Tài liệu luận văn Nghiên Cứu Chế Tạo Vật Liệu Lai Giữa Polypyrol Và Nio

136 7 0
Tài liệu luận văn Nghiên Cứu Chế Tạo Vật Liệu Lai Giữa Polypyrol Và Nio

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - HOÀNG THỊ HIẾN NGHIÊN CỨU CHẾ TẠO VẬT LIỆU LAI GIỮA POLYPYROL VÀ NiO CẤU TRÚC NANO CHO NHẠY KHÍ NH3 LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU Hà Nội, 2021 BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CƠNG NGHỆ HỒNG THỊ HIẾN NGHIÊN CỨU CHẾ TẠO VẬT LIỆU LAI GIỮA POLYPYROL VÀ NiO CẤU TRÚC NANO CHO NHẠY KHÍ NH3 Chuyên ngành: Vật liệu điện tử Mã số: 9440123 LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU NGƢỜI HƢỚNG DẪN KHOA HỌC GS.TS Trần Trung TS Hồ Trƣờng Giang LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu riêng dƣới hƣớng dẫn TS Hồ Trƣờng Giang GS.TS Trần Trung Các số liệu, kết nghiên cứu trung thực chƣa đƣợc công bố tác giả khác cơng trình Tác giả luận án Hoàng Thị Hiến LỜI CẢM ƠN Với lịng biết ơn kính trọng sâu sắc, xin gửi lời cảm ơn chân thành tới Thầy, TS Hồ Trƣờng Giang GS.TS Trần Trung, ngƣời Thầy tâm huyết, yêu nghề giao đề tài tận tình hƣớng dẫn tơi, động viên, khích lệ hết lịng giúp đỡ để tơi hồn thành cơng trình nghiên cứu Tơi xin đƣợc gửi lời cảm ơn sâu sắc tới anh, chị, em làm việc Phòng Cảm biến thiết bị đo khí, Viện Khoa học vật liệu, ln giúp đỡ, hỗ trợ tơi nhiệt tình tạo điều kiện tốt thời gian thực luận án Đồng thời, xin gửi lời cảm ơn tới Lãnh đạo, thầy cô Viện Khoa học vật liệu Học viện Khoa học Cơng nghệ giúp đỡ đóng góp chun mơn q báu Tơi xin gửi lời cảm ơn tới Lãnh đạo, Thầy, Cô đồng nghiệp Bộ môn Vật lý – Khoa Khoa học bản, Trƣờng Đại học Sƣ phạm – Kỹ thuật Hƣng Yên tạo tất điều kiện thuận lợi để tơi tập trung cho việc thực luận án Tôi xin trân trọng cảm ơn PGS.TS Ngạc An Bang, NCS Sái Công Doanh, Trƣờng Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội giúp đỡ nhiệt tình thời gian thực luận án Tôi xin cảm ơn giúp đỡ mặt tài từ nguồn kinh phí đào tạo nghiên cứu sinh nƣớc Bộ Giáo dục Đào tạo (Đề án 911) Đề tài cấp Quốc gia thuộc Chƣơng trình nghiên cứu ứng dụng phát triển công nghệ lƣợng (mã số đề tài KC05.13/16-20) Tôi xin đƣợc dành lời cảm ơn sâu nặng đến gia đình tơi: bố, mẹ, chồng yêu thƣơng, cảm thông chia sẻ để tơi tập trung học tập nghiên cứu suốt năm tháng thực luận án Tôi xin chân thành cảm ơn ngƣời thân bạn bè động viên khích lệ tơi Nghiên cứu sinh Hồng Thị Hiến MỤC LỤC MỤC LỤC i DANH MỤC BẢNG BIỂU ix DANH MỤC KÝ TỰ VIẾT TẮT x MỞ ĐẦU CHƢƠNG 1: TỔNG QUAN 1.1 Polymer dẫn 1.1.1 Khái niệm đời CPs 1.1.2 Một số loại polymer dẫn 1.1.3 Cơ chế hình thành polymer 1.1.4 Cơ chế dẫn điện CPs polymer dẫn lai hóa vơ 10 1.1.5 Ứng dụng vật liệu polymer dẫn polymer lai hóa vơ 15 1.1.6 Phƣơng pháp tổng hợp PPy 15 1.2 Cảm biến khí sở polymer dẫn 18 1.2.1 Giới thiệu cảm biến khí 19 1.2.2 Cảm biến khí NH3 sở polymer dẫn 23 1.2.3 Cảm biến sử dụng polymer dẫn cho khí oxy hóa/khử khác 27 1.2.4 Cảm biến độ ẩm sở polymer dẫn 31 1.2.5 Cơ chế nhạy khí 32 1.3 Kỹ thuật đo sử dụng luận án 37 1.3.1 Hệ khảo sát đặc trƣng nhạy khí 37 1.3.2 Tạo môi trƣờng độ ẩm khác cho khảo sát 39 Kết luận Chƣơng 41 CHƢƠNG 2: TỔNG