1. Trang chủ
  2. » Giáo Dục - Đào Tạo

SKKN “vận dụng kiến thức hình học để khai thác và phát triển kết quả một số bài toán hình học 9

23 13 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 568,55 KB

Nội dung

Trung học cơSKKN “vận dụng kiến thức hình học để khai thác và phát triển kết quả một số bài toán hình học 9 SKKN “vận dụng kiến thức hình học để khai thác và phát triển kết quả một số bài toán hình học 9 SKKN “vận dụng kiến thức hình học để khai thác và phát triển kết quả một số bài toán hình học 9 SKKN “vận dụng kiến thức hình học để khai thác và phát triển kết quả một số bài toán hình học 9 sở

1 Mục lục Nội dung Trang CHƯƠNG I: TỔNG QUAN I Cơ sở lí luận II Phương pháp tiếp cận tạo sáng kiến III Mục tiêu CHƯƠNG II: MÔ TẢ SÁNG KIẾN I NÊU VẤN ĐỀ CỦA SÁNG KIẾN Phân tích, đánh giá thực trạng vấn đề Chỉ tồn tại, hạn chế Nguyên nhân tồn tại, hạn chế Phân tích, đánh giá tính cấp thiết cần tạo sáng kiến II GIẢI PHÁP ĐỂ THỰC HIỆN SÁNG KIẾN III KẾT QUẢ VÀ KHẢ NĂNG ÁP DỤNG, NHÂN RỘNG 21 IV GIẢI PHÁP VÀ TỔ CHỨC THỰC HIỆN 22 CHƯƠNG III: KẾT LUẬN VÀ ĐỀ XUẤT KIẾN NGHỊ 22 Tài liệu tham khảo 23 SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " CHƯƠNG I: TỔNG QUAN I Cơ sở lí luận: Mơn Tốn mơn học có tính trừu tượng cao tính thực tiễn phổ dụng Khơng mơn Tốn cịn có tính lơgic thực nghiệm, có vị trí quan trọng nhà trường phổ thơng mơn học cơng cụ, mơn học có tiềm phát triển lực trí tuệ hình thành phẩm chất trí tuệ cho học sinh Hầu hết học sinh hỏi có chung ý kiến mơn Tốn mơn học “khó” nên dẫn tới học sinh có hứng thú say mê nghiên cứu sâu mơn Tốn em học cách thụ động mà cách khai thác vận dung để giải toán khác - vấn đề Tốn học khác Từ thực tế mà người giáo viên trực tiếp giảng dạy mơn Tốn nhà trường phổ thông léo biết cách lồng ghép, khai thác trình giảng dạy để tạo hứng thú say mê nghiên cứu Tốn học cho học sinh, làm cho em xa dời mơn Tốn Như vậy, hoạt động dạy học mơn Tốn trường phổ thơng khơng đáp ứng mục tiêu giáo dục Với mục đích nâng cao chất lượng dạy học mơn Toán, thúc đẩy việc đổi phương pháp dạy học nhằm đáp ứng yêu cầu Với định hướng dạy Toán cách thật bản, xác định vấn đề trọng tâm để truyền thụ với tác động dạy học tích cực, lấp dần lỗ hổng kiến thức, bước rèn luyện cho học sinh biết tự làm ý rèn luyện kỹ tính tốn, kỹ làm tập cho HS Hướng đổi phương pháp dạy học Tốn tích cực hóa hoạt động HS, khơi dậy phát triển khả tự học, nhằm hình thành cho HS tư duy, tích cực, độc lập, sáng tạo Vì người Giáo viên phải động, sáng tạo vận dụng hợp lý phương pháp dạy học phù hợp với hoàn cảnh thực tế lớp, trường với mục tiêu khắc phục lối dạy học truyền thống truyền thụ chiều, dạy áp đặt, học thụ động bước đưa HS vào tình dạy học có vấn đề phù hợp với mục tiêu dạy phù hợp nội dung dạy Để dạy tốn theo phương pháp đổi nay, trình dạy học phải "Lấy học sinh làm trung tâm'', người thầy giáo có kiến thức sâu rộng chưa đủ mà phải thường xuyên đổi tư giảng Để đạt hiệu cao việc dạy học mơn tốn việc "khai thác phát triển kết số tốn" khơng thể thiếu được, cơng cụ sắc bén cho việc tìm tịi lời giải tốn, giúp thầy - trị tìm đường tới đích vấn đề Dựa vào "khai thác phát triển kết số tốn" học sinh khơng tiếp thu kiến thức dễ dàng, sâu sắc mà chủ động tìm tịi lời giải tốn cho SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " Như nói "khai thác phát triển kết số toán" phương tiện hổ trợ đắc lực trình phát triển tư sáng tạo cho học sinh, sợi xun suốt q trình dạy - học tốn Chính lẽ tơi xin trình bày kinh nghiệm nhỏ dạy học giải tập Tốn trường THCS: "Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học 9" II Phương pháp tiếp cận tạo sáng kiến: - Đọc nghiên cứu tài liệu - Trao đổi với đồng nghiệp từ buổi