Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 72 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
72
Dung lượng
2,34 MB
Nội dung
MỤC LỤC Đặt vấn đề 1.1 Lí chọn đề tài 1.2 Mục đích nghiên cứu 1.3 Đối tượng nghiên cứu 1.4 Phương pháp nghiên cứu Nội dung nghiên cứu .6 2.1 Cơ sở lí luận sáng kiến kinh nghiệm .6 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 11 2.3 Biện pháp thực 17 2.4 Hiệu sáng kiến kinh nghiệm 58 Kết luận 60 Phần I Đặt vấn đề 1.1 Lí chọn đề tài Cơng đổi bản, tồn diện giáo dục đào tạo địi hỏi giáo dục phổ thơng phải có “chuyển biến bản, tồn diện chất lượng hiệu quả; góp phần chuyển giáo dục nặng truyền thụ kiến thức sang giáo dục phát triển toàn diện phẩm chất lẫn lực” Đặc điểm giáo dục định hướng nội dung trọng việc truyền thụ hệ thống tri thức khoa học quy định chương trình dạy học Người ta trọng việc trang bị cho học sinh (HS) hệ thống tri thức khoa học khách quan nhiều lĩnh vực khác Tuy nhiên chương trình giáo dục định hướng nội dung chưa trọng đầy đủ đến chủ thể người học đến khả ứng dụng tri thức học tình thực tiễn Mục tiêu dạy học chương trình định hướng nội dung đưa cách chung chung, không chi tiết không thiết phải quan sát, đánh giá cách cụ thể nên không đảm bảo rõ ràng việc đạt chất lượng dạy học theo mục tiêu đề Môn Tốn mơn học khơng trang bị cho HS tri thức tốn học xác mà cịn “hình thành HS phương pháp suy nghĩ làm việc khoa học toán học” Hơn nữa, “một tư tưởng văn hóa tốn học nhà trường là: toán học dành cho người hay tốn học dành cho người, khơng phải toán học dành riêng cho số người” Trong chương trình Trung học phổ thơng (THPT), mơn tốn tiếp tục tiếp nối chương trình Trung học sở, cung cấp vốn văn hố tốn phổ thơng cách có hệ thống tương đối hoàn chỉnh bao gồm kiến thức, kỹ phương pháp tư Quan điểm dạy học (DH) hình thành lực tốn học cho HS thông qua hoạt động hoạt động học tập nhiều nhà giáo dục toán học khẳng định Việc đổi phương pháp dạy học (PPDH) theo định hướng lấy HS làm trung tâm triển khai thực nhà trường Tuy nhiên, nói nay, “khơng có nhiều chứng cho thấy có thay đổi đáng kể PPDH” [4] Trong lớp học, có cải tiến đôi chút biện pháp, kĩ thuật DH phương tiện DH chưa thay đổi chất DH lấy giáo viên (GV) làm trung tâm [4] Thông qua khảo sát phiếu hỏi, dự dạy thực tập, thao giảng, thi giáo viên dạy giỏi cấp trường mơn tốn THPT, nghiên cứu ghi, kiểm tra mơn tốn, cho thấy: i) Nhiều GV chưa chịu khó đổi PPDH; chưa sáng tạo, mạnh dạn thiết kế hoạt động học tập mang lại hiệu để tổ chức cho HS tham gia hoạt động học tập nói chung tham gia hoạt động biểu diễn toán học (BDTH) khái niệm tốn học nói riêng ii) số phận giáo viên học sinh hài lòng với cách làm sách hướng dẫn, mà đó, thường tập trung vào phép suy luận logic; quan tâm đến việc định hướng cho học sinh tìm tịi lời giải tốn cách có hệ thống; việc tổ chức hoạt động nghiên cứu sâu lời giải không trọng dẫn đến bỏ lỡ hội bồi dưỡng lực BDTH cho học sinh iii) Học sinh cịn gặp nhiều khó khăn tham gia giao tiếp tự trình bày nội dung tốn học; lúng túng sử dụng BDTH khái niệm tốn học iv) Học sinh cịn gặp khó khăn giải tốn phát triển từ tốn bản, nói cách khác học sinh khơng tiếp cận, tìm kiếm giải pháp toán học học tập thực tiễn cách có hệ thống; kiến thức hệ thống không kết nối cách tự nhiên, liền mạch, dẫn đến việc tiếp cận toán tình cách thụ động, khơng chất Thực tế đào tạo, bồi dưỡng GV chưa đề cập nhiều đến BDTH DH tốn phổ thơng, có số đề tài nghiên cứu giải số toán dựa vào bảng biến thiên đồ thị hàm số Song, chưa có đề tài nghiên cứu cách có hệ thống BDTH DH Điều dẫn đến thực tế học tốn, HS thiếu chủ động, khơng tự tin, mắc số sai lầm thường gặp, thiếu môi trường động lực tham gia hoạt động học tập HS thiếu linh hoạt vận dụng toán học vào giải vấn đề liên quan đến nội toán học thực tiễn sống đặt Việc xây dựng tổ chức tình học tập để HS tham gia hoạt động BDTH khái niệm; nghiên cứu sâu lời giải; xem xét liên hệ toán với kiến thức liên quan nội toán học cách có hệ thống, khoa học khơng tiền đề kích thích hoạt động nói trên; hạn chế sai lầm em thường gặp; tự tin, tạo hứng thú học tập; chủ động vận dụng kiến thức học để giải vấn