HỢP VÀ NGHIÊN CỨU CÁC CẤU TRÚC HÌNH THÁI CỦA VẬT LIỆU POLYMER DẪN (PPY, PANI) ẢNH HƢỞNG ĐẾN ĐẶC TRƢNG NHẠY KHÍ NH3 42 i 2.1 Tổng hợp đặc trƣng nhạy khí NH3 cấu trúc hình thái PANi từ phƣơng pháp điện hóa CV 45 2.1.1 Màng PANi tổng hợp phƣơng pháp điện hóa 45 2.1.2 Cấu trúc hình thái học tính chất màng PANi 47 2.1.3 Đặc trƣng nhạy khí NH3 cấu trúc hình thái học PANi 52 2.2 Tổng hợp đặc trƣng nhạy khí NH3 cấu trúc hình thái PPy 54 2.2.1 PPy tổng hợp phƣơng pháp trùng hợp pha 54 2.2.2 Cấu trúc hình thái học tính chất màng PPy 57 2.2.3 Đặc trƣng nhạy khí NH3 cấu trúc hình thái học PPy 64 2.2.4 Thảo luận chế nhạy khí cấu trúc PPy 73 Kết luận Chƣơng 75 CHƢƠNG 3: TỔNG HỢP VÀ NGHIÊN CỨU ĐẶC TRƢNG NHẠY KHÍ NH3 CỦA VẬT LIỆU LAI NiO/PPy 76 3.1 Tổng hợp màng lai hóa NiO/PPy 77 3.1.1 Chế tạo màng NiO đế Al2O3 78 3.1.2 Chế tạo màng lai hóa màng hạt nano NiO với PPy 79 3.2 Tính chất màng lai hóa NiO/PPy 81 3.2.1 Cấu trúc hình thái 81 3.2.3 Phổ EDX 85 3.2.3 Phổ FTIR 85 3.2.4 Phổ tán xạ Raman 88 3.3 Tính chất nhạy khí màng lai hóa NiO/PPy 90 Kết luận chƣơng 101 KẾT LUẬN CHUNG 102 NHỮNG ĐÓNG GÓP MỚI CỦA LUẬN ÁN 103 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN 104 ii DANH MỤC CÁC CƠNG TRÌNH ĐÃ CÔNG BỐ KHÁC 105 TÀI LIỆU THAM KHẢO 106 iii DANH MỤC HÌNH VẼ Hình 1.1 Ba nhà khoa học Alan J Heeger, Alan MacDiarmid Hideki Shirakawa nhận giải Nobel năm 2000 vật liệu polyme dẫn Hình 1.2 Minh họa cấu trúc phân tử số polyme dẫn điển hình Hình 1.3 Các giai đoạn hình thành PPy từ trùng hợp điện hóa Hình 1.4 Các giai đoạn hình thành PPy từ trùng hợp hóa học sử dụng chất oxy hóa FeCl3 .9 Hình 1.5 Vị trí thang đo độ dẫn điện CPs (PEDOT, PPy, PANi) so sánh với thang kim loại, bán dẫn chất cách điện .11 Hình 1.6 Cấu trúc điện tử cấu trúc hóa học PTh với pha tạp (a) loại p (b) loại n .13 Hình 1.7 (A) Cấu trúc hóa học từ khơng pha tạp tới pha tạp loại p cao PPy; (B) Cấu trúc vùng lƣợng với mức pha tạp khác PPy, (a) không pha tạp, (b) polaron, (c) bipolaron, (d) trạng thái pha tạp đầy đủ .13 Hình 1.8 Sơ đồ khả ứng dụng sở vật liệu CPs .15 Hình 1.9 Minh họa thành phần bình điện hóa cho tổng hợp CPs 16 Hình 1.10 Ảnh SEM dây nano PPy chế tạo phƣơng pháp điện hóa sử dụng khn AAO 17 Hình 1.11 Ảnh TEM ống nano PPy đƣợc tổng hợp từ dung dịch chứa FeCl3 MO với thời gian 40 phút 18 Hình 1.12 Mơ hình cấu trúc cảm biến khí độ dẫn/điện trở, (a-c) dạng khối, (df) dạng phẳng; (g-h) cấu trúc xếp lớp nhạy khí điện cực 20 Hình 1.13 Ảnh FE-SEM ống nano PPy đa tƣờng (MPPy NTs): (a) nốt sần nano, (b) dây nano; (c) đáp ứng theo theo thời gian MPPy NTs tiếp xúc với NH3 (10 ppb đến 100 ppm) ethanol (1 ppm đến 10 000 ppm) 23 Hình 1.14 Ảnh TEM (a) đám hạt nano Pd, (b) màng tổ hợp nano PPy/Pd; (c, d) lần lƣợt điện trở đáp ứng độ đáp ứng theo nồng độ khí NH3 từ 50-2000 ppm (1) PPy, (2) PPy/Pd 25 Hình 1.15 (a) Ảnh SEM mẫu CPA dạng cấu trúc lõi/vỏ (CeO2@PANi); (b) đƣờng đáp ứng với nồng độ khí NH3 50, 75 100 ppm tƣơng ứng với tỉ lệ khối lƣợng CeO2 PANi lần lƣợt 0.5, 2, .25 iv Hình 1.16 Ảnh TEM (a) đám sợi PANi, (b) ống PPy; độ đáp ứng theo nồng độ loại VOCs (c) PANi, (d) PPy 28 Hình 1.17 Ảnh TEM (a) PPy, (b) PPy@NiO; độ đáp ứng (c) PPy với nồng độ 100 ppm NO2, (d) độ chọn lọc (NiO, PPy, PPy@NiO) với loại khí, (e) PPy@NiO (50%) với nồng độ khí NO2, (f) thời gian đáp ứng thời gian hồi phục PPy@NiO (50%) với nồng độ khí NO2 .29 Hình 1.18 Minh họa tƣơng tác PPy với khí NH3 theo chế di chuyển lỗ trống .36 Hình 1.19 Sơ đồ nguyên lý khối thiết bị phận hệ khảo sát đặc trƣng nhạy khí cho mẫu 37 Hình 1.20 Ảnh chụp hệ thiết bị cho khảo sát đặc trƣng nhạy khí 38 Hình 1.21 Độ ẩm tƣơng đối đƣợc tạo từ bình kín chứa dung dịch muối bão hòa gồm (a) LiCl (11 %RH),(b) MgCl2 (33 %RH), (c) NaCl (75 %RH), (d) KCl (84 %RH); (e) Sr(NO3)2 (94 %RH) 40 Hình 2.1 Cấu hình vi điện cực Pt dạng lƣợc (a), ảnh chụp đế Si/SiO2 tích hợp vi điện cực Pt (b), (c) ảnh SEM bề mặt đế Si/SiO2 tích hợp điện cực sau polyme hóa 45 Hình 2.2 Sơ đồ hệ chế tạo màng polyme sử dụng phƣơng pháp điện hóa CV .46 Hình 2.3 Đƣờng cong CV điển hình màng PANi tổng hợp vi điện cực 48 Hình 2.4 Ảnh SEM bề mặt mẫu màng PA-4, PA-7 PA-12 .49 Hình 2.5 Ảnh SEM bề mặt màng PANi chế tạo thay đổi nồng độ monome anilin gồm mẫu PA-0.1 (a,b); PA-0.2 (c,d); PA-0.5 (e,f) PA-1.0 (g,h) 50 Hình 2.6 Phổ FTIR màng PANi chế tạo phƣơng pháp điện hóa 51 Hình 2.7 Các đặc trƣng nhạy khí NH3 với nồng độ 45, 90, 180 350 ppm 25 oC màng PANi cấu trúc dạng hạt nano (PA-0.1); sợi nano ngắn (PA-0.5) sợi nano dài (PA-1.0) 52 Hình 2.8 Ảnh chụp đế Al2O3 có điện cực Pt (a), cấu hình điện cực Pt (b) .55 Hình 2.9 Minh họa bƣớc cho chế tạo màng polyme 55 Hình 2.10 Các bƣớc tổng hợp màng PPy phƣơng pháp trùng hợp pha 56 Hình 2.11 Ảnh SEM bề mặt màng PPy đƣợc tổng hợp với nồng độ FeCl3 đƣợc sử dụng (a, A) 0,01 M; (b, B) 0,02 M; (c, C) 0,04 M; (d, D) 0,06 M 58 v Hình 2.12 Minh họa mối liên hệ phân bố xúc tác FeCl3 hình thái bề mặt màng PPy tổng hợp từ pha .59 Hình 2.13 Phổ EDX mẫu màng PPy_0.02M FeCl3 59 Hình 2.14 Phổ FTIR màng PPy đƣợc tổng hợp với nồng độ muối FeCl3 sử dụng lần lƣợt 0,01; 0,02; 0,04 0,06 M 60 Hình 2.15 Phổ tán xạ Raman màng PPy đƣợc tổng hợp với nồng độ muối FeCl3 0,01; 0,02; 0,04 0,06 M vùng 800 - 1200 cm-1(a), vùng 1500-1700 cm-1(b) 62 Hình 2.16 Phổ huỳnh quang (PL) màng PPy đƣợc tổng hợp với nồng độ muối FeCl3 đƣợc sử dụng lần lƣợt 0,01; 0,02; 0,04 0,06 M 63 Hình 2.17 Điện trở đáp ứng màng PPy_0.01MFeCl3 (a), PPy_0.02MFeCl3 (b), PPy_0.04MFeCl3 (c) PPy_0.06MFeCl3 (d) theo chu kỳ bơm khí NH3 với nồng độ 350, 180, 90 45 ppm nhiệt độ 25 oC .65 Hình 2.18 Độ đáp ứng màng PPy_0.01MFeCl3, PPy_0.02MFeCl3, PPy_0.04MFeCl3, PPy_0.06MFeCl3 phụ thuộc vào nồng độ khí NH3 66 Hình 2.19 Minh họa tính thời gian đáp ứng thời gian hồi phục cảm biến nồng độ khí (a), phụ thuộc thời gian đáp ứng/hồi phục theo nồng độ khí NH3 mẫu PPy_0.06MFeCl3 (b) 67 Hình 2.20 Điện trở đáp ứng (a) thời gian hồi đáp phụ thuộc vào nồng độ FeCl3 (b) màng PPy với 350 ppm khí NH3/khơng khí chu kì 67 Hình 2.21 Điện trở màng PPy đáp ứng theo chu kì liên tiếp khơng khí/350 ppm khí NH3 nhiệt độ phòng, (a) PPy_0.01MFeCl3, (b) PPy_0.02MFeCl3, (c) PPy_0.04MFeCl3, (d) PPy_0.06MFeCl3 69 Hình 2.22 Độ đáp ứng màng PPy_0.01MFeCl3; PPy_0.02MFeCl3 PPy_0.06MFeCl3 tiếp xúc với 45 ppm NH3, 50 ppm NO2, 1000 ppm H2, 