1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Bài 2 GIÁ TRỊ LƯỢNG GIÁC của một CUNG nhóm ĐHSPHN image marked

24 16 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 1,09 MB

Nội dung

CHUN ĐỀ CUNG VÀ GĨC LƯỢNG GIÁC CƠNG THỨC LƯỢNG GIÁC BÀI GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT CUNG Mục tiêu  Kiến thức + Củng cố số đo cung góc đường trịn lượng giác + Biểu diễn cung đường tròn lượng giác + Nắm giá trị lượng giác cung  Kĩ + Xác định dấu giá trị lượng giác cung đặc biệt + Tính giá trị lượng giác cung đặc biệt + Tính giá trị biểu thức lượng giác với điều kiện cho trước Trang I LÍ THUYẾT TRỌNG TÂM Giá trị lượng giác cung    - Trên đường tròn lượng giác cho cung AM có sđ AM   Tung độ y  OK điểm M gọi sin  kí hiệu sin sin  OK Hoành độ x  OH điểm M gọi cơsin  kí hiệu cos cos  OH Nếu cos  0, tỉ số sin gọi tang  kí hiệu tan cos (hoặc tg ) tan  Nếu sin  0, tỉ số sin cos cos gọi côtang  kí hiệu cot  sin (hoặc cotg ) cot   cos sin Giá trị lượng giác cung có liên quan đặc biệt - Với hai cung đối nhau:   cos    cos ; sin      sin ; tan      tan ; cot      cot  - Với hai cung bù nhau:     sin      sin ; cos      cos ; tan       tan ; cot       cot    - Với hai cung phụ nhau:      2    sin      cos ; 2    cos     sin ; 2    tan      cot  ; 2    cot      tan 2  - Với hai cung  :      sin       sin ; cos      cos ; Trang tan      tan ; cot      cot  II CÁC DẠNG BÀI TẬP Dạng 1: Xác định dấu giá trị lượng giác góc (cung) lượng giác Phương pháp giải Ví dụ: Để xác định dấu giá trị lượng giác góc (cung), ta thực bước sau: a) Xét dấu sin 3 - Xác định xem điểm cung thuộc góc phần tư mặt b) Xét dấu sin30.cos100 Hướng dẫn giải phẳng tọa độ - Dùng định nghĩa giá trị lượng giác xác định dấu giá trị lượng giác cần xét dấu Góc a) Ta có I II III IV cung cos  _ _  sin sin   _ _ tan  _  _ cot   _  _ phần tư   3   nên điểm 3 thuộc góc phần tư II nên 3  b) Vì 0  30  90 nên điểm cung 30 thuộc góc phần tư thứ I Do sin30  Vì 90  100  180 nên điểm cung 100 thuộc góc phần tư thứ II Do cos100  Vậy sin30.cos100  Ví dụ mẫu Ví dụ Xét dấu biểu thức sau a) tan 4 11 b) sin100.cos Hướng dẫn giải a) Vì   Vậy tan 4 3 4  nên điểm cung thuộc góc phần tư thứ III 3 4  b) Vì 90  100  180 nên điểm cung 100 thuộc góc phần tư thứ II  sin100  Trang 11 3  3 11   2 Mà    nên điểm cung thuộc góc phần tư thứ II 4 4 Ta có  cos 11  11  Vậy sin100.cos Ví dụ Khẳng định sau đúng?  500 A cot         500 C sin 2450o cot      B sin  2450        500 D cot        Hướng dẫn giải Ta có 2450  70  7.360 Vì 0  70  90 nên điểm cung 2450 thuộc góc phần tư thứ I  