sinh hoạt chuyên môn - Các phương pháp điều tra, phân tích tổng hợp, phương pháp suy diễn lơgic - Phương pháp chọn lọc thử nghiệm thực tế III Mục tiêu: Trong q trình dạy học tốn để giúp HS khối THCS học tốt mơn Tốn biết cách khai thác, vận dụng kết tập Tốn người giáo viên ngồi việc khơng ngừng tìm tịi vận dụng phương pháp dạy học tích cực phù hợp với đặc trưng mơn mà ngồi cịn phải truyền đạt cho em phương pháp giải tập Toán cách khai thác sáng tác tập tương tự Từ phương pháp dạy học giải tập Toán cách khai thác sáng tác tập tương tự, học sinh vận dụng vào khai thác kết tập Toán sáng tác tập tương tự, tích luỹ thêm vốn kiến thức giải tốn cho thân để giải toán tương tự, tích luỹ rèn luyện kĩ giải tốn cho thân Chính mà thân tơi mạnh dạn nghiên cứu vận dụng vào q trình dạy học Tốn kinh nghiệm hướng dẫn học sinh giải tập Tốn trường THCS thơng qua phát triển kết toán tiết ơn luyện Tốn CHƯƠNG II: MƠ TẢ SÁNG KIẾN I NÊU VẤN ĐỀ CỦA SÁNG KIẾN: Phân tích, đánh giá thực trạng vấn đề: Ở trường THCS, học sinh xem việc giải tốn hình thức chủ yếu hoạt động toán học Các tốn trường THCS phương tiện có hiệu thay việc giúp học sinh nắm vững tri thức, phát triển lực tư duy, hình thành kĩ năng, kĩ xảo ứng dụng Toán học vào thực tiễn Hoạt động giải tập toán điều kiện để thực tốt mục đích dạy học Tốn trường THCS Vì vậy, tổ chức tốt có hiệu việc dạy giải tập tốn có vai trị định chất lượng dạy học Toán SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " - Trong dạy học mơn Tốn, tập tốn sử dụng với dụng ý khác nhau, dùng để tạo tiền đề xuất phát, gợi động để làm việc với nội dung mới, để củng cố kiểm tra … Tất nhiên, việc giải tập cụ thể thường không nhằm dụng ý đơn giản mà thường bao hàm ý đồ nhiều mặt nêu Mỗi tập toán cụ thể đặt thời điểm cụ thể đó, tập chứa đựng tường minh, hay tiềm ẩn chức khác (chức dạy học, chức giáo dục, chức phát triển, chức kiểm tra, …) Những chức hướng tới việc thực mục đích dạy học Dạy học giải tập Tốn q trình suy luận, nhằm khám phá quan hệ lơgíc cho (giả thiết) với phải tìm (kết luận) Nhưng qui tắc suy luận chưa dạy tường minh Do đó, học sinh thường gặp nhiều khó khăn giải tập Thực tiễn dạy học cho thấy với học sinh giỏi thường tự đúc kết tri thức phương pháp cần thiết cho đường kinh nghiệm, cịn học sinh trung bình yếu cịn gặp nhiều lúng túng Để có kĩ giải tập phải qua trình luyện tập Tuy rằng, giải nhiều tập có kĩ Thực tế qua năm trực tiếp giảng dạy mơn Tốn trường THCS tơi nhận thấy rằng: Việc luyện tập giải tập tốn có hiệu quả, giáo viên biết khéo léo khai thác kết tập sang tập khác cách tương tự, nhằm vận dụng tính chất đó, nhằm rèn luyện phương pháp chứng minh Nội dung sách giáo khoa biên soạn công phu, hệ thống kiến thức trình bày khoa học, phù hợp với đối tượng học sinh Đặc biệt hệ thống tập phong phú có nhiều tập viết dạng mở, tạo điều kiện thuận lợi để học sinh giáo viên khai thác, tìm tịi thêm tốn nhằm phát huy sáng tạo giảng dạy học tập Việc dạy học khai thác kết tập toán tiết luyện tập, buổi phụ đạo bồi dưỡng HS - giỏi, giúp học sinh đúc rút kinh nghiệm, phương pháp giải toán, để giải tập tương tự củng có kĩ quan trọng giải tốn "Quy lạ quen " sáng tác tập tương tự tự em đưa tốn tổng qt cho dạng toán vừa thực giải Làm giàu thêm tri thức Tốn học phương pháp giải tốn cho Các tồn tại, hạn chế Trong trình giảng dạy tơi nhận thấy đa số học sinh cịn bộc lộ hạn chế mặt sau sau: Yếu khả phân tích tốn để tìm lời giải Khả vận dụng kiến thức vào giải tốn cịn hạn chế SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " - Sự hứng thú, tính tích cực học sinh với mơn Hình học chưa cao Chưa có thói quen khai thác toán giải Nguyên nhân tồn hạn chế: - Phân mơn Hình học phân mơn khó chương