1000 ppm CO, 1000 ppm CH4 94 %RH 70 Hình 2.23 Điện trở đáp ứng theo thời gian màng PPy_0.01M FeCl3 tiếp xúc với nồng độ 45, 90, 180 350 ppm khí NH3/khơng khí nhiệt độ 25, 60 100 oC 71 Hình 2.24 Độ đáp ứng khí NH3 (a), thời gian đáp ứng/hồi phục (b) màng PPy_0.01MFeCl3 theo nhiệt độ hoạt động 25, 60 100 oC 72 vi 21 T H Le, Y Kim and H Yoon, Electrical and Electrochemical Properties of Conducting Polymers, Polymers (Basel), (2017) 1-32 22 Y S Negi and P V Adhyapak, Development in Polyaniline Conducting Polymers, Journal of Macromolecular Science, Part C: Polymer Reviews, 42 (2002) 35-53 23 M Wan, Conducting Polymers with Micro or Nanometer Structure, Springer: New York, NY, USA, ( 2008) 1-13 24 Y Zhang and P W M Blom, Electron and hole transport in poly(fluorenebenzothiadiazole), Appl Phys Lett, 98 (2011) 143504-143508 25 Y Zhang, B de Boer and P W M Blom, Controllable molecular doping and charge transport in solution-processed polymer semiconducting layers, Adv Funct Mater, 19 (2009) 1901-1905 26 J L Bredas and G B Street, Polarons, bipolarons, and solitons in conducting polymers, Accounts of Chemical Research, 18 (1985) 309-315 27 A O Patil, A J Heeger and F Wudl, Optical properties of conducting polymers, Chemical Reviews, 88 (1988) 183-200 28 Z.A Alothman, M.M Alam, M Naushad and R Bushra, Electrical Conductivity and Thermal Sn(IV)tungstomolybdate Application as Stability Nanocomposite Pb(II) Ion-Selective Studies on Polyaniline CationExchange Membrane Electrode, Material: Int J Electrochem Sci, 10 (2015) 2663 - 2684 29 N Parvatikar, S Jain, S Khasim, M Revansiddappa, S V Bhoraskar and M V N A Prasad, Electrical and humidity sensing properties of polyaniline/WO3 composites, Sensors and Actuators B: Chemical, 114 (2006) 599-603 30 N Parvatikar, S Jain, S V Bhoraskar and M V N Ambika Prasad, Spectroscopic and electrical properties of polyaniline/CeO2 composites and their application as humidity sensor, Journal of Applied Polymer Science, 102 (2006) 5533-5537 31 S Iqbal and S Ahmad, Recent development in hybrid conducting polymers: Synthesis, applications and future prospects, Journal of Industrial and Engineering Chemistry, 60 (2018) 53-84 108 32 S Xiong, S L Phua, B S Dunn, J Ma and X Lu, Covalently Bonded Polyaniline−TiO2 Hybrids: A Facile Approach to Highly Stable Anodic Electrochromic Materials with Low Oxidation Potentials, Chemistry of Materials, 22 (2010) 255-260 33 P Saini, V Choudhary, B P Singh, R B Mathur and S K Dhawan, Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding, Materials Chemistry and Physics, 113 (2009) 919-926 34 L Zhang, F Meng, Y Chen, J Liu, Y Sun, T Luo, M Li and J Liu, A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays, Sensors and Actuators B: Chemical, 142 (2009) 204209 35 E A Sanches, S F Alves, J C Soares, A M da Silva, C G da Silva, S M de Souza and H O da Frota, Nanostructured Polypyrrole Powder: A Structural and Morphological Characterization, Journal of Nanomaterials, 2015 (2015) 129678-129686 36 I Rawal and A Kaur, Synthesis of mesoporous polypyrrole nanowires/nanoparticles for ammonia gas sensing application, Sensors