sin  2450   Ta có  Vì   500 4   84.2 3 4 3 500  nên điểm cung  thuộc góc phần tư thứ III 3  500  cot         500  Do sin  2450  cot       Chọn D Ví dụ Khẳng định sau đúng? A sin 400.cos 3700  cot  8800   B sin 400  C cos 3700  cot  8800   D cot  8800   Hướng dẫn giải Cách Ta có 400  40  360 Vì  40  90 nên điểm cung 400 thuộc góc phần tư thứ I  sin 400  (B sai) Trang Ta có 3700  260  11.360 Vì 180  260  270 nên điểm cung 3700 thuộc góc phần tư thứ III  cos 3700   Ta có 8800  200  25.360 Vì 180  200  270 nên điểm cung 8800 thuộc góc phần tư thứ III  cot  8800   (D sai) Vậy sin 400.cos 3700  cot  8800   (A sai); cos 3700  cot  8800   (C đúng) Chọn C Cách Ngồi sử dụng phương pháp trên, ta nhờ hỗ trợ từ máy tính bỏ túi fx-570VN Thao tác bấm sau: - Reset máy tính: - Chuyển hệ độ: - Ở để ý máy tính bỏ túi khơng có hàm cot Do gặp hàm cot ta chuyển thành hàm tan   Ta kiểm tra đáp án Ví dụ đáp án A, ta bấm phím máy tính sau: - Kết 0,366703992  Vậy sin 400.cos 3700  cot  8800   Do A sai Các đáp án khác kiểm tra tương tự Chọn C Ví dụ Cho 0    90 Xét dấu a) sin   360  b) sin   90  Hướng dẫn giải a) Ta có sin   360   sin Vì 0    90 nên điểm cung  thuộc góc phần tư thứ I Trang Vậy sin   360   b) Ta có 0    90  0  90    90  90  90  90    90  180 nên điểm cung   90 thuộc góc phần tư thứ II Vậy sin   90   Ví dụ Cho tan x   A  2013 2015  x Giá trị sin x 2 B C  D Hướng dẫn giải Ta có 2013 2015    3  x  1006   x  1006      x  2 2 2 Do x thuộc góc phần tư thứ II thứ III  cos x  Mà  tan2 x  1  nên cos x   cos x  tan2 x Suy sin x  cos x.tan x  Vậy sin x  2 1  5 Chọn B Bài tập tự luyện dạng Bài tập Câu 1: Giá trị lượng giác sau mang dấu dương?  3  A sin      11  B cos      C cos   2  33  D cot      Câu 2: Góc (cung) lượng giác mà hai giá trị sin, tan trái dấu? A 30 B  C 359 D 91 Câu 3: Góc (cung) lượng giác mà hai giá trị cos, cot dấu? A 361 B 181 C 4 D 6 D 15 Câu 4: Góc (cung) lượng giác mà hai giá trị sin, cot trái dấu? A 405 B 25 C 20 Câu 5: Góc (cung) lượng giác mà hai giá trị sin, cos trái dấu? Trang A 45 B 315 C 2 D 91 Bài tập nâng cao Câu 6: Cho sin x  A cos x  15 Câu 7: Cho tanx  A sin x   với  x   Khẳng định khẳng định sau B cot x  15 C tan x  15 D tan x   15 4 2017 2019  x Khẳng định khẳng định sau? 2 3 Câu 8: Cho sin x  B sin x  C sin x  4 D sin x  6  với  x   Khi giá trị tan x A  Câu 9: Cho sin x   B 2  D 2  6 3 Khi giá trị cot x với   x  A  Câu 10: Cho sin x   C  B 2  C  D 2  6 3  x  2 Khi giá trị cot x với A  B 2  C  D 2  Dạng 2: Tính giá trị lượng giác góc (cung) Phương pháp giải Ví dụ: Cho sin x   ;180  x  270 Để tính