề tài cấp nhà nước mã số KC.04.10, Bộ Khoa học và Công nghệ.

15. Đỗ Ngọc Khuê, Phạm Sơn Dương, Cấn Anh Tuấn, Tô Văn Thiệp, Đỗ Bình Minh, Phạm Kiên Cường (2010), Công nghệ xử lý các chất thải nguy hại

phát sinh từ hoạt động quân sự, Viện Khoa học và Công nghệ Quân sự, Nhà

xuất bản Quân đội nhân dân, Hà nội.

16. Phạm Luận (1989), Sắc ký lỏng cao áp (HPLC), Giáo trình sau đại học – cao học, Đại học Khoa học Tự nhiên, Hà Nội.

17. Trần Văn Nhân, Nguyễn Thạc Sửu, Nguyễn Văn Tuế (2006), Giáo trình

Hoá lý Tập 2, Nhà xuất bản Giáo dục, Hà nội.

18. Nguyễn Hữu Phú (1998), Hấp phụ và xúc tác trên bề mặt vật liệu vô cơ mao quản, Nhà xuất bản khoa học và kỹ thuật,. Hà nội.

19. Phan Tống Sơn, Trần Quốc Sơn, Đặng Như Tại (1980), Cơ sở hóa học hữu , Nhà xuất bản Đại học và Trung học chuyên nghiệp, Hà nội.

20. Đinh Ngọc Tấn, Đỗ Ngọc Khuê, Tô Văn Thiệp (2004), Nghiên cứu công nghệ

Khoa học về Môi trường lần thứ nhất, tuyển tập các báo cáo khoa học, Trung tâm Khoa học Kỹ thuật và Công nghệ Quân sự, Bộ Quốc Phòng, tr. 167 – 172. 21. Lê Trọng Thiếp (2002), Hoá học và độ bền của vật liệu nổ, Giáo trình cao

học của Viện Khoa học Kỹ thuật và Công nghệ Quân sự, Nhà xuất bản Quân đội nhân dân, Hà nội.

22. Tô Văn Thiệp (2010), Nghiên cứu đặc điểm quá trình hấp phụ từ pha lỏng

của một số hợp chất hữu cơ là thành phần thuốc phóng, Luận án Tiến sĩ Hóa

học, Viện Khoa học và Công nghệ Quân sự, Hà Nội.

23. Nghiêm Xuân Trường, Trịnh Khắc Sáu, Nguyễn Xuân Nết, Trần Xuân Thu, Nguyễn Thị Dung (2003), Xác định nồng độ 2,4-Diclophenoxi axetic axít (2,4-D) và 2,4,5-Triclorophenoxi acetic axít (2,4,5-T) trong một số mẫu đất

bằng phương pháp sắc kí lỏng cao áp (HPLC/DAD), Tiểu ban Hóa phân

tích, Hội nghị Hóa học toàn quốc lần thứ IV, tr. 83 – 87.

24. Bộ Nông nghiệp và Phát triển Nông thôn (2001), Danh mục thuốc bảo vệ

thực vật được phép, hạn chế và cấm sử dụng ở Việt Nam, Nhà xuất bản nông

nghiệp, Hà nội.

25. Viện hóa học Vật liệu (2003), Tài liệu báo cáo đánh giá tác động môi trường

giai đoạn 1995 – 2002, Viện Khoa học và Công nghệ quân sự, Bộ Quốc phòng

Tiếng Anh

26. Akçay G., Akçay M., Yurdakoç K. (2005), Removal of 2,4- dichlorophenoxyacetic acid from aqueous solutions by partially characterized organophilic sepiolite: thermodynamic and kinetic calculations, Journal of Colloid and Interface Science 281, pp. 27 – 32. 27. Aksu Z., Kabasakal E. (2004), Batch adsorption of 2,4-dichlorophenoxy- (adsbygoogle = window.adsbygoogle || []).push({});

acetic acid (2,4-D) from aqueous solution by granular activated, Separation

and Purification Technology 35, pp. 223 – 240.