and Actuators A: Physical, 203 (2013) 92-102 37 X Yang, Z Zhu, T Dai and Y Lu, Facile Fabrication of Functional Polypyrrole Nanotubes via a Reactive Self-Degraded Template, Macromolecular Rapid Communications, 26 (2005) 1736-1740 38 A Yussuf, M Al-Saleh, S Al-Enezi and G Abraham, Synthesis and Characterization of Conductive Polypyrrole: The Influence of the Oxidants and Monomer on the Electrical, Thermal, and Morphological Properties, International Journal of Polymer Science, 2018 (2018) 1-8 39 A D Wilson and M Baietto, Applications and advances in electronic-nose technologies, Sensors (Basel), (2009) 5099-5148 40 G Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors, Materials Science and Engineering R, 61 (2008) 1-39 109 41 M Setka, J Drbohlavova and J Hubalek, Nanostructured PolypyrroleBased Ammonia and Volatile Organic Compound Sensors, Sensors 17 (2017) 562-590 42 V E Bochenkov and G B SergeeV, CHAPTER 2: Sensitivity, Selectivity, and Stability of Gas-Sensitive Metal-Oxide Nanostructures, American Scientific 43 S C Hernandez, D Chaudhuri, W Chen, N V Myung and A Mulchandani, Single polypyrrole nanowire ammonia gas sensor, Electroanalysis, 19 (2007) 2125-2130 44 G Gustafsson, I Lundström, B Liedberg, C R Wu, O Inganäs and O Wennerström, The interaction between ammonia and poly(pyrrole), Synthetic Metals, 31 (1989) 163-179 45 O S Kwon, S J Park, H Yoon and J Jang, Highly sensitive and selective chemiresistive sensors based on multidimensional polypyrrole nanotubes, Chemcal Communications, 48 (2012) 10526-10528 46 G D Khuspe, D K Bandgar, S Sen and V B Patil, Fussy nanofibrous network of polyaniline (PANi) for NH3 detection, Synthetic Metals, 162 (2012) 1822-1827 47 M Joulazadeh and A H Navarchian, Ammonia detection of onedimensional nano-structured polypyrrole/metal oxide nanocomposites sensors, Synthetic Metals, 210 (2015) 404-411 48 L Hong, Y Li and M Yang, Fabrication and ammonia gas sensing of palladium/polypyrrole nanocomposite, Sensors and Actuators B: Chemical, 145 (2010) 25-31 49 L Wang, H Huang, S Xiao, D Cai, Y Liu, B Liu, D Wang, C Wang, H Li, Y Wang, Q Li and T Wang, Enhanced Sensitivity and Stability of Room-Temperature NH3 Sensors Using Core–Shell CeO2 Nanoparticles@Cross-linked PANI with p–n Heterojunctions, ACS Applied Materials & Interfaces, (2014) 14131-14140 50 N Chartuprayoon, C M Hangarter, Y Rheem, H Jung and N V Myung, Wafer-Scale Fabrication of Single Polypyrrole Nanoribbon-Based Ammonia Sensor, The Journal of Physical Chemistry C, 114 (2010) 11103-11108 110 51 M Chougule, S Pawar, S Patil, B Raut, P Godse, S Sen and D V Patil, Polypyrrole Thin Film: Room Temperature Ammonia Gas Sensor, IEEE Sensors Journal - IEEE SENS J, 11 (2011) 2137-2141 52 A L Sharma, K Kumar and A Deep, Nanostructured polyaniline films on silicon for sensitive sensing of ammonia, Sensors and Actuators A: Physical, 198 (2013) 107-112 53 H Malkeshi and H Milani Moghaddam, Ammonia gas-sensing based on polythiophene film prepared through electrophoretic deposition method, Journal of Polymer Research, 23 (2016) 108-117 54 A Joshi, S A Gangal and S K