giá trị lượng giác góc (cung), ta dùng hệ thức lượng giác biểu diễn Tính cos x, tan x, cot x giá trị lượng giác cần tính giá trị lượng giác Hướng dẫn giải biết Ta có sin2 x  cos2 x   cos x    sin2 x   Vì 180  x  270 nên cos x  sin x  cos x    tan x   cos x  cot x   tan x 4 Vậy cos x   ; tan x  ; cot x  Trang Ví dụ mẫu Ví dụ Tính giá trị lượng giác sau a) sin 3 b) cot 60 Hướng dẫn giải a) sin 3 Để tính giá trị sin 3 , ta thực máy tính bỏ túi dạng Ví dụ - Reset máy tính: - Chuyển hệ rađian: Do ta bấm phím máy tính sau: - Kết Vậy sin 2 3  b) cot 60 - Reset máy tính: - Chuyển hệ độ: - Ở để ý máy tính bỏ túi khơng có hàm cot Do gặp hàm cot ta chuyển thành hàm tan   Do ta bấm phím máy tính sau: - Kết Vậy cot 60  3 Trang Ví dụ Cho cos x   A sin x  , biết 180  x  270 Khẳng định sau đúng? 13 12 13 C cot x   12 B tan x  12 D sin x  17 12 Hướng dẫn giải Ta có sin2 x  cos2 x   sin x    cos2 x   12 13 Vì 180  x  270 nên điểm góc x thuộc góc phần tư thứ III  sin x   sin x   12 sin x 12  tan x    cot x   13 cos x tan x 12 Vậy sin x   12 12 ; tan x  ; cot x   13 12 Chọn B Ví dụ Cho tan x   , biết 90  x  180 Khẳng định sau đúng? 2 A cot x  C sin x  13 13 B cos x  13 13 D cos x  13 13 Hướng dẫn giải Ta có cot x   tan x Ta có  tan2 x  1 13  cos x    2 13 cos x  tan x Vì 90  x  180 nên cung x thuộc góc phần tư thứ II  cos x   cos x  Ta có tan x  Vậy sin x  2 13 13 sin x 2 13 3 13  sin x  cos x.tan x   cos x 13 13 13 2 13 2 ; cos x  ; cot x  13 13 Chọn C Ví dụ Cho giá trị lượng giác cot 75   Khẳng định sau đúng? A tan 75   B tan 75  2  Trang C cos75  6 D cos75   6 Hướng dẫn giải Cách Ta có tan 75  1    cot 75  Lại có  tan2 75  1 2 6  cos75     4 cos 75  tan 75 Vì 0  75  90 nên điểm cung 75 thuộc góc phần tư thứ I  cos75   cos75  Ta có tan 75  6 sin 75 6  sin 75  tan 75.cos75  cos75 Chọn C Cách Sử dụng máy tính bỏ túi - Reset máy tính: - Chuyển hệ độ: - Bấm giá trị lượng giác đáp án + Bấm phím Ta kết  Do loại đáp án A B + Bấm phím Ta kết 6 Do loại đáp án D Chọn C Ví dụ Cho 4sin x  2cos x   x  A sin x  2  19 10  Khẳng định sau đúng? B cos x  2  304 20 Trang 10 C tan x   19 15 D cot x  15  19 Hướng dẫn giải  Vì  x  nên sin x   sin x   cos2 x (do sin2 x  cos2 x  1) Mà 4sin x  2cos x  nên  cos2 x  2cos x  1 Vì  x    nên cos x   1   cos2 x     2cosx  1 2   16  cos2 x  4cos2 x  4cos x   2  304  cos x  2  304 20  20cos2 x  4cos x  15     cos x   20 2  304  cos x  20  (do cos x  ) Vì sin x  nên sin x   cos2 x   tan x   19 10 sin x  19 15   cot x   cos x 15 tan x  19 Vậy sin x   19 2  304  19 15 ; cos x  ; tan x  ; cot x  10 20 15  19 Chọn C