trình tốn THCS nói chung mơn tốn nói chung - Đề giải tập hình địi hỏi học sinh phải có kiến thức hình học đủ rộng sâu - Phương pháp giảng dạy giáo viên chưa phù hợp chưa tạo hứng thú với học sinh - Học sinh chưa có thói quen đặt câu hỏi trước làm tập chưa có thói quen khai thác tốn giải - …… Do kết chưa cao: Tỉ lệ % Trung Giỏi Khá Yếu, Thời gian bình Năm học Trước áp chiếm 17 chiếm 37 chiếm 10 chiếm 2019-2020 dụng đề tài 3% 25.8 % 56 % 15,2 % * 66 em học sinh lớp trường THCS đầu năm học 2020 - 2021 hỏi có thích học Tốn giải Tốn khơng có 12 em thích (18,2%), 46 em khơng thích (69,7%), cịn em khơng trả lời (12,1%) * Kết điều tra trả lời câu hỏi: Khi giải tốn em có thường đặt câu hỏi nào? có tới 55 em (83,3%) có chung câu trả lời: Không đặt câu hỏi Chính mà em khơng thể định hướng cho cách giải số tập đặc biệt số em học sinh giỏi giải tập nâng cao Phân tích đánh giá tính cấp thiết cần tạo sáng kiến Trong thực tế giảng dạy chương trình Tốn nói riêng Tốn bậc THCS nói chung, cho thấy: Đa số học sinh chưa hứng thú học Hình học Bởi vì: - Học sinh cịn thiếu phương pháp, thiếu tư giải tốn Có toán đơn giản em khơng nhìn vấn đề nên khơng giải - Yếu kỹ phân tích đa chiều tốn - Chưa biết khai thác tổng qt hóa toán cho Vậy làm để hút em với mơn học này? Câu hỏi động lực thúc cần phải sáng tạo, làm giảng dạy đặc biệt phân mơn Hình học Chính lẽ mà sáng kiến đời sau nhiều năm trải nghiệm giảng dạy đúc rút kinh nghiệm thân SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " II GIẢI PHÁP ĐỂ THỰC HIỆN SÁNG KIẾN: Để hình thành kĩ giải tập cho học sinh phải thơng qua q trình ơn luyện Tuy nhiên, giải nhiều tập học sinh có kĩ giải tốn Việc ơn luyện có hiệu giáo viên biết khéo léo khai thác kết toán để hướng dẫn học sinh tìm lời giải cho tốn mà học sinh " quy lạ quen" sáng tác toán tương tự phát biểu nên tốn tổng qt thông qua yêu cầu học sinh trả lời số câu hỏi trước giải tốn là: - Hệ thống câu hỏi khai thác: + Qua tập củng cố cho ta kiến thức Toán học nào? + Từ kết tập em sáng tác tập có cách giải tương tự? + Từ kết tập em đặt toán lật ngược vấn đề với tốn đó? + Em nêu toán tổng quát dạng toán trên? - Hệ thống câu hỏi gợi mở: + Em gặp toán lần chưa? Hay gặp tốn dạng khác? + Em có biết tốn định lí có liên quan? dùng khơng ? + Đây tốn có liên quan mà em giải Có thể sử dụng khơng? Có thể sử dụng kết khơng? Sau tơi xin đưa số tốn mà q trình dạy học tơi thực hướng dẫn học sinh lớp khai thác phát triển kết toán: Bài toán xuất phát 1: (Bài tập 30 trang 116 SGK Toán - Tập 1) Cho nửa đường tròn tâm O có đường kính AB (đường kính của đường tròn chia đường tròn đó thành hai nửa đường tròn) Gọi Ax, By tia vuông góc với AB (Ax, By nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB) Qua điểm M thuộc nửa đường tròn (M khác A B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax By theo thứ tự C D Chứng minh rằng: · a) COD = 90 b) CD = AC + BD c) Tích AC BD không đổi điểm M di chuyển nửa đường tròn Giải: SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số toán hình học " • Nhận xét: tập SGK nhằm ôn luyện cho học sinh kiến thức tính chất hai tiếp tuyến cắt (đây phần kiến thức mà học sinh quan niệm kiến thức dễ) Chính mà đa số em có thể giải tập này: a) Vì Ax, By vng góc với AB ⇒ Ax, By hai tiếp tuyến nửa đường trịn (O) - Theo tính chất hai tiếp tuyến cắt ta có: 1· ·AOC = MOC · · · = ·AOM ; BOD = MOD = BOM 2 1· 1 · · · · COD = COM + MOD = ·AOM + MOB = ·AOM + MOB = 1800 = 900 2 2 Ta có ( ) GV: Ngồi cách giáo viên còn khai thác cho học sinh cách giải khác · Cách 2: Theo t/c tiếp tuyến cắt ta có : OC phân giác AOM ; OD · · · · phân giác BOM mà AOM kề bù BOM nên COD = 900 b) Theo tính chất hai tiếp tuyến cắt ta có: AC = CM, BD = MD ⇒ AC + BD = CM + MD = CD (đpcm) c) Xét ∆COD vuông O có OM ⊥ CD (tính chất tiếp tuyến) AB AB ⇒ CM DM = OM  = AC = CM , BD = DM ⇒ AC BD = , - Vì AB không đổi ⇒ AC BD không đổi M di chuyển nửa đường trịn tâm O đường kính AB ⇒ đpcm Sau học sinh giải xong tốn giáo viên cho học sinh trả lời câu hỏi khai thác: + Qua tập củng cố cho ta kiến thức Toán học nào? + Từ kết tập em sáng tác tập có cách giải tương tự? + Từ kết tập em đặt toán lật ngược vấn đề với tốn đó? • SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " + Em nêu toán tổng quát dạng toán trên? Sau toán giáo viên hướng dẫn cho học sinh sáng tác toán sau: Bài toán 1: Cho nửa đường tròn tâm O có đường kính AB Gọi Ax, By tia tiếp tuyến với nửa đường tròn Qua điểm M thuộc nửa đường tròn (M khác A B), kẻ tiếp tuyến thứ ba với nửa đường tròn, nó cắt Ax By theo thứ tự C D Gọi giao điểm của AD BC N Chứng minh rằng: a) OC // BM b) MN vuông góc với AB c) AB tiếp tuyến của đường tròn đường kính CD Giáo viên cho học sinh trả lời câu hỏi gợi mở + Em gặp toán lần chưa? Hay gặp tốn dạng khác? + Em có biết tốn định lí có liên quan? dùng khơng? + Đây tốn có liên quan mà em giải Có thể sử dụng khơng? Có thể sử dụng kết khơng? Giải: Ta có AC = MC (tính chất hai tiếp tuyến cắt nhau) OA = OC (hai bán kính đường trịn đường kính AB) ⇒ OC đường trung trực đoạn thẳng AM ⇒ OC ⊥ AM (1) - Mặt khác ta có ∆AMB giác nội tiếp đường trịn có đường kính AB ⇒ ∠AMB = 900 ⇒ BM ⊥ AM (2) Từ (1) (2) ⇒ OC //BM (đpcm) a) SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " Chú ý: Nếu giáo viên đưa học sinh nắm kiến thức góc nội tiếp học sinh có thể thực chứng minh BM // OC theo tính chất của góc nội tiếp (∠AOC = ∠ABM = ∠AOM) b) Vì Ax By hai tiếp tuyến đường trịn đường kính AB ⇒ Ax // By ⇒ AC // BD AC AN = ⇒ BD ND mà AC = CM, BD = MD (bài toán xuất phát) CM AN = ⇒ MD ND , áp dụng định lí Ta lét đảo ⇒ MN // AC, AC ⊥ AB (tính chất tiếp tuyến) ⇒ MN ⊥ AB (đpcm) c) Gọi I trung điểm CD ⇒ I tâm đường trịn đường kính CD (3) - Xét hình thang ABDC (AC //BD), có IC = ID, OA = OB ⇒ IO đường trung bình hình thang ABDC ⇒ OI // AC // BD ⇒ IO ⊥ AB O (4) - Mặt khác ∠COD = 900 (bài tốn xuất phát) ⇒ O thuộc đường trịn đường kính CD (5) - Từ (3), (4) (5) ⇒ AB tiếp tuyến đường trịn đường kính CD (đpcm) Bài toán 2: Cho nửa đường tròn tâm O có đường kính AB = 2R Gọi Ax, By tia tiếp tuyến với nửa đường tròn Qua điểm M thuộc nửa đường tròn (M khác A B), kẻ tiếp tuyến thứ ba với nửa đường tròn, nó cắt Ax By theo thứ tự C D b) · Cho BAM = 60 Tính chu vi tam giác COD theo R Gọi giao điểm của AD BC I; giao điểm của MI AB H Chứng minh rằng MI = IH a) Giáo viên cho học sinh trả lời câu hỏi gợi mở: + Em gặp toán lần chưa? Hay gặp toán dạng khác? + Em có biết tốn định lí có liên quan? dùng khơng? + Đây tốn có liên quan mà em giải Có thể sử dụng khơng? Có thể sử dụng kết khơng? Giải: SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " 10 · · a) Vì BAM = 60 , mà OC ⊥ AM (bài toán 1) ⇒ AOC = 30 - Xét ∆AOC vuông A, áp dụng hệ thức lượng ta có OC = OA: cos300 0 CA = OA tan30 = 3R 3R ⇒ 3 · = 600 ⇒ ·ABM = 300 - Vì ∆AMB vng M BAM OC = - Tương tự áp dụng hệ thức lượng ∆BOD ⇒ OD = R BD = 3R - Mà chu vi ∆COD = OC + CD + OD = OC + CM + MD + OD = OC + AC + BD + OD ( CM = AC, BD = MD) ( ) 3R + 3R + 3R + + R = +  2 R ⇒ chu vi ∆COD = 3 b)Theo tốn phát triển ta có MI / /CA ⇒ IH / /CA IM DI = - Do MI / / CA ⇒ CA DA (định lí Ta let) (1) IH BI = - Do IH / / CA ⇒ CA BC (định lí Ta let) (2) DI BI = - Do AC / / BD ⇒ DA BC (định lí Ta let) (3) IM IH = Từ (1), (2) (3) ⇒ CA CA ⇒ IM = IH   (đpcm) Bài toán 3: Cho nửa đường tròn tâm O có đường kính AB = 2R Gọi Ax, By tia tiếp tuyến với nửa đường tròn Qua điểm M thuộc