đề liên quan đến nội tốn học Ngồi ra, việc xây dựng tổ chức tình học tập cịn góp phần làm rõ thêm định hướng đổi DH theo định hướng phát triển lực toán học cho người học; nâng cao trách nhiệm tính tích cực, chủ động người học hiểu biết toán học; tạo dựng nên vốn kiến thức vững thân; hình thành phát triển khả kết nối toán học với thực tiễn Trong bối cảnh đổi giáo dục toán học phổ thông, việc nghiên cứu xây dựng biện pháp bồi dưỡng lực BDTH cho HS DH toán trở nên cần thiết, hướng tới việc hình thành, phát triển lực phẩm chất cho người học Xuất phát từ lý chọn đề tài nghiên cứu “Phát triển lực biểu diễn tốn học cho học sinh lớp 12 thơng qua dạy học luyện tập đồng biến, nghịch biến hàm số” 1.2 Mục đích nghiên cứu Nghiên cứu sở lý luận thực tiễn vấn đề phát triển lực sử dụng ngơn ngữ tốn học thơng qua dạy học toán cực trị modul số phức phương pháp hình học; đề xuất biện pháp dạy học toán dạy học, đồng thời đưa gợi ý, lưu ý dấu hiệu chuyển hố ngơn ngữ tốn học để giải toán theo quan điểm dạy học theo định hướng tiếp cận phát triển lực học sinh 1.3 Đối tượng nghiên cứu Sự cần thiết phát triển lực biểu diễn toán học dạy học mơn Tốn trường THPT Một số lực chung cốt lõi mà mơn Tốn tiềm ẩn hội hình thành phát triển cho học sinh Một số biện pháp góp phần phát triển lực biểu diễn tốn học trường Trung học phổ thơng Nghiên cứu cách thức tiếp cận, dấu hiệu nhận biết biểu diễn toán học khái niệm đồng biến nghịch biến hàm số Thực nghiệm sư phạm để minh họa tính khả thi hiệu việc “Phát triển lực biểu diễn toán học cho học sinh lớp 12 thông qua dạy học luyện tập đồng biến, nghịch biến hàm số” 1.4 Phương pháp nghiên cứu 1.4.1 Phương pháp nghiên cứu lý luận Tìm hiểu SGK, SBT, SGV giải tích lớp 12 chương trình bản, chương trình nâng cao; nghiên cứu tài liệu vấn đề liên quan đến đề tài sáng kiến kinh nghiệm Nghiên cứu đổi đồng PPDH, KTĐG giáo dục THPT theo định hướng tiếp cận lực Tài liệu thực hành giới thiệu PISA dạng câu hỏi OECD phát hành 1.4.2 Phương pháp điều tra - quan sát Nghiên cứu thực trạng dạy học Giải tích lớp 12 chương trình chuẩn trường THPT qua hình thức: quan sát, sử dụng câu hỏi, vấn trực tiếp GV, HS trường THPT 1.4.3 Phương pháp thực nghiệm sư phạm Tổ chức dạy thực nghiệm, làm kiểm tra trường THPT để xem xét tính khả thi hiệu nội dung nghiên cứu đề xuất Phần II Nội dung nghiên cứu 2.1 Cơ sở lí luận sáng kiến kinh nghiệm 2.1.1 Năng lực biểu diễn toán học 2.1.1.1 Quan niệm biểu diễn toán học Theo Từ điển từ ngữ Việt Nam, biểu diễn: “ghi hình vẽ kí hiệu” [12]; số trang từ điển trực tuyến mô tả biểu diễn: “Diễn tả công thức hình vẽ” (Từ điển Tra từ); “Diễn tả kí hiệu hình vẽ” (Từ điển Lạc Việt) Theo Gerald Goldin Nina Shteingold, biểu diễn thường dấu hiệu hình dạng dấu hiệu, ký tự đối tượng đại diện (tượng trưng, phản ánh, mã hóa, mơ tả) cho khác [4] Hiệp hội quốc gia GV toán (NCTM, 2000) cho biểu diễn hiểu tổ chức hình ảnh, kí hiệu (dấu hiệu giấy, hình vẽ, sơ đồ, biểu đồ, đồ thị, phác thảo hình học, phương trình) [4] Các tác giả Hồng Chúng, Hà Sĩ Hồ, Nguyễn Bá Kim không dùng thuật ngữ “biểu diễn” nói đến NNTH quan tâm tới loại ngơn ngữ sơ đồ, đồ thị, hình ảnh, tranh vẽ nhấn mạnh cần rèn luyện cho HS nắm vững, sử dụng phiên dịch chúng sang ngôn ngữ kí hiệu tốn học NNTN (dẫn theo [7]) Trong nghiên cứu mình, chúng tơi quan niệm rằng, BDTH việc sử dụng, xếp thuật ngữ, kí hiệu, hình ảnh (sơ đồ, biểu đồ, hình vẽ, đồ thị, dấu hiệu giấy, phác thảo hình học, ) hay đối tượng cụ thể hàm chứa nội dung tốn học để mơ tả, tượng trưng đại diện cho đối tượng, quan hệ hay qui trình tốn học Quan niệm cho thấy: BDTH gồm biểu diễn đối tượng thực (các đối tượng, quan hệ sống tự nhiên – xã hội), biểu diễn trực quan (sử dụng đồ thị, sơ đồ, bảng biến thiên, ) biểu diễn ngơn ngữ (các thuật ngữ, cơng thức, kí hiệu tốn học ) Nói cách khác, BDTH trình bày nội dung toán học thuật ngữ, kí hiệu, biểu tượng BDTH thay đổi tùy theo bối cảnh theo cách mà ta sử dụng biểu diễn BDTH xem kết q trình BDTH Mối quan hệ ngơn ngữ toán học biểu diễn tương tự mối quan hệ ngơn ngữ lời nói, ngơn ngữ tốn học phương tiện giao tiếp, cơng cụ để tư dạng vật chất tiềm tàng, biểu