Bài tập tự luyện dạng Bài tập 13 Câu 1: Giá trị cos A Câu 2: Giá trị cot A B  C D  C D  17 B  Câu 3: Giá trị sin 45 A B  C  D Trang 11 Câu 4: Cho sin x   với  x   Khi giá trị lượng giác cot x A 2 Câu 5: Cho tan x   A sin x  C 8 B 2 3  x  2 Khi giá trị lượng giác cịn lại với 2  2 B cos x  Câu 6: Cho cot x  a, a  với   x  A a2 a2  D B  a2 a2  D sin x  C cot x  3 Khi giá trị lượng giác cos x C a2  a2 D  a2  a2  ,C  góc tam giác ABC Chọn khẳng định khẳng định sau Câu 7: Biết  A, B     cos  C cosC  A  B       sin   A sin C A B   tan   B tan C A B      cot   D cot C A B Câu 8: Cho tam giác ABC Tìm khẳng định sai khẳng định sau A sin   A C   B  cos B cos    A C    sin C  C sin  A B  B  sin    cosC  D cos  A B Bài tập nâng cao Câu 9: Nếu x góc nhọn sin A a 1 a1 B x a1 a 1 Câu 10: Nếu x góc nhọn sin A a 1 a1 B  x  a1 a 1 x a 1 tan 2a C a1 D D a 1 x a 1 cot 2a C a1 a 1 Câu 11: Cho tam giác ABC có cạnh BC  a, AC  b, AB  c thỏa mãn hệ thức sau  cos B 2a  c   cos B 2a  c Tam giác ABC tam giác gì? A ABC cân A B ABC cân B C ABC cân C D ABC Trang 12 Dạng 3: Tính giá trị biểu thức lượng giác Ví dụ: Cho tan x  3, tính giá trị biểu thức sau Phương pháp giải Để tính giá trị biểu thức lượng giác, ta A dùng hệ thức lượng giác biểu diễn giá trị 2sin2 x  3sin x.cos x 3cos2 x  2sin2 x lượng giác biểu thức cần tính giá trị lượng Hướng dẫn giải giác biết Nhận thấy bậc tử số mẫu số nên ta chia tử mẫu A cho cos2 x, ta A 2tan2 x  3tan x 2.32  3.3   2  2tan x  2.3 Ví dụ mẫu Ví dụ Cho sin x  cos x  Tính giá trị biểu thức sau b) B  sin3 x  cos3 x a) A  sin x.cos x; Hướng dẫn giải a) Ta có sin x  cos x  1   sin x  cos x    sin2 x  cos2 x  2sin x.cos x  4   2sin x.cos x   sin x.cos x   Vậy A  sin x.cos x   b) Ta có     11 sin3 x  cos3 x   sin x  cos x  sin2 x  cos2 x  sin x.cos x  1           16  Vậy B   11 16 Ví dụ Cho tan x  Giá trị biểu thức A  A 7 B 9 C 2sin x  3cos x cos x  3sin x D Hướng dẫn giải Cách Nhận thấy bậc tử số mẫu số 1, ta chia tử mẫu A cho cos x, ta Trang 13 sin x sin x 3 2sin x  3cos x cos x  2tan x   2.3    A  cos x cos x sin x cos x  3sin x  3tan x  3.3 3 cos x cos x Vậy A   Chọn B Cách Sử dụng máy tính bỏ túi (CASIO fx-500ES PLUS) Bước 1: Reset máy tính: Bước 2: + Bấm phím để có biểu thức A: 2sin x  3cos x cos x  3sin x + Bấm phím: + Kết  Chọn B Ví dụ Cho tan x  cot x  m; m  Khi giá trị biểu thức tan x  cot x bao nhiêu? A  m2  B  m2 C m2  D   m2 Hướng dẫn giải Ta có tan x  cot x  m   tan x  cot x   m2  tan2 x  2tan x.cot x  cot x  m2  tan2 x  cot x   m2  tan2 x   cot x    m2   tan x  cot x   m2    tan x  cot x   m2   tan