Gupta, Ammonia sensing properties of polypyrrole thin films at room temperature, Sensors and Actuators B: Chemical, 156 (2011) 938-942 55 H J Kharat, K P Kakde, P A Savale, K Datta, P Ghosh and M D Shirsat, Synthesis of polypyrrole films for the development of ammonia sensor, Polymers for Advanced Technologies, 18 (2007) 397-402 56 X Yang and L Li, Polypyrrole nanofibers synthesized via reactive template approach and their NH3 gas sensitivity, Synthetic Metals, 160 (2010) 13651367 57 H Yoon, M Chang and J Jang, Sensing Behaviors of Polypyrrole Nanotubes Prepared in Reverse Microemulsions:  Effects of Transducer Size and Transduction Mechanism, The Journal of Physical Chemistry B, 110 (2006) 14074-14077 58 M Penza, E Milella, F Musio, M B Alba, G Cassano and A Quirini, AC and DC measurements on Langmuir-Blodgett polypyrrole films for selective NH3 gas detection, Materials Science and Engineering: C, (1998) 255258 59 M Penza, E Milella, M B Alba, A Quirini and L Vasanelli, Selective NH3 gas sensor based on Langmuir-Blodgett polypyrrole film, Sensors and Actuators B: Chemical, 40 (1997) 205-209 60 Y.-s Chen, Y Li, H.-c Wang and M.-j Yang, Gas sensitivity of a composite of multi-walled carbon nanotubes and polypyrrole prepared by vapor phase polymerization, Carbon, 45 (2007) 357-363 111 61 H.-y Yang, X.-L Cheng, X.-F Zhang, Z.-k Zheng, X.-f Tang, Y.-M Xu, S Gao, H Zhao and L.-H Huo, A novel sensor for fast detection of triethylamine based on rutile TiO2 nanorod arrays, Sensors and Actuators B: Chemical, 205 (2014) 322-328 62 D Ju, H Xu, Z Qiu, J Guo, J Zhang and B Cao, Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction, Sensors and Actuators B: Chemical, 200 (2014) 288-296 63 D Ju, H Xu, Q Xu, H Gong, Z Qiu, J Guo, J Zhang and B Cao, High triethylamine-sensing properties of NiO/SnO2 hollow sphere P–N heterojunction sensors, Sensors and Actuators B: Chemical, 215 (2015) 39-44 64 H.-J Kim and J.-H Lee, Highly sensitive and selective gas sensors using ptype oxide semiconductors: Overview, Sensors and Actuators B: Chemical, 192 (2014) 607-627 65 O S Kwon, J.-Y Hong, S J Park, Y Jang and J Jang, Resistive Gas Sensors Based on Precisely Size-Controlled Polypyrrole Nanoparticles: Effects of Particle Size and Deposition Method, The Journal of Physical Chemistry C, 114 (2010) 18874-18879 66 A Athawale, S Bhagwat and P Katre, Nanocomposite of Pd-polyaniline as a selective methanol sensor, Sensors and Actuators B: Chemical, 114 (2006) 263-267 67 M Joulazadeh and A Navarchian, Alcohol Sensibility of One-Dimensional Polyaniline and Polypyrrole Nanostructures, IEEE Sensors Journal, 15 (2015) 1697-1704 68 H R Hwang, J G Roh, D D Lee, J O Lim and J S Huh, Sensing behavior of the polypyrrole and polyaniline sensor for several volatile organic compounds, Metals and Materials International, (2003) 287291 69 E A Sanches, S F Alves, J C Soares, A M da Silva, C G da Silva, S M de Souza and H O da Frota, Nanostructured Polypyrrole Powder: A 112 Structural and Morphological Characterization, Journal of Nanomaterials, 2015 (2015) 129678-129684 70 K Low, N Chartuprayoon, C Echeverria, C