diễn phương tiện, công cụ dạng thực hóa, tức dạng hoạt động, gắn liền với nội dung toán học cụ thể 2.1.1.2 Năng lực biểu diễn toán học Quan niệm lực biểu diễn toán học Theo OECD, biểu diễn lực quan trọng cho hiểu biết tốn học Theo đó, lực BDTH khả sử dụng thao tác thành thạo nhiều loại biểu diễn khác cho đối tượng tình toán học Các biểu diễn bao gồm: đồ thị, bảng biểu, biểu đồ, hình ảnh, sơ đồ, văn biểu diễn đại số biểu diễn kí hiệu tốn học khác Trung tâm lực khả hiểu sử dụng mối quan hệ biểu diễn khác [4] Như vậy, BDTH (với nghĩa lực) nhắc đến khả biểu diễn kí hiệu, đồ thị, bảng biểu, biểu đồ, hình ảnh, sơ đồ kể văn Vận dụng kết nghiên cứu BDTH nói trên, xem xét lực BDTH dạng thức lực sử dụng ngơn ngữ tốn học, có tương giao với lực giao tiếp tốn học, quan niệm rằng: lực BDTH khả hiểu, sử dụng, lựa chọn, tạo chuyển đổi BDTH để suy nghĩ, ghi nhớ, mô tả, giải thích, lập luận, kết nối trao đổi ý tưởng giải vấn đề toán học Rõ ràng, biểu diễn tốn mơ hình nhận thức mà người dạy người học khai thác, tận dụng cách hiệu để thúc đẩy việc hiểu biết toán khám phá toán học Nhiều nghiên cứu cho thấy, kĩ BDTH HS chìa khóa dẫn đến thành cơng giải vấn đề Việc học tập HS cần hướng đến việc hình thành kết nối loại biểu diễn khác như: vật liệu, tranh ảnh, biểu tượng, kí hiệu, hình vẽ, sơ đồ, biểu, bảng, ; biểu diễn lời nói hình ảnh; biểu diễn bên biểu diễn bên 2.1.1.3 Các biểu đặc trưng lực BDTH Khung đánh giá lớp học toán xác định lực BDTH bao gồm: (1) Giải mã, giải thích phân biệt dạng biểu diễn khác đối tượng tình tốn học, mối tương quan cách biểu diễn khác nhau; (2) Lựa chọn chuyển đổi dạng biểu diễn khác tùy theo tình mục đích [16] Các quan niệm tập trung vào khả hiểu sử dụng BDTH HS học tập toán GV cần phải biết tạo hướng dẫn HS tạo sơ đồ, mơ hình, biểu đồ, cần thiết cho việc tư duy, ghi nhớ học tập Trên sở đó, chúng tơi xác định thành tố biểu đặc trưng lực BDTH bao gồm: Thành tố Biểu đặc trưng Hiểu sử dụng hiệu BDTH 1.1 Phân biệt, hiểu nội dung để suy nghĩ, ghi nhớ hay trình bày nội đối tượng quan hệ toán học dung toán học BDTH 1.2 Sử dụng hệ thống BDTH để suy nghĩ, ghi nhớ hay trình bày nội dung tốn học Liên kết, biến đổi tạo 2.1 Biết liên kết, biến đổi biểu BDTH phù hợp để tìm kiếm ý tưởng, diễn để kết nối, lập luận, chứng minh; giải pháp giải vấn đề toán tìm kiếm giải pháp, ý tưởng tốn học học 2.2 Tạo BDTH phù hợp để biểu thị đối tượng, quan hệ hay phương án giải vấn đề tốn học tình khác Lựa chọn, chuyển đổi BDTH 3.1 Lựa chọn cách BDTH hợp lí thuận lợi nhận thức, thực hành, tình học tập đa dạng ghi nhớ giao tiếp toán học 3.2 Chuyển đổi dạng BDTH thuận lợi cho nhận thức, thực hành, ghi nhớ GTTH 3.3 Phiên dịch từ NNTN sang BDTH để mơ hình hóa, phù hợp với bối cảnh cụ thể, tạo hiệu tư giao tiếp Năng lực BDTH hình thành phát triển qua hoạt động BDTH Ở đó, HS tập luyện sử dụng BDTH, khai thác, lựa chọn, biến đổi tạo BDTH khác để giải vấn đề tốn học Qua đó, HS nhận tính đơn giản hiệu dạng biểu diễn, vai trò biểu diễn giao tiếp nhận thức toán học (tư duy) 2.1.1.4 Các mức độ lực biểu diễn toán học Với cách nhìn nhận lực BDTH HS thể qua mức độ chất lượng thực hoạt động BDTH, tương quan so sánh với bạn trang lứa, vận dụng cách xây dựng mức độ hiểu biết toán học theo PISA vào kết khảo sát lực HS lớp 12, dự giờ, phân tích, tìm hiểu ghi, kiểm tra tốn HS, chúng tơi đề xt mức độ lực BDTH sử dụng nghiên cứu đề tài sau: Mức độ 1: Hiểu nội dung biểu diễn quen thuộc cho đối tượng quan hệ tốn học Cịn gặp khó khăn nhiều sai sót việc sử dụng kí hiệu, hình vẽ, sơ đồ, Mức độ 2: Bước đầu sử dụng BDTH quen thuộc để mô tả, minh họa cho đối tượng hay quan hệ tốn học chưa xác, rõ ràng, đầy đủ Mức độ 3: Sử dụng biểu diễn toán học để biểu thị đối tượng quan hệ tốn học có tính qui luật tương đối phù hợp Mức độ 4: Sử dụng hiệu BDTH tư giao tiếp Giải thích, đánh giá dạng biểu diễn khác Tạo kết nối biểu diễn để mơ hình hóa (ở dạng đơn giản) giải vấn đề toán học Mức độ 5: Vận dụng linh hoạt, sáng tạo BDTH phân tích, tổng hợp, suy luận, khái qt hóa chứng minh tốn học Sử dụng tạo BDTH phù hợp để mơ hình hóa giải vấn đề toán học gắn với bối cảnh cụ thể 2.1.2 Vai