x  cot x  m2  Vậy tan x  cot x  m2  Chọn C Bài tập tự luyện dạng Bài tập Câu 1: Cho sin x  cos x   Khi giá trị sin x.cos x Trang 14 A B 1 C D 1 Câu 2: Đơn giản biểu thức A   tan x  cot x    tan x  cot x  ta A A  4 B A  C A  tan x Câu 3: Cho tan x  Khi giá trị biểu thức P  A B Câu 4: Cho sin x  cos x  A sin x cos x  D A   tan x sin x  cos x sin x  2cos x C D Kết sau sai? 1 B sin x  cos x  C sin4 x  cos4 x   D tan2 x  cot x  12 sin x  2cos x Câu 5: Cho cot x  Giá trị biểu thức P  3sin x  4cos x A 13 B 1 Câu 6: Cho tan x  m Khi A a.m  b d.m  c B C D a.m  b cm  d D Đáp số khác a.sin x  b.cos x c.cos x  d.sin x a.m  b c.m  d Câu 7: Cho tan x  m Khi giá trị biểu thức a.m2  2b.m  c A d.m2  3em  f C 1 13 C a.sin2 x  2b.sin x.cos x  c.cos2 x d.cos2 x  3esin x.cos x  f sin2 x a.m2  2b.m  c B d  3em  f m2 a.m2  2b.m  c d  3em  f m2 D a.m2  2b.m  c d  3em  f m2 Câu 8: Giá trị biểu thức P  sin6 x  cos6 x  3sin2 x.cos2 x A 1 B Câu 9: Nếu sin x  cos x  A 6 giá trị biểu thức P  4sin x  3cos x B 6 Câu 10: Nếu 3sin4 x  2cos4 x  A 607 407 D 4 C B C 7  D 6 98 giá trị biểu thức P  2sin4 x  3cos4 x 81 108 81 C  108 81 D 607 405 Trang 15 Bài tập nâng cao Câu 11: Biết tan x  2b Giá trị biểu thức A  a.cos2 x  2b.sin x.cos x  c.sin2 x a c A a  c B 2b sin4 x Câu 12: Nếu A a  a  b  cos4 x b B  sin8 x cos8 x giá trị biểu thức A   a b a b3 1  a  b Câu 13: Nếu 3sin4 x  2cos4 x  113 A 400 D a C 2c C  a  b D   a  b 98 giá trị biểu thức P  2tan4 x  cot x 81 2  16   29  B       29   16  2  29   16  C       16   29  D 400 113 Câu 14: Khẳng định khẳng định sau sai? tan x  tan y  tan x.tan y A cot x  cot y   sin x  sin x  B     4tan2 x   sin x   sin x   sin x sin x  cot x   C cos x  sin x cos x  sin x  cot x  sin x  tan x  D   1 cos2 x  cos x   Dạng 4: Giá trị lượng giác góc (cung) có liên quan đặc biệt Phương pháp giải Ví dụ: Tính giá trị biểu thức sau Để tính giá trị lượng giác góc a) A  tan225  cot150 (cung) có liên quan đặc biệt, ta thực b) B  sin240  tan300.cos 780  theo bước sau: Hướng dẫn giải - Dùng cung liên kết đưa cung góc a) tan225  cot150  tan  45  180   cot  30  180  phần tư thứ - Dùng công thức lượng giác để thu gọn    tan 45  cot  30       biểu thức Vậy A   b) sin240  tan300.cos 780   sin  60  180   tan  60  360  cos 60  720    sin60  tan  60  cos 60        2   Vậy B   Ví dụ mẫu Trang 16 Ví dụ Tính giá trị biểu thức sau a) A  tan240  cot 225 b) B  sin210  tan330.cot 495 Hướng dẫn giải a) Ta có tan240  tan  60  180   tan60  3; cot 225  cot  45  180   cot 45  Vậy A  tan240  cot 225   b) Ta có sin210  sin  30  180    sin30  1 tan330  tan  