nửa đường tròn (M khác A B), kẻ tiếp tuyến thứ ba với nửa đường tròn, nó cắt Ax By theo thứ tự C D Gọi giao điểm của OC AM E, giao điểm của OD BM F a) Chứng minh rằng: EF = R b) Tìm vị trí của điểm M nửa đường trò đề diện tích tứ giác ABDC nhỏ SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " 11 Giáo viên cho học sinh trả lời câu hỏi gợi mở: + Em gặp toán lần chưa? Hay gặp toán dạng khác? + Em có biết tốn định lí có liên quan? dùng khơng ? + Đây tốn có liên quan mà em giải Có thể sử dụng khơng? Có thể sử dụng kết không? Giải: · · = 900 ⇒ EOF = 900 Theo toán xuất phát ta có DOC · - Theo tốn phát triển ta có OC ⊥ AM ⇒ MEO = 90 a) · = ·AMB = 90 - Mặt khác EMF · · · - Xét tứ giác MOEF có: EOF = MEO = FME = 90 ⇒ Tứ giác MEOF hình chữ nhật ⇒ EF = MO = R (đpcm) Bài học sinh có thể sử dụng tính chất đường trung bình tam giác để chứng minh EF = AB: ⇒ EF = R b) Vì ABDC hình thang (AC//BD) ( AC + BD) AB ( AC + BD ).2 R = ( AC + BD) R = (CM + MD) R ⇒ SABDC = 2 = (1) (Vì AC = CM, BD = MD - Bài toán xuất phát 1) - Áp dụng BĐT Cơsi ta có CM + MD ≥ CM MD , theo toán xuất phát CM MD = R ⇒ CM + MD ≥ R (2) - Từ (1) (2) ⇒ S ABDC ≥ R , R bán kính đường trịn ⇒ SABDC đạt giá trị nhỏ CM = MD (3) - Theo toán xuất phát ta có ∆COD vng O, mà OM ⊥ CD, kết hợp với · · · · = MOD = 450 ⇒ MOA = MOB = 900 (3) ⇒ ∆COD vuông cân O ⇒ MOC ⇒ M nằm nửa đường trịn đường kính AB * Vậy SABDC đạt giá trị nhỏ M nằm nửa đường trịn đường kính AB SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số toán hình học " 12 Bài tốn 4: Cho nửa đường tròn tâm O có đường kính AB = 2R Gọi Ax, By tia tiếp tuyến với nửa đường tròn Qua điểm M thuộc nửa đường tròn (M khác A B), kẻ tiếp tuyến thứ ba với nửa đường tròn, nó cắt Ax By theo thứ tự C D Gọi giao điểm của OC AM E, giao điểm của OD BM F a) Chứng minh: OE OC = OF OD b) Chứng minh: Tứ giác CEFD nội tiếp c) Gọi I giao điểm của BM phân giác của góc MAx Khi M chạy nửa đường tròn (O) I chạy đường nào? Giáo viên cho học sinh trả lời câu hỏi gợi mở + Em gặp toán lần chưa? Hay gặp toán dạng khác? + Em có biết tốn định lí có liên quan? dùng khơng? + Đây tốn có liên quan mà em giải Có thể sử dụng khơng? Có thể sử dụng kết khơng? Giải: Xét ∆ACO vng A có AE ⊥ OC ( toán 3), áp dụng hệ thức cạnh đường cao tam giác vuông ⇒ OA2 = OE OC - Chứng minh tương tự ta có: OB2 = OF OD ⇒ OE OC = OF OD (đpcm) a) b) Từ OE OC = OF OD ⇒ OE OF = OD OC OE OF = ·EOF - Xét ∆OEF ∆ODC có chung OD OC SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " 13 · · ⇒ ∆OEF ∽ ∆ODC ⇒ EFO = OCD ⇒ CEFD tứ giác nội tiếp (góc ngồi đỉnh góc đỉnh đối diện) (đpcm) · = 900 c) Xét ∆AIM vuông M ⇒ ·AIM + MAI · · · · - Mặt khác BAI + CAI = 90 , mà MAI = CAI (tính chất phân giác) · · · ⇒ ·AIM = BAI ⇒ BIA ⇒ ∆BAI cân B = BAI ⇒ IB = AB = 2R, R bán kính đường trịn đường kính AB ⇒ I cách B khoảng không đổi 2R ⇒ I nằm đường tròn (B; 2R) - Giới hạn: Nếu M A I A, M B I H với H thuộc tia Bx HB = 2R * Vậy quỹ tích điểm I cung trịn AH tâm B bán kính 2R với cung AH nằm · ABx Bài toán 5: Cho nửa đường tròn tâm O có đường kính AB = 2R Gọi M điểm thuộc nửa đường tròn (M khác A B) Vẽ đường tròn tâm M tiếp xúc với AB H Từ A B kẻ tiếp tuyến tiếp xúc với đường tròn tâm M C D a) Chứng minh: C, M, D cùng nằm tiếp tuyến của đường tròn (O) b) Tính tích AC BD theo CD CD = KB.KA − KD.KC c) Giả sử AB cắt CD K Chứng minh Giáo viên cho học sinh trả lời câu hỏi gợi mở + Em gặp toán lần chưa? Hay gặp toán dạng khác? + Em có biết tốn định lí có liên quan? dùng không ? + Đây tốn có liên quan mà em giải Có thể sử dụng khơng? Có thể sử dụng kết khơng? Giải: SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " 14 Theo tính chất hai tiếp tuyến cắt ta có: ∠ CMA = ∠ HMA; ∠ DMB = ∠ HMB ⇒ ∠ CMD = 2( ∠ HMA + ∠ HMB) = ∠ BMA, mà ∠ BMA = 900 (góc nội tiếp chắn nửa đường trịn) ⇒ ∠ CMD = 1800 ⇒ C, M, D nằm đường thẳng (1) - Xét tứ giác ABDC có AC//BD (cùng vng góc với CD) ⇒ ABDC hình thang - Mặt khác MD = MC (bán kính đường trịn tâm M) OA = OB (bán kính đường trịn tâm O) ⇒ MO đường trung bình hình thang ABDC ⇒ MO//AC//BD ⇒ MO⊥CD ⇒ CD tiếp tuyến đường tròn (O) (2) - Từ (1) (2) ⇒ C, M, D nằm tiếp tuyến đường trịn (O) (đpcm) b) Theo tính chất hai tiếp tuyến cắt ta có: AC = AH ; BD = BH ⇒ AC BD = AH BH (3) - Do ∠ AMB = 900 (góc nội tiếp chắn nửa đường trịn) ⇒ ∆AMB vng M - Xét ∆AMB vng M, có AH ⊥ AB (tính chất tiếp tuyến) a) ⇒ AH BH = MH = CD c) Xét ∆KMB ∆KAM có: ∠ K chung; ∠ KMB = ∠ KAM (hệ góc tạo tia tiếp tuyến dây cung) KM KB = ⇒ KM = KA KB KA KM - Chứng minh tương tự ta có: KH = KC KD ⇒ ∆KMB : ∆KAM ⇒ 2 - Áp dụng định lí Py- ta - go cho ∆KMH ta có: HM = KM − KH CD = KA KB − KC KD ⇒ HM = KA KB − KC KD ⇒ => (đpcm) Bài toán 6: Cho đường tròn (O; R) đường kính AB điểm M thuộc đường (O) (MA < MB, SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " 15 M khác A B) Kẻ MH vuông góc với AB H a) Chứng minh ∆ABM vuông Giả sử MA = 3cm, MB = 4cm, tínhMH b) Tiếp tuyến A của đường tròn (O) cắt tia BM C Gọi N trung điểm của AC Chứng minh đường thẳng NM tiếp tuyến của đường tròn(O) c) Tiếp tuyến B của (O) cắt đường thẳng MN D Chứng minh NA.BD = R2 d) Chứng minh OC ⊥AD Giáo viên cho học sinh trả lời câu hỏi gợi mở + Em gặp toán lần chưa? Hay gặp toán dạng khác? + Em có biết tốn định lí có liên quan? dùng khơng ? + Đây tốn có liên quan mà em giải Có thể sử dụng khơng? Có thể sử dụng kết khơng? Giải: a) Vì ∆ABM nội tiếp đường trịn đường kính AB nên ∆ABM vng M Áp dụng hệ thức lượng vào tam giác vng AMB ta có: 1 1  5 12 = + = + = ÷ ⇒ = ⇒ MH = = 2, 4(cm) 2 MH MA MB MH 12  12  ⇒ ·AMC = 900 ⊥ b) Vì AM MB Xét ∆AMC vng M có trung tuyến MN ⇒ MN = AN (trong tam giác vuông trung tuyến ứng với cạnh huyền nửa cạnh huyền ) Xét ∆ANO ∆MNO có AN = MN (cmt), NO chung; AO = MO · · ⇒ ∆ANO = ∆MNO (c.c.c) ⇒ NMO = NAO = 900 ⇒ MN ⊥ MO ⇒ MN tiếp tuyến (O) c) Theo t/c tiếp tuyến cắt ta có ON phân giác ·AOM ; OD phân giác · · BOM = 900 mà hai góc hai góc kề bù ⇒ NOD Theo t/c tiếp tuyến cắt ta có AN = NM; DB = DM SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " 16 Áp dụng hệ thức lượng vào ∆DNO vuông O ; đường cao OM ⇒ MO = MN MD = AN DB ⇒ AN DB = R AC AO AN DB = R ⇒ AC DB = AB AO ⇒ = (1) AB DB d) · = ·ABD = 900 ⇒ ∆AOC : ∆DBA Xét ∆AOC ∆DBA có (1) CAO · · ⇒ ·ACO = DAB ⇒ ·ACO = KAO Gọi giao AD CO K · Xét ∆AOC ∆KOA có ·ACO = KAO ; ·AOC chung ⇒ ∆AOC : ∆AOC · ⇒ ·AKO = CAO = 900 ⇒ AD ⊥ CO Bài toán 7: Cho nửa đường tròn tâm O có đường kính AB Từ điểm M nửa đường tròn (M khác A B), vẽ tiếp tuyến xy với đường tròn (O) Vẽ AD BC cùng vuông góc với xy (C, D thuộc xy) a)Chứng minh: AC + BD không đổi M di chuyển nửa đường tròn b)Xác định vị trí của điểm M để SABCD lớn Giáo viên cho học sinh trả lời câu hỏi gợi mở + Em gặp toán lần chưa? Hay gặp tốn dạng khác? + Em có biết tốn định lí có liên quan? dùng khơng? + Đây tốn có liên quan mà em giải Có thể sử dụng khơng? Có thể sử dụng kết khơng? Giải: Kẻ MH ⊥ AB H - Ta có ∠ AOC = 900 (góc nội tiếp chắn nửa đường trịn) a) SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số toán hình học " 17 ⇒ ∠ AMH = ∠ ABM (cùng phụ với ∠ HMB) - Mặt khác ∠ CMA = ∠ ABM (hệ góc tạo tia tiếp tuyến dây cung) ⇒ ∠ AMH = ∠ AMC - Xét ∆AMC ∆AMH có: ∠ ACM = ∠ AHM = 900, cạnh AM chung, ∠ AMC = ∠ AMH ⇒ ∆AMC = ∆AMH (cạnh huyền - góc nhọn) ⇒ AC = AH - Chứng minh tương tự ta có BD = BH ⇒ AC + BD = AH + BH = AB, AB không đổi ⇒ AC + BD không đổi M di chuyển nửa đường trịn đường kính AB b) Vì AC//BD (cùng