trò biểu diễn tốn học dạy học mơn tốn Trong dạy học toán, BDTH vừa hỗ trợ phát triển khả suy luận, nhận thức toán học vừa phương tiện để trao đổi thơng tin nội dung tốn học mà làm đại diện Trong thực tế, chất trừu tượng tốn học, người tiếp cận đến ý tưởng tốn học thơng qua đại diện chúng Từ quan điểm ngôn ngữ tốn học, thấy lực BDTH có gắn kết chặt chẽ với khả giải mã, tạo mã, chọn mã chuyển mã ngơn ngữ tốn học, ngơn ngữ biểu tượng, ngơn ngữ hình thức mối quan hệ chúng với ngôn ngữ tự nhiên Trong dạy học toán, việc thiết lập nhiều BDTH khác cho khái niệm có tác dụng thúc đẩy việc hiểu khái niệm toán HS cách chắn HS chứng tỏ việc hiểu sâu sắc khái niệm cách chuyển từ biểu diễn sang kiểu biểu diễn khác khái niệm [14],[17] Biểu diễn tốn học cịn cách cụ thể hóa khác cho khái niệm, sử dụng để giảm bớt độ khó làm cho toán học hấp dẫn, thú vị HS sử dụng biểu diễn để hỗ trợ giải vấn đề toán học học khái niệm Bởi vậy, biểu diễn phần tách rời q trình nhận thức tốn học HS Khơng sử dụng BDTH, HS cần có khả tạo biểu diễn cho riêng (biểu diễn khơng theo qui ước), điều tiềm ẩn nội lực sáng tạo mạnh mẽ, linh hoạt ngôn ngữ, khả hiểu biết toán học vượt trội trongcác tìn h học tập, đặc biệt tốn học đặt bối cảnh cụ thể Niss Mogens khẳng định lực dựa kiến thức kỹ cụ thể để thực loại hoạt động tốn học mơ tả mối quan hệ hình ảnh “Bơng hoa lực” (hình bên) Theo đó, Niss Mogens xác định lực BDTH thuộc cụm lực sử dụng ngôn ngữ công cụ toán học (the ability to deal with mathematical language and tools) [16] Nói cách khác, BDTH liên quan đến hiểu biết, sử dụng ngôn ngữ công cụ toán học để giải toán khái niệm Như vậy, khẳng định lực BDTH có vai trị quan trọng, góp phần phát triển tư duy, đóng góp tích cực vào việc hình thành phát triển lực tốn học Bồi dưỡng lực BDTH cho HS nội dung quan trọng nhằm nâng cao kết học tập toán HS Trong dạy học tốn, thơng qua hoạt động ngơn ngữ, HS học cách sử dụng ngơn ngữ tốn học để suy nghĩ, để lưu trữ thông tin, để chuyển tải ý tưởng toán học, đưa lập luận, chứng minh, giải vấn đề toán học thực tiễn nhằm nâng cao kết học tập môn tốn 2.1.3 Quan điểm hoạt động hình thành phát triển lực BDTH Xuất phát từ phạm trù hoạt động triết học Mác, lí thuyết thực nghiệm L.X Vưgôtxki A N Leonchev đặt móng cho phương thức DH nhà trường: Dạy HS hoạt động hoạt động thực tiễn bên ngồi, sau chuyển vào hoạt động bên Nhà trường khơng có sứ mệnh khác việc dạy tổ chức cho HS hoạt động, để thơng qua dạy cách sáng tạo nhân cách em [13] Đối với học sinh THPT, hoạt động học tập hoạt động giữ vai trò việc tạo lập học vấn bản, góp phần phát triển tồn diện hình thành nhân cách HS [5] Qua hoạt động học tập, HS có khái niệm khoa học bước đầu nhận thức quy luật vật, tượng Theo quan điểm hoạt động, trình DH trình điều khiển hoạt động học tập HS nhằm thực mục tiêu DH Xuất phát từ nội dung học, cần phát hoạt động liên hệ với nội dung vào mục tiêu DH mà chọn cho HS tập luyện số hoạt động phát Như vậy, quan điểm hoạt động DH hình thành bồi dưỡng lực BDTH cho HS thể tư tưởng chủ đạo sau: i) Cho HS thực tập luyện hoạt động BDTH tương thích với nội dung mục tiêu DH Các hoạt động BDTH gồm: 1) Hoạt động nhận biết hiểu nội dung toán học BDTH cách xác, logic, hệ thống (hoạt động giải mã); 2) Hoạt động liên kết, biến đổi tạo BDTH phù hợp với tình huống, bối cảnh cụ thể (hoạt động tạo mã); 3) Hoạt động lựa chọn, chuyển đổi BDTH trình nhận thức, thực hành, ghi nhớ giao tiếp toán học (hoạt động chọn chuyển mã) ii) Gợi động cho hoạt động học tập Chú ý gợi động mở đầu, bước trung gian chí kết thúc dạy [9] Vận dụng lí thuyết “vùng phát triển gần” L.X Vưgơtxki, GV sử dụng câu hỏi, mơ hình, hình ảnh có chứa đựng vấn đề tốn học liên quan để HS lắng nghe, quan sát Qua đó, GV gợi trí tị mị, tạo hứng thú, tự tin, cởi mở để HS tích cực, chủ động tham gia hoạt động BDTH iii) Kiến tạo tri thức BDTH ngơn ngữ tốn học phương tiện kết hoạt động Quá trình tiếp nhận, hiểu sử dụng ngơn ngữ tốn học phải thực thông qua hoạt động học tập theo quan điểm “học 10 hoạt động hoạt động” Đó vừa mục tiêu, vừa cách thức để bồi dưỡng lực BDTH GTTH Trong q trình học tập mơn tốn, HS thực dạng hoạt