30  360   tan  30    tan30   cot 495  cot  45  3.180   cot  45    cot 45  1 Vậy B  1  3  1     3 Ví dụ Giá trị biểu thức sau Ghi nhớ:  9   13   17   21   x   cot   x   tan   x   cot   x         A  tan  A 1 B C D Hướng dẫn giải Ta có:  9      tan   x   tan   4  x   tan   x   cot x   2  2   13      cot   x   cot   6  x   cot   x   tan x   2  2    sin   x   cos x 2    cos  x    sin x 2    tan   x    cot x 2    cot   x    tan x 2   17      tan   x   tan   8  x   tan   x    cot x   2  2   21      cot   x   cot   10  x   cot   x    tan x   2  x  Vậy A  cot x  tan x  cot x  tan x  Chọn B Ví dụ Thu gọn biểu thức A  cos 270  x   3sin  x  450   cos x  900   4sin  720  x  ta kết sau đây? A 5sin x  2cos x B 5sin x  4cos x Trang 17 C 3sin x  2cos x D 3sin x  4cos x Hướng dẫn giải Ta có cos 270  x   cos 90  180  x    cos 90  x   sin x sin  x  450   sin  x  90  3.180    sin  x  90    cos x cos x  900   cos x  5.180    cos x sin  720  x   sin  4.180  x   sin x Vậy A  sin x  3  cos x     cos x   4sin x  5sin x  2cos x Chọn A Ví dụ Giá trị biểu thức A  sin2 2 3 4 5 6 7  sin2  sin2  sin2  sin2  sin2 18 18 18 18 18 18 A A  B A  C A  D A  Hướng dẫn giải Ta có sin2   2  2 7 2 2 2  sin2  sin2  sin2    cos2    sin 18 18 18 18 18  18  Tương tự: sin2 3 6 4 5  sin2  1; sin2  sin2  18 18 18 18 Do  A   sin2  2 7   3 6   4 5   sin2  sin2  sin2    sin    sin      18 18   18 18   18 18  Vậy A  Chọn D Bài tập tự luyện dạng Bài tập  3  Câu 1: Giá trị sin   x   cos x  9    A B 2cos x C 2cos x D  13   7   9   5  Câu 2: Giá trị biểu thức tan   x   cot   x   tan   x   cot  x           A 2tan x B 2tan x C 2cot x  11 Câu 3: Giá trị biểu thức sin  x     cos 7  x   sin  x   Khi giá trị P  a  2b D   15   x  a.sin x  b.cos x   cos    Trang 18 A B C D Câu 4: Giá trị biểu thức  2 3 4 5 6 7 8 9 cos  cos  cos  cos  cos  cos  cos  cos  cos 5 5 5 5 A 1 B C Câu 5: Giá trị biểu thức P  tan A 1   tan D 2 3 8  tan   tan 9 B C D Bài tập nâng cao Câu 6: Cho biểu thức sau sin  x     cos 3  x   tan  x  4   cot  x  5  có giá trị a.sin x  b.cos x  c.tan x  d.cot x Khi giá trị P  a  b  c  2d A P  B P  1 C P  3 D P  5   9     17  5  Câu 7: Cho biểu thức sau sin  x    cos  x   tan  x    cot  x   có giá trị 2        a.sin x  b.cos x  c.tan x  d.cot x Khi giá trị P  a  b  c  2d A P  B P  1 C P  3  D P  5    Câu 8: Biểu thức A  sin4 x  cos4 x  sin2 x.cos2 x  sin8 x  cos8 x có giá trị B 2 A D 1 C ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN Dạng Xác định dấu giá trị lượng giác góc (cung) lượng giác 1-A 2-D 3-A 4-C 5-B 6-D 7-D 8-B 9-C 10-D Câu Chọn D  1 15 Cách sin