vng góc với xy) ⇒ ABDC hình thang ( AC + BD ).CD AB.CD AB.MH = = ⇒ SABCD = 2 AB AB MH ≤ ⇒ S ABCD = - Do AB AB MH = ⇒ Giá trị lớn SABCD ⇒ M điểm nửa đường trịn đường kính AB Bài tốn xuất phát 2: (Bài tập 31 trang 116 SGK Toán - Tập 1) Cho ∆ABC ngoại tiếp đường tròn (O) Gọi D, E, F tiếp điểm của AB, BC, CA với đường tròn (O) a) Chứng minh: 2AD = AB + AC - BC b) Tìm hệ thức tương tự hệ thức câu a Giải: a) Theo tính chất hai tiếp tuyến cắt ta có: AD = AF, BD = BE, CF = CE ⇒ AB + AC - BC = AD + DB + AF + FC - BE - EC = AD + BE + AD + CE - BE - CE = AD + AD = 2AD (đpcm) b) Tương tự câu a ta có hệ thức: 2BD = BA + BC - AC 2CE = CA + CB – AB SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " 18 Sau học sinh giải song toán giáo viên có thể cho học sinh trả lời câu hỏi khai thác: + Qua tập củng cố cho ta kiến thức Toán học nào? + Từ kết tập em sáng tác tập có cách giải tương tự? + Từ kết tập em đặt toán lật ngược vấn đề với tốn đó? + Em nêu toán tổng quát dạng toán trên? *Cũng tương tự toán xuất phát 1, sau toán giáo viên hướng dẫn cho học sinh sáng tác tốn sau: • Bài toán 1: (Bài tập 58 trang 165 SBT Toán - Tập 1) Cho ∆ABC vuông A Đường tròn (O) nội tiếp ∆ABC, tiếp xúc với AB, AC D E a) Tứ giác ADOE hình gì? Vì sao? b) Tính bán kính đường tròn (O), biết AB = 3cm, AC = 4cm Giải: Vì đường trịn (O) tiếp xúc với AB, AC D E ⇒ ∠ ADO = ∠ AEO = 900 - Xét tứ giác ADOE có ∠ ADO = ∠ DAE = ∠ AEO =900 ⇒ ADOE hình chữ nhật - Mặt khác OE = OD (bán kính đường trịn (O)) ⇒ ADOE hình vng b)Từ tốn xuất phát có: 2AD = AB + AC - BC - Áp dụng định lí Py - ta - go cho tam giác vng ABC ta có: BC2 = AB2 + AC2 ⇒ BC = 5cm a) 3+ 4−5 =1 - Từ ⇒ cm, ADOE hình vng ⇒ r = OD = AD = 1cm ⇒ Bán kính đường trịn nội tiếp ∆ABC r = 1cm AD = Bài toán 2: (Bài tập 63 trang 166 SBT Toán - Tập 1) SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " 19 Cho ∆ABC vuông A Đường tròn nội tiếp ∆ABC, tiếp xúc với BC D Chứng minh rằng: SABC = BD DC Giáo viên cho học sinh trả lời câu hỏi gợi mở: + Em gặp toán lần chưa? Hay gặp toán dạng khác? + Em có biết tốn định lí có liên quan? dùng khơng ? + Đây tốn có liên quan mà em giải Có thể sử dụng khơng? Có thể sử dụng kết khơng? Giải: AB + BC − AC AC + BC − AB DC = 2 - Từ toán xuất phát ta có: , AB + BC − AC AC + BC − AB ⇒ BD DC = 2 BD = AB AC + AB.BC − AB + AC.BC + BC − AB.BC − AC − AC BC + AB.AC 2 2 2 AB AC − AB + BC − AC + AB AC AB AC + BC − AB + AC = = 4 = ( ) Áp dụng định lí Py - ta - go cho tam giác vng ABC ta có BC = AB2 + AC2 ⇒ BD.DC = AB AC + BC − BC AB AC = = S∆ABC Vậy SABC = BD DC (đpcm) Bài toán 3: (Bài tập 57 trang 165, SBT Toán - Tập 1) Chứng minh rằng ∆ABC có chu vi 2p, bán kính đường tròn nội tiếp bằng r SABC = p r Giải: SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " 20 Gọi tiếp điểm AB, AC , BC với đường tròn nội tiếp ∆ABC D, E, F OD AB OF BC OE AC + + 2 Khi đó: SABC = SAOB + SBOC + SAOC = 1 r ( AB + BC + AC ) = r.2 p = r p Do OD = OE = OF = r ⇒ SABC = (đpcm) Bài toán 4: Cho tam giác có độ dài cạnh a, b, c diện tích của tam giác t, thỏa mãn: (a + b + c)(a + b - c) = 4t Chứng minh tam giác đó tam giác vuông Giáo viên cho học sinh trả lời câu hỏi gợi mở: + Em gặp toán lần chưa? Hay gặp toán dạng khác? + Em có biết tốn định lí có liên quan? dùng khơng ? + Đây tốn có liên quan mà em giải Có thể sử dụng khơng? Có thể sử dụng kết khơng? Giải: - Xét ∆ABC có BC = a, AC = b, AB = c, SABC = t - Gọi đường tròn (O;r) đường tròn nội tiếp ∆ABC D, E, F tiếp điểm đường tròn (O) với AB, AC, BC SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " 21 - Theo tốn phát triển 2.3 ta có: ⇒ ⇒ a+b+c = S ABC = a+b+c r ⇒ r ( a + b + c ) = 2t 2t r , theo giả thiết ( a + b + c ) ( a + b − c ) = 4t 2t ( a + b − c ) = 4t ⇒ a + b − c = 2r (1) r - Theo toán xuất phát ta có: a + b - c = BC + AC - AB = 2CE (2) - Từ (1) (2) ⇒ CE = r ⇒ CE = r ⇒ OE = OF = CE = CF = r ⇒ CEOF hình thoi - Mà ∠ CEO = 900 ⇒ tứ giác CEOF hình vng ⇒ ∠ ACB = 900 ⇒ ∆ABC vuông C (đpcm) III KẾT QUẢ VÀ KHẢ NĂNG ÁP DỤNG, NHÂN RỘNG Trong q trình dạy Tốn năm học 2020 - 2021 trường THCS , thân vận dụng vào dạy học Hình học lớp sáng kiến áp dụng khai thác phát triển toán số toán khác (do điều kiện quy định đưa vào nội dung SKKN lần này), Sau áp dụng đề tài nhìn chung học sinh nắm vững kiến thức bản, trình bày lập luận chặt chẽ, chủ động sáng tạo cách nhìn nhận tốn, nhiều em có phương pháp tự học tốt, từ em biết cách khai thác tốn (ở nhiều khía cạnh khác nhau) tự tin học Hình học, nên có nhiều em tiến vượt bậc Chính mà đến cuối tháng năm 2021 thơng qua điều tra có kết khả quan sau: Tỉ lệ % Thời gian Năm học Sau áp 2020-2021 dụng đề tài Giỏi Khá Trung bình Yếu, chiếm 9,1 % 25 chiếm 37,9 % 30 chiếm 45,4 % chiếm 7,6 % * 66 em học sinh lớp hỏi có thích học Tốn giải Tốn khơng có 41 em thích (62,2%), 22 em khơng thích (33,3%), cịn em khơng trả lời (4,5%) * Kết điều tra trả lời câu hỏi: Khi giải tốn em có thường đặt câu hỏi nào? 45 em (68,2%) học sinh trả lời hệ thống câu hỏi định hướng để quy toán lạ toán quen thuộc * Đối với học sinh - giỏi sau làm số tập đa số em tự phát biểu toán tương tự nắm cách giải dạng tốn SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " 22 IV GIẢI PHÁP TỔ CHỨC THỰC HIỆN Sáng kiến xây dựng, nghiên cứu triển khai chương trình Hình học Sáng kiến cung cấp cho HS GV q trình ơn tập phụ đạo, bồi dưỡng học sinh, đặc biệt q trình ơn thi tuyển sinh vào THPT năm qua Áp dụng đề tài trình phụ đạo bồi dưỡng HS mang lại kết tích cực CHƯƠNG III: KẾT LUẬN VÀ ĐỀ XUẤT / KIẾN NGHỊ Ở trường THCS, dạy toán dạy hoạt động Toán học Giải toán vấn đề quan tâm, nghiên cứu giáo viên dạy toán nhà nghiên cứu Tốn học, nhiên chưa có câu trả lời cho toán Để luyện tập khắc sâu kiến thức, tiết luyện tập, tiết phụ đạo giáo viên đề nghị học sinh tự làm tập thầy giáo Qua tập giáo viên yêu cầu học sinh khai thác kết toán vào số toán khác đề tập tương tự, xây dựng nên tập tổng quát làm phong phú thêm vốn kiến thức Tốn học cho tích luỹ thêm kỹ giải toán Trong SKKN này, thân đưa kinh nghiệm nhỏ dạy học "Khai thác phát triển kết của số tốn tiết ơn luyện Tốn 9" để khai thác kết tốn vừa giải tìm cách giải toán sáng tác tập có cách giải tương tự sử dụng kết tập giải Từ mà học sinh nắm bắt cách học tích luỹ kỹ thực hành giải toán cho thân Trên kinh nghiệm nhỏ thân tự rút trình giảng dạy, đề tài tơi cịn tiếp tục nghiên cứu năm tiếp theo, mong bạn đọc đóng góp ý kiến xây dựng cho đề tài ngày hồn thiện Tơi xin chân thành cảm ơn! TÀI LIỆU THAM KHẢO Lí luận - Phương pháp dạy học mơn Tốn - NXBGD SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " 23 Sách giáo khoa Toán tập - NXBGD Sách giáo khoa Toán tập - NXBGD Một số Westside Toán học SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học " ... triển kết số tốn hình học " 23 Sách giáo khoa Toán tập - NXBGD Sách giáo khoa Toán tập - NXBGD Một số Westside Toán học SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số tốn hình học. .. Dựa vào "khai thác phát triển kết số tốn" học sinh khơng tiếp thu kiến thức dễ dàng, sâu sắc mà chủ động tìm tịi lời giải tốn cho SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số. .. rút kinh nghiệm thân SKKN: “Vận dụng kiến thức hình học để khai thác phát triển kết số toán hình học " II GIẢI PHÁP ĐỂ THỰC HIỆN SÁNG KIẾN: Để hình thành kĩ giải tập cho học sinh phải thơng qua

Ngày đăng: 14/06/2021, 08:19

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w