động học tập chủ yếu: Nhận dạng thể hiện; Những hoạt động toán học phức hợp; Những hoạt động trí tuệ phổ biến; Những hoạt động trí tuệ chung; hoạt động ngôn ngữ [8], [10], [11] Để thực hiệu hoạt động học tập nêu trên, khơng thể khơng có hoạt động BDTH với vai trò vừa phương tiện vừa hoạt động thành phần quan trọng hoạt động học tập nói 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.2.1 Các vấn đề chương trình giáo dục phổ thơng 2.2.1.1 Nội dung chương trình tốn học THPT Các tập liên quan đến xét đồng biến, nghịch biến hàm số sách giáo khoa, sách tập Giải tích 12 đề cập tới số dạng tập như: xét tính đồng biến hàm số cho cơng thức cụ thể; ứng dụng tính đồng biến nghịch biến để chứng minh bất đẳng thức, bất phương trình Hệ thống tập xét tính đơn điệu hàm số biểu diễn đồ thị hàm số y = f (x) ; đồ thị hàm số y = f (x); bảng xét dấu đạo hàm f (x); bẳng biến thiên hàm số y = f (x), Đặc biệt, toán nâng cao từ dạng toán nêu xuất nhiều kỳ thi THPT QG vài năm trở lại SGK, SBT không đề cập đến Đổi kiểm tra, đánh giá dạy học, đặc biệt kỳ thi THPT QG góp phần khơng nhỏ cho cơng đổi bản, tồn diện giáo dục đào tạo nước nhà Song, phận giáo viên chưa thật thay đổi; chưa chịu khó đổi hình thức dạy học, kiểm tra đánh giá; chưa ứng dụng công nghệ thông tin để bắt kịp với công đổi bản, tồn diện Do đó, học sinh khó có hội để tìm tịi, khám phá, giải toán khái niệm BDTH khác nhau; dẫn đến hạn chế hoạt động tư duy, khả giao tiếp hoạt động sử dụng NNTH học sinh 2.1.1.2 Thời lượng dạy học Thời lượng khóa dành cho mơn tốn gần đủ để giải toán sách giáo khoa Thời gian ngồi khóa giáo viên chưa quan tâm, đầu tư thời gian; chưa mạnh dạn tổ chức dạy học theo chủ đề 2.2.1.3 Cơ sở vật chất, thiết bị dạy học Cơ sở vật chất phục vụ cho việc dạy học đầy đủ Song, việc ứng dụng CNTT nhiều hạn chế SGK viết dạng tốn cịn ít, tài liệu hướng dẫn cách tiếp cận toán cách khoa học chưa nhiều 2.2.2 Các vấn đề phong cách học tập người học 11 GV: Từ đó, em trình bày lời giải toán trên? 51 Lời giải 2 ) (− x − 1) (1 − x ) Ta có: g ( x ) = f (1 − x ) = − (1 − x =( − 1) (x + 1)(x + x + m − 5) − (1 − x )+m x Hàm số g (x) nghịch biến khoảng (− ; −1) (x ) 0, x −1 ( ), (dấu " = " xảy số hữu hạn điểm) g x+ Với x − 120 x −1 −1 x + x + m − 0, x ( () ) m − x − x + 5, x −1 y=− + nửa khoảng Xét hàm số x −4x thiên: −2 x − (− ; −1 , ta có bảng biến −1 y − Từ bảng biến thiên, suy m x ) = f (1− x) nghịch biến khoảng (− ; −1) g( = f (x)liên tục Ví dụ 3.8 Cho hàm số y hình −1 x − + − f (x) + Vậy, m hàm số Tìm giá trị gx =f 1−x + ( ) ( nên tham có bảng xét dấu f (x) số − m ) x + mx + m2 +1 đồng biến khoảng ( + + để hàm số −3;0) Định hướng giúp học sinh tìm lời giải GV: Tính g (x)? HS: g 2x + m (x )=−f −x − ( ) ( ) x + mx + m2 +1 GV: Để hàm số g (x) đồng biến khoảng (−3;0) điều kiện tương đương gì? HS: Tìm m để g (x ) 0, x (0;1) 52 (x ) 0, GV: g ( −3;0) nào? x 2x + m ) , x ( −3;0) x + mx + m2 +1 GV: Khi x ( −3;0) − x biến thiên khoảng nào? Tù đó, có nhận ( ) ( ) − xét dấu − f x khoảng −3;0 ? HS: − f (1 − x) − ( ( ( HS: ) x −f 1− x −3;0 − x ( Từ 2x + m ( − x) − ( ) x + mx + m +1 khoảng 1; để , x HS: Ta cần chứng minh: − chứng 2x + m ( ) 0, 2 hay cần x ( −3;0) +1 ( −3;0) GV: Từ đó, em trình bày lời giải toán trên? Lời giải + mx + Điều kiện: x m + mx + x m 2 2 +1= x+ m g ( x ) = − f (1 − x) − ( + (ln m + +1 ) 2x + m ) Với x − f ( −3;0 ) (1 − x)(1;4) (1 − x ) 0, Hàm số g 2 + mx + x m +1 f (1 − x ) 0, x ( −3;0) hay ( −3;0) g (x) đồng biến khoảng (−3;0) x (x ) 0, x ( −3;0)− x + m 0, x m −2 x , x ( 2x + m x 2+ mx + m 2+1 ( −3;0) ( −3;0 )m minh ( −3;0) ta làm nào? + mx + x m chứng minh x + m 0, x Do đó, đó, ( ) biến thiên ) −3;0 khoảng GV: − f ) 0, x ) (−2 x ) x −3;0 ( −3;0) m Vậy, m hàm số g (x) đồng biến khoảng (−3;0) Ví dụ 3.9 Cho hàm số hình vẽ f (x) liên tục , có đồ thị y = f (x) 53 Tìm g (x )= f (x giá trị thực 480 )+ m (x 2 tham số m để hàm số nghịch biến +x +2) khoảng (0;1) Định hướng giúp học sinh tìm lời giải (x)? HS: g ' (x ) = ( x + 1) f (x + x − 1)− ( GV: Tính g GV: Để hàm số đương gì? HS: Tìm m để GV: g f HS : (x ) 0, (x ) 480 x +1 m (x + x + 2) g (x) nghịch biến khoảng (0;1) điều