x  cos x   cos x   sin x         4 2 sin x 1   15    cot x    15 Từ suy tan x  Vì  x    cos x  cos x  15 tan x 15 Vậy cos x   15 1 ; tan x  ; cot x   15 15 Cách Sử dụng máy tính bỏ túi CASIO fx-570VN-PLUS Bước 1: Reset máy tính: Bước 2: Tìm x gán x cho A: Trang 19 Bước 3: - Tìm giá trị cịn lại bình thường, ví dụ tìm giá trị lượng giác sau: - Nếu kết số lẻ, ta việc bình phương lên xuống lại số đẹp: Kết 15  Tuy nhiên cần lưu ý  x   nên cung x thuộc cung phần tư thứ II  cos x   cos x   15 - Thực tương tự với giá trị lượng giác lại Câu Chọn D Ta có 2017 2019  3  3  x  1008   x  1008    x nên suy cos x  2 2 2 Do cos x   1  tan x  3 3 4  sin x  cos x.tan x   5 Vậy sin x  Câu Chọn B  6 2 2 Vì  x   nên cos x   cos x    sin x         4     tan x  sin x  cos x 6  2  Vậy tan x  2  2 Câu Chọn C Vì   x  1 3 1     nên cot x   cot x  2 sin x   6       Câu 10 Chọn D Trang 20 Vì 1 3 1       x  2 nên cot x   cot x   2 sin x   6       Dạng Tính giá trị lượng giác góc (cung) 1-C 2-A 3-D 4-A 5-A 6-B 7-D 8-D 9-A 10-B 11-C Câu Chọn A Vì x góc nhọn nên 0  x  90  0  Ta có sin2 x  cos2 x   cos2 Từ ta tính tan Vậy tan x  x  sin cos x  x  x  45  sin    0; cos    2  2 x   sin2 x  x x  1 a 1 a 1 a1   cos x  2a 2a 2a a 1 2a  a  a1 a1 2a a 1 a1 Câu 10 Chọn B Theo câu a, ta có: tan x  x a 1 Suy cot  a1 tan x  a1 a 1 Câu 11 Chọn C Sử dụng định lý cosin tam giác ABC ta có b2  a2  c2  2ac.cos B  cos B  Ta có a2  c2  b2 2ac  cos B 2a  c   1  cos B 2a  c  1  cos B 2a  c  cos B 2a  c  2a  c  2a.cos B  c.cos B  2a  c  2a.cos B  c.cos B  2a.cos B  c a2  c2  b2 Từ suy 2a  c  a2  c2  b2  c2  a  b  CB  CA 2a c Vậy tam giác ABC cân C Dạng Tính giá trị biểu thức lượng giác 1-B 2-B 3-A 4-D 11-D 12-A 13-B 14-C 5-A 6-A 7-B 8-B 9-A 10-D Trang 21 Câu 11 Chọn D Ta có tan x  2b a c Nhận thấy bậc số hạng biểu thức A nên ta tiến hành chia hai vế cho cos2 x Ta có  2b  cos2 x sin x cos x sin2 x 2b a  2b  c  a  2b.tan x  c.tan2 x  a  2b  c 2 a  c  a  c  cos x cos x cos x cos x cos x A  a  a  c  4b2  a  c  c.4b2   A  tan x   a  c    2b 2  a3  2a2c  ac2  4ab2  A 1       a  c    a  c     a  c2  4b2  a a2  2ac  c2  4b2   a2  2ac  c2  4b2 a  2ac  c2  4b2      A   A  a 2   a  c 2    a  c a  c      a  c       A  a Câu 12 Chọn A Đặt sin2 x  u  cos2 x   u Ta có sin4 x a  cos4 x b u2 1  u ab      u2b  1  u a  a b a b a b a b  u2b  a  2ua  u2a  2 ab ab  u2  a  b  2ua  a   u2  a  b  2ua  a  b  a  a  b  ab  a b a b  u2  a  b  2ua  a  b  a2   u  a  b  a   u  2 Do sin2 x  u  a a b ; cos2 x   u  b a b a a b 4  a   b      8 sin x cos x  a  b   a  b     Từ vào A ta được: A   3 a Vậy