Li, W Bosze, N V Myung and J Nam, Polyaniline/poly(ε-caprolactone) composite electrospun nanofiber-based gas sensors: optimization of sensing properties by dopants and doping concentration, Nanotechnology, 25 (2014) 115501-115511 71 H Kebiche, D Debarnot, A Merzouki, F Poncin-Epaillard and N Haddaoui, Relationship between ammonia sensing properties of polyaniline nanostructures and their deposition and synthesis methods, Analytica chimica acta, 737 (2012) 64-71 72 S R Nalage, A T Mane, R C Pawar, C S Lee and V B Patil, Polypyrrole–NiO hybrid nanocomposite films: highly selective, sensitive, and reproducible NO2 sensors, Ionics, 20 (2014) 1607-1616 73 J.-H Cho, J.-B Yu, J.-S Kim, S.-O Sohn, D.-D Lee and J.-S Huh, Sensing behaviors of polypyrrole sensor under humidity condition, Sensors and Actuators B: Chemical, 108 (2005) 389-392 74 J Qi, X Xu, X Liu and K T Lau, Fabrication of textile based conductometric polyaniline gas sensor, Sensors and Actuators B: Chemical, 202 (2014) 732-740 75 S T Navale, A T Mane, G D Khuspe, M A Chougule and V B Patil, Room temperature NO2 sensing properties of polythiophene films, Synthetic Metals, 195 (2014) 228-233 76 C Liu, Z Noda, K Sasaki and K Hayashi, Development of a polyaniline nanofiber-based carbon monoxide sensor for hydrogen fuel cell application, International Journal of Hydrogen Energy, 37 (2012) 13529-13535 77 L Quan, J Sun, S Bai, R Luo, D Li, A Chen and C C Liu, A flexible sensor based on polyaniline hybrid using ZnO as template and sensing properties to triethylamine at room temperature, Applied Surface Science, 399 (2017) 583-591 78 M Joulazadeh, A H Navarchian and M Niroomand, A Comparative Study on Humidity Sensing Performances of Polyaniline and Polypyrrole 113 Nanostructures, Advances in Polymer Technology, 33 (2014) 2146121471 79 L Li, F Vilela, J Forgie, P J Skabara and D Uttamchandani, Miniature humidity micro-sensor based on organic conductive polymer - poly(3,4ethylenedioxythiophene), Micro & Nano Letters, (2009) 84-87 80 H Farahani, R Wagiran and M N Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review, Sensors (Basel), 14 (2014) 7881-7939 81 R P Tandon, M R Tripathy, A K Arora and S Hotchandani, Gas and humidity response of iron oxide—Polypyrrole nanocomposites, Sensors and Actuators B: Chemical, 114 (2006) 768-773 82 A G MacDiarmid, ―Synthetic Metals‖: A Novel Role for Organic Polymers (Nobel Lecture), Angewandte Chemie International Edition, 40 (2001) 2581-2590 83 V C Nguyen and K Potje-Kamloth, Electrical and chemical sensing properties of doped polypyrrole/gold Schottky barrier diodes, Thin Solid Films, 338 (1999) 142-148 84 D Xie, Y D Jiang, W Pan, D Li, Z M Wu and Y R Li, Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology, Sens Actuators B (2002) 158-164 85 E Kriván, C Visy, R Dobay, G Harsányi and O Berkesi, Irregular Response of the Polypyrrole Films to H2S, Electroanalysis, 12 (2000) 11951200 86 N Densakulprasert, L Wannatong, D Chotpattananont, P Hiamtup, A Sirivat and J Schwank, Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO, Materials Science and Engineering: B, 117 (2005) 