kiện tương (x ) 0,x (0;1) g (0;1) nào? x )− m (x 480 f (x GV: Để chứng minh )− (0;1) 0, x + x + 2) m (x 480 0, x + x + 2) 2 (0;1) thông thường làm nào? HS: Hãy 480 m ( x2 + x + cô lập )2 f (x GV: Hãy chứng tỏ x HS: Ta có: (x 2 tham + x −1) , x ( + x + 2) + x + ) 16 m , x (0;1)? f x + x − 1) 64 4, x (0;1) ( ( + x − 1) f x GV: Từ đó, em trình bày lời giải tốn trên? Lời giải Ta có g ' x = x + f ( x + x − − 480 (2 x +1) ) () ( ) chứng (0;1) 2 số ( ) m x +x+2 2 minh 54 Hàm số g (x ) = f (x ) + m (x 480 nghịch biến khoảng +x +2) (0;1) g ' (x ) 0, x (0;1) (dấu “=” xảy số hữu hạn điểm thuộc khoảng (0;1)) ( ( x + 1) f (x + x − 1)− ) 480 x +1 x + )2 m (x + (0;1) x 480 f (x + x − 1)− m (x + x + 2)2 , x 480 ( x + x + )2 f m Ta có ( x + x + 2) 216 Do x ( 2 (0;1) (x + x −1) , x (0;1) , x (0;1) ( + x + 2) f x (*) (x f + x − 1) 64 , x 2+ x − 1) (0;1) 480 15 64 m m 15 Vậy, với m hàm số g (x) nghịch biến khoảng (0;1) Ví dụ 3.10 Thuốc cho người bệnh Từ (*) suy Người ta tiêm loại thuốc vào mạch máu cánh tay phải bệnh nhân Sau thời gian t giờ, nồng độ thuốc mạch máu bệnh nhân cho theo cơng thức: 0, 28t C (t ) = t + (0 t 24) Theo em, vào khoảng thời gian nồng độ thuốc mạch máu bệnh nhân tăng, giảm? Định hướng giúp học sinh tìm lời giải tốn thực tiễn thơng qua bước đây: Bước 1: Xác định yêu cầu toán thực tiễn; + GV giao nhiệm vụ: Yêu cầu nhóm tìm hiểu nội dung tốn có nội dung thực tiễn HS: Viết giả thiết kết luận toán Bước 2: Tổ chức cho học sinh phân tích làm rõ “cụm từ” có nghĩa tốn thực tiễn mơ hình Tốn học; + GV: Cụm từ “nồng độ thuốc mạch máu bệnh nhân tăng, giảm” tình hiểu nào? 55 HS: Hàm số y = C (t )đồng biến, nghịch biến Bước 3: Đề xuất giải pháp giải tốn thực tiễn(trong mơ hình Tốn học); + GV: Như vậy, điều cần phải giải toán trên? Hãy phát biểu điều thành nội dung tốn theo ngơn ngữ tốn học? 0, 28t HS: Xét tính đơn điệu hàm số C (t ) = t + khoảng (0;24).(*) Bước 4: Thực giải pháp(trong mô hình Tốn học); + GV: Các em thực giải tốn vừa nêu theo ngơn ngữ 0,28t HS: Xét hàm số C (t ) = liên tục khoảng (0; 24) t +4 ( 2) 0,28 − t ) ' ( t ) = 0,28 − t C =0 ( t ) = Ta có: C (t + 4) ( (t ' 2 +4 ) toán học t= 2 Lập bảng biến thiên: t C’(t) + 24 – 0,07 C(t) 1,68 145 Dựa vào bảng biến thiên ta có hàm số y = C (t )đồng biến khoảng ) (0;2 nghịch biến khoảng (2;24) Bước 5: Chuyển kết mơ hình tốn học sang lời giải toán thự tiễn c + GV: Hãy nêu kết luận toán thực tiễn? HS: Như vậy, vào khoảng thời gian tiêm cho bệnh nhân hai (sau tiêm) nồng độ thuốc mạch máu bệnh nhân tăng khoảng thời gian từ hai đến hai mươi tư nồng độ thuốc mạch máu bệnh nhân giảm Lời giải 0, 28t Xét hàm số C (t ) = t + liên tục khoảng (0; 24) Ta có: C (t ) = ' 0,28( − t ) (t +4 ) C ' (t )=0 0,28 ( − t ) (t +4 ) =0 t=2 56 Lập bảng biến thiên: t C’(t) + 24 – 0,07 C(t) 1,68 145 Dựa vào bảng biến thiên ta có hàm số ) ( 0;2 nghịch biến khoảng (2;24) y = C (t ) đồng biến khoảng Như vậy, vào khoảng thời gian tiêm cho bệnh nhân hai nồng độ thuốc mạch máu bệnh nhân tăng khoảng thời gian từ hai đến hai mươi tư nồng độ thuốc mạch máu bệnh nhân giảm Nhận xét: Biện pháp trọng tổ chức hoạt động học tập tương tác thông qua tập sử dụng đa dạng BDTH; Tạo hội cho học sinh thực hoạt động BDTH trình giải tình tốn học hóa hướng đến hình thành phát triển thành tố thứ ba lực BDTH Nhận xét chung + Từ toán bản, có hội giáo viên nên tổ chức cho học sinh luyện tập tính đơn điệu hàm số y = f (x) dạng biểu diễn toán học nó, việc thiết lập nhiều BDTH khác cho khái niệm có tác dụng thúc đẩy việc hiểu khái niệm toán HS cách chắn HS chứng tỏ việc hiểu sâu sắc khái niệm cách chuyển từ biểu diễn sang kiểu biểu diễn khác khái niệm đó; kết hợp với định hướng lời giải cách có hệ thống góp phần bồi dưỡng cho em học sinh NL BDTH, NL sử dụng NNTH, NL GTTH; ngồi ra, cịn giúp cho em tránh số sai lầm thường gặp nêu nắm vững cách xét tính đồng biến nghịch biến hàm số y = f (x) cách chắn Từ đó, có đủ sở để tổ chức cho em hoạt động nghiên cứu sâu lời giải cho BDTH nói nâng dần mức độ dạng tốn thể tình + Việc định hướng giúp học sinh nghiên cứu sâu lời giải; biết khai thác, sử dụng BDTH công cụ, phương tiện, điểm tựa để