28. Ali M.F., Ali B.M.E., Speight J.G. (2005), Handbook of Industrial

29. Alnaizy R., Akgerman A. (1999), Oxidative treatment of high explosives contaminated wastewater, Water research, 33 (9), pp. 2021 – 2030.

30. An F., Feng X., Gao B. (2009), Adsorption mechanism and property of novel adsorption material PAM/SiO2 towards 2,4,6 – trinitrotoluene, Journal of

Hazadous Materials 168, pp. 352 – 357.

31. An F., Gao B., Feng X. (2009), Adsorption of 2,4,6 – trinitrotoluene on a novel adsorption material PEI/SiO2, Journal of Hazadous Materials 166, pp. 757 – 761. 32. Arai Y., Sparks D.L. (2001), ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface,

Journal of Colloid and Interface Science 241, pp. 317 - 326.

33. Ardizzone S., Formaro L. (1985), Hydrothermal preparation of goethite crystals, Surface Technology 26, pp. 269 – 274.

34. Ayranci E., Hoda, N. (2004), Studies on removal of metribuzin, bromacil, 2,4-d and atrazine from water by adsorption on high area carbon cloth,

Journal of Hazardous Materials B112, pp.163 – 168.

35. Azizian S. (2004), Kinetic models of sorption: a theoretical analysis, Journal

of Colloid and Interface Science 276, pp. 47 – 52.

36. Bolto B., Dixon D., Eldridge R, King S., Linge K. (2002), Removal of natural organic matter by ion exchange, Water Research, 36 (20), pp. 5057 - 5065. 37. Chao Y.F., Lee J.J., Wang S.L. (2009), Preferential adsorption of 2,4-

dichlorophenoxyacetate from associated binary-solute aqueous systems by Mg/Al-NO3 layered double hydroxides with different nitrate orientations,

Journal of Hazardous Materials 165, pp. 846 – 852.

38. Charles J. M., Hanley T. R., Wilson R. D., Van Ravenzwaay B., Bus J. S. (2001), Developmental Toxicity Studies in Rats and Rabbits on 2,4-Dichlorophenoxyacetic Acid and its Forms, Toxicological Sciences 60, pp. 121-131.

39. Chung T.V., Trung L.Q., Minh D.B., Luong N.V. (2010), Voltammetry study of the 2,4,6-Trinitrotoluene conversion into the amine compounds using zero- valent iron, Analele Universitatii Bucuresti - Chimie, 19 (2), pp. 53 – 59.

40. Clausen L., Fabricius I. (2001), Atrazine, Isoproturon, Mecoprop, 2,4-D, and Bentazone adsorption onto iron oxides, Journal of Environmetal Quality, 30 (3), pp. 858 - 869

41. Cornell R.M., Schwertmann U. (2003), The Iron Oxides: Structure, properties,

reaction, occurences and uses, Wiley – VCH, Weinheim, Germany.

42. Das S., Hendry M.J., Essilfie-Dughan J. (2011), Transformation of Two- Line Ferrihydrite to Goethite and Hematite as a Function of pH and Temperature, Environmetal Science and Technology, 45 (1), pp. 268 – 275. 43. Dixon D.R., Eldridge R.J., Bolto V.A. (2004), Ion Exchange for the removal of

natural organic matter, Reactive and Functional Polymers 60, pp. 171 – 182. 44. Doelsch E., Stone W.E.E., Petit S., Masion A., Rose J., Bottero J.Y., Nahon

D. (2001), Specification and crystal chemistry of Fe(III) chloride hydrolyzed in the presence of SiO4 ligands. 2. Characterization of Si-Fe aggregates by FTIR and 29Si solid-state NMR, Langmuir 17, pp. 1399 – 1405.

Một phần của tài liệu Nghiên cứu đặc điểm hấp phụ một số hợp chất hữu cơ hòa tan trong nước trên nền vật liệu sắt hydroxit có mặt phụ gia sio2 và sắt kim loại (Trang 150 - 183)