A   a  b b a b a  b  a  b  a  b 4   a  b Câu 13 Chọn B Ta có 3sin4 x  2cos4 x    98 98 98   cos2 x  2cos4 x   5cos4 x  6cos2 x   81 81 81  29 cos x   145 45  5cos4 x  6cos2 x   0  81  cos2 x   Trang 22 Trường hợp 1: cos2 x  29 1 16 29  tan2 x       cot x  29 45 29 16 cos2 x 45 2  16   29  Do P  2tan x  cot x        29   16  Trường hợp 2: cos2 x  1  tan2 x       cot x  cos x 2  4  5 113 Do P  2tan x  cot x        400  5  4 4 2   16   29   P        29   16  Vậy    P  113 400  Câu 14 Chọn C sin x.cos y  sin y.cos x sin x sin y  tan x  tan y cos x cos y sin x.sin y cos x.cos y     tan x.tan y cot x  cot y cos x cos y cos x.sin y  sin x.cos y cos x.cos y  sin x sin y sin x.sin y   sin x  sin x       sin x   sin x      sin x   sin x    sin x  sin x   2      2sin x   4sin x  4tan2 x    sin2 x  cos2 x    sin x  cos x  sin x   sin x  cos x  sin x  sin x sin x 2sin2 x    cos x  sin x cos x  sin x cos2 x  sin2 x  cos x  sin x  cos x  sin x   2 cot x  1  cot x   sin x  sin x    sin x  tan x  cos x    1   cos x    cos x     2   sin x cos x    cos x 1  cos x         sin x       cos x    tan x   cos2 x      Dạng Giá trị lượng giác góc (cung) có liên quan đặc biệt 1-A 2-A 3-C 4-B 5-C 6-D 7-B 8-C Câu Chọn D Ta có sin  x     cos 3  x   tan  x  4   cot  x  5  Trang 23   sin x    cos x   tan x  cot x   sin x  cos x  tan x  cot x Do a  b  d  1, c   P  a  b  c  2d  5 Câu Chọn B   9    17 Ta có sin  x    cos  x   tan  x  2       5    cot  x         cos x   sin x    cot x     tan x   sin x  cos x  tan x  cot x Do a  1, b  1, c  1, d  1  P  a  b  c  2d  1 Câu Chọn C    Ta có A  sin4 x  cos4 x  sin2 x.cos2 x  sin8 x  cos8 x      2   sin2 x  cos2 x  sin2 x cos2 x   sin4 x  cos4 x  2sin4 x cos4 x            sin2 x cos2 x   sin2 x  cos2 x  2sin2 x cos2 x   2sin4 x cos4 x      sin2 x cos2 x   2sin2 x cos2 x  2sin4 x cos4 x   4sin2 x cos2 x  2sin4 x cos4 x   4sin2 x cos2 x  4sin4 x cos4 x  2sin4 x cos4 x  Trang 24 ... x  27 0 Để tính giá trị lượng giác góc (cung) , ta dùng hệ thức lượng giác biểu diễn Tính cos x, tan x, cot x giá trị lượng giác cần tính giá trị lượng giác Hướng dẫn giải biết Ta có sin2 x ...  2a.cos B  c.cos B  2a.cos B  c a2  c2  b2 Từ suy 2a  c  a2  c2  b2  c2  a  b  CB  CA 2a c Vậy tam giác ABC cân C Dạng Tính giá trị biểu thức lượng giác 1-B 2- B 3-A 4-D 11-D 12- A... 2 3  x  2? ?? Khi giá trị lượng giác cịn lại với 2  ? ?2 B cos x  Câu 6: Cho cot x  a, a  với   x  A a2 a2  D B  a2 a2  D sin x  C cot x  3 Khi giá trị lượng giác cos x C a2

Ngày đăng: 11/12/2021, 20:27

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w