tiến hành luyện tập thao tác tư như: phân tích, tổng hợp, khái quát hóa, trừu tượng hóa, nhằm tìm kiếm giải pháp cho vấn đề đặt Nghĩa là, bồi dưỡng cho em lực biểu diễn để tư 57 + Việc tổ chức cho học sinh thực hoạt động biểu diễn tốn học khái niệm tính đơn điệu trình giải tình tốn học hóa; vận dụng để giải tình nội toán học giúp em tiếp cận kiến thức cách chắn, sâu sắc + Nếu có hội GV tổ chức cho học sinh luyện tập thao tác cách có hệ thống, thường xun ngồi việc hình thành phát triển NL BDTH cịn giúp hình thành phát triển cho học sinh lực khác như: lực tư duy, lập luận toán học; lực GQVĐ; lực sử dụng cơng cụ tốn học; lực giao tiếp tốn học, lực mơ hình hố 2.5 Hiệu sáng kiến kinh nghiệm 2.5.1 Đối với học sinh Trong khuôn khổ đề tài này, sáng kiến góp phần mang lại số kết sau: + Giúp học sinh biết nhìn nhận biểu diễn toán học khái niệm, toán nhiều góc độ khác nhau, nhìn tương quan với tượng khác, tìm cách giải sáng tạo việc thiết lập nhiều BDTH khác cho khái niệm có tác dụng thúc đẩy việc hiểu khái niệm toán HS cách chắn HS chứng tỏ việc hiểu sâu sắc khái niệm cách chuyển từ biểu diễn sang kiểu biểu diễn khác khái niệm Từ đó, giúp học sinh tiếp cận lời giải toán đơn giản hơn, tự nhiên hơn, logic khoa học hạn chế sai lầm thường mắc phải nêu + Giúp học hình thành thói quen nghiên cứu sâu lời giải từ tốn thơng qua biểu diễn tốn học khái niệm; xét tính giải được, xét liên hệ với khái niệm nội toán học, xét toán tương tự, tốn khái qt, đặc biệt hóa tốn vận dụng để giải tốn nâng cao Ngồi ra, việc định hướng giúp học sinh phát mối liên hệ toán hệ thống khái niệm thơng qua biểu diễn tốn học khác việc làm cần thiết giúp học sinh biết cách giải vấn đề học tập sống + Giúp học sinh biết vận dụng biểu diễn toán học khái niệm, liên hệ với kiến thức nội toán học để giải số toán mới, tình xảy thực tiễn Qua đó, giúp em biết cách đọc sách giáo khoa, tài liệu học tập; biết cách tự tìm lại kiến thức có; biết vận dụng liên hệ hệ thống; biết cách suy luận để tìm tịi phát kiến thức Từ đó, góp phần hình thành phát triển lực sử dụng BDTH, lực tư duy, lập luận toán học; lực GQVĐ; lực sử dụng công cụ toán học; lực giao tiếp toán học, lực mơ hình hố 58 2.5.2 Đối với giáo viên + Giúp giáo viên nhìn nhận cách khách quan thực trạng dạy học theo định hướng phát triển lực người học Đặc biệt, phương pháp dạy học luyện tập toán cần trọng thực cách có hệ thống, khoa học + Dạy học luyện tập tốn xét tính đơn điệu hàm số theo quy trình góp phần làm cho giảng trở nên ý nghĩa hơn, học sôi Đặc biệt, giáo viên có điều kiện thảo luận, gần gũi với học sinh thúc đẩy, truyền cảm hứng để học sinh tham gia vào hoạt động học tốn tạo điều kiện cho học sinh sáng tạo học toán + Dạy học luyện tập tốn xét tính đơn điệu hàm số theo quy trình giúp giáo viên có điều kiện để quan sát hoạt động học tập học sinh, tạo điều kiện thuận lợi cho học sinh học tập, trao đổi, chia sẻ, tranh luận Từ đó, có sở để đánh giá lực, kết học tập học sinh + Dạy học luyện tập tốn xét tính đơn điệu hàm số theo quy trình dùng cho giáo viên tham khảo, vận dụng để dạy học cho số chủ đề chương trình dạy học mơn Tốn trường THPT Đặc biệt áp dụng dạy bồi dưỡng học sinh giỏi; dạy học theo chủ đề; dạy học chuyên đề + Dạy học luyện tập tốn xét tính đơn điệu hàm số theo quy trình góp phần vào cơng tác đổi phương pháp dạy học; sinh hoạt tổ chyên môn; phù hợp với xu hướng dạy học theo định hướng tiếp cận lực học sinh 59 Phần III Kết luận Sáng kiến kinh nghiệm triển khai áp dụng số trường THPT thật mang lại hiệu trình dạy học mơn Tốn sinh hoạt tổ chun mơn Sáng kiến xây dựng hoạt động dạy học luyện tập tốn xét tính đơn điệu hàm số thơng qua biểu diễn tốn học khác nhau, áp dụng trình dạy học thực nghiệm, bước đầu mang lại kết thật em học sinh tiếp cận lời giải dễ dàng hơn, tự nhiên hơn, gây hứng thú học tập cho học sinh Đặc biệt, hạn chế sai lầm đề cập phần thực trạng Việc thiết lập nhiều BDTH khác cho khái niệm có tác dụng thúc đẩy việc hiểu khái niệm tốn HS cách chắn HS chứng tỏ việc hiểu sâu sắc khái niệm cách chuyển từ biểu diễn sang kiểu biểu diễn khác khái niệm Sáng kiến đưa biện pháp, xây dựng hệ thống hoạt động học tập với hệ thống câu hỏi định hướng từ đến vận dụng sáng tạo nhằm giúp cho giáo viên em học sinh thuận tiện q trình dạy học Thơng qua việc tổ chức cho học sinh luyện tập tốn xét tính đơn điệu hàm số cách có hệ thống, thường xun góp phần hình thành phát triển cho học sinh phẩm chất lực như: Năng lực BDTH, NL sử dụng ngơn ngữ tốn học, lực tư duy, lập luận toán học; lực GQVĐ; lực giao tiếp toán học, lực mơ hình hố Đặc biệt, gây hứng thú cho học sinh giải tốn; Góp phần thực việc đổi phương pháp dạy học theo định hướng tiếp cận lực; bồi dưỡng học sinh giỏi; tạo hội cho em thể lực mình, trải nghiệm Biện pháp sử dụng cho giáo viên học sinh thực chủ đề cực trị; giá trị lớn giá trị nhỏ hàm số; đường tiệm cận,… Nhiệm vụ giáo viên vận dụng biện pháp vào chủ đề có khả phát triển lực BDTH chương trình dạy học mơn tốn trường THPT, xây dựng hệ thống tập phù hợp thể tổ chức cho em học sinh có hội luyện tập Nhiệm vụ học sinh nắm vững quy tình thực để vận dụng vào trình học tập nói chung giải tập tốn nói riêng Mặc dù vậy, trình nghiên cứu thời gian cịn hạn chế nên khó tránh khỏi thiếu sót, kính mong nhận nhiều góp ý chân thành đồng nghiệp quan tâm Nhân đây, xin chân thành cám ơn bạn bè, đồng nghiệp có nhiều đóng góp ý kiến quý báu bổ sung cho đề tài Tôi xin chân thành cám ơn! 60 Tài liệu tham khảo [1] Bộ GD&ĐT, (2006), Chương trình GD phổ thông cấp trung học phổ thông, NXB Giáo dục Việt Nam [2] Bộ GD&ĐT, (2006), Tài liệu bồi dưỡng giáo viên thực chương trình SGK lớp 12 THPT mơn Tốn, NXB Giáo dục [3] Nguyễn Huy Đoan (chủ biên), Trần Phương Dung, Nguyễn Xuân Liêm, Phạm Thị Bạch Ngọc, Đoàn Quỳnh, Đặng Hùng Thắng (2006), Bài tập Giải tích 12 (Nâng cao), Nxb Giáo dục Việt Nam [4] Nguyễn Hải Châu, Lê Thị Mỹ Hà (đồng chủ biên, 2012) PISA dạng câu hỏi Nxb Giáo dục Việt Nam [5] Nguyễn Kế Hào, Nguyễn Quang Uẩn (2004), Giáo trình tâm lí học lứa tuổi tâm lí học sư phạm, NXB ĐHSP [6] Trần Văn Hạo (Tổng chủ biên), Vũ Tuấn (chủ biên), Lê Thị Thiên Hương, Nguyễn Tiến Tài, Cấn Văn Tuất (2006), Giải tích 12, Nxb Giáo dục Việt Nam [7] Lê Văn Hồng (2014), Một số sở khoa học cách tiếp cận ngơn ngữ dạy học mơn tốn trường phổ thơng, Tóm tắt báo cáo khoa học hội thảo quốc gia đổi nội dung phương pháp giảng dạy toán học, Trường Đại học Vinh [8] Nguyễn Bá Kim, (2011), Phương pháp dạy học mơn Tốn, Nxb Đại học Sư phạm, Hà Nội [9] Nguyễn Bá Kim, Bùi Huy Ngọc (2005), Phương pháp dạy học đại cương mơn Tốn, NXB ĐHSP [10] Nguyễn Bá Kim (2012) Hoạt động học sinh dạy học Tốn Tạp chí Khoa học Giáo dục số 85, tháng 10-2012, trang 1-4 [11] Nguyễn Bá Kim (2015), Giáo dục toán học tập trung vào phát triển lực, Tạp chí tốn học nhà trường, số 1- tháng 7/ 2015 [12] Nguyễn Lân (2006), Từ điển từ ngữ Việt Nam, NXB Tổng hợp TPHCM [13] Phan Trọng Ngọ, (2005), Dạy học phương pháp dạy học nhà trường Nxb Đại học sư phạm [14] G.Polya, (2009), Giải toán nào, Nxb Giáo dục Việt Nam [15] Đoàn Quỳnh (Tổng chủ biên), Nguyễn Huy Đoan (chủ biên), Trần phương Dung, Nguyễn Xuân Liêm, Đặng Hùng Thắng (2006), Giải tích 12 nâng cao, Nxb Giáo dục Việt Nam [16] Đỗ Đức Thái (chủ biên), Đỗ Tiến Đạt, Phạm Xuân Chung, Nguyễn Sơn Hà, Phạm Sỹ Nam, Vũ Đình Phượng, Nguyễn Thị Kim Sơn, Vũ Phương 61 Thuý, Trần Quang Vinh (2018), Dạy học phát triển lực mơn Tốn THPT, Nxb Đại học Sư phạm [17] Vụ giáo dục trung học, Chương trình phát triển GDTH, (2014), Tài liệu tập huấn dạy học kiểm tra, đánh giá kết học tập theo định hướng phát triển lực học sinh mơn Tốn, (Lưu hành nội bộ) [18] http://www.pisa.oecd.org 62 ... thành, phát triển lực phẩm chất cho người học Xuất phát từ lý chọn đề tài nghiên cứu ? ?Phát triển lực biểu diễn tốn học cho học sinh lớp 12 thơng qua dạy học luyện tập đồng biến, nghịch biến hàm số? ??... 20 Biểu diễn tính đồng biến, nghịch biến bảng xét dấu y = f (x); Biểu diễn tính đồng biến, nghịch biến đồ thị hàm số hàm số y = f (x); Biểu diễn tính đồng biến, nghịch biến hàm số y = f (x) ; Biểu. .. biết biểu diễn toán học khái niệm đồng biến nghịch biến hàm số Thực nghiệm sư phạm để minh họa tính khả thi hiệu việc ? ?Phát triển lực biểu diễn toán học cho học sinh lớp 12 thông qua dạy học luyện