276-282 87 S Virji, R B Kaner and B H Weiller, Hydrogen Sensors Based on Conductivity Changes in Polyaniline Nanofibers, The Journal of Physical Chemistry B, 110 (2006) 22266-22270 114 88 D R Miller, S A Akbar and P A Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: A review, Sensors and Actuators B: Chemical, 204 (2014) 250-272 89 A Kaushik, R Khan, V Gupta, B D Malhotra, S Ahmad and S P Singh, Hybrid cross-linked polyaniline-WO3 nanocomposite thin film for NO(x) gas sensing, Journal of nanoscience and nanotechnology, (2009) 1792-1796 90 N V Bhat, A P Gadre and V A Bambole, Investigation of Electropolymerized Polypyrrole Composite Film: Characterization and application to Gas Sensors, Journal of Applied Polymer Science, 88 (2003) 22–29 91 C W Lin, Y L Liu and R Thangamuthu, Investigation of the relationship between surface thermodynamics of the chemically synthesized polypyrrole films and their gas-sensing responses to BTEX compounds, Sensors and Actuators B: Chemical, 94 (2003) 36-45 92 W.-K Jang, J Yun, H.-I Kim and Y.-S Lee, Improvement of ammonia sensing properties of polypyrrole by nanocomposite with graphitic materials, Colloid and Polymer Science, 291 (2012) 1095–1103 93 L Zhang, F Meng, Y Chen, J Liu, Y Sun, T Luo, M Li and J Liu, A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays, Sensors and Actuators B: Chemical, 142 (2009) 204209 94 S Carquigny, J B Sanchez, F Berger, B Lakard and F Lallemand, Ammonia gas sensor based on electrosynthesized polypyrrole films, Talanta, 78 (2009) 199-206 95 Z Chen and C Lu, Humidity Sensors: A Review of Materials and Mechanisms, Sensor Letters, (2005) 274-295 96 H E Endres, H D Jander and W Gottler, A test system for gas sensors, Sensors and Actuators B, 23 (1995) 163-172 97 S Pandey, Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review, Journal of Science: Advanced Materials and Devices, (2016) 431-453 115 98 H Yoon, Current Trends in Sensors Based on Conducting Polymer Nanomaterials, Nanomaterials (Basel), (2013) 524-549 99 H Ullah, A.-u.-H A Shah, S Bilal and K Ayub, DFT Study of Polyaniline NH3, CO2, and CO Gas Sensors: Comparison with Recent Experimental Data, The Journal of Physical Chemistry C, 117 (2013) 23701-23711 100 R Garg, V Kumar, D Kumar and P Chakarvarti, Polypyrrole Microwires as Toxic Gas Sensors for Ammonia and Hydrogen Sulphide, Journal of Sensors and Instrumentation, (2015) 1-13 101 S Pawar, S Patil, A Mane and a V P B Raut, Growth, characterization and gas sensing properties of polyaniline thin films Arch Appl Sci Res, (2009) 109-114 102 L Kumar, I Rawal, A Kaur and A Subramanian, Flexible room temperature ammonia sensor based on polyaniline, Sensors and Actuators B: Chemical, 240 (2017) 408-416 103 Y Zhang, J J Kim, D Chen, H L Tuller and G C Rutledge, Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases, Advanced Functional Materials, 24 (2014) 4005-4014 104 V V Chabukswar, S Pethkar and A A Athawale, Acrylic acid doped polyaniline as an ammonia sensor, Sensors and Actuators B: Chemical, 77 (2001) 657-663 105 D S Sutar, N Padma, D K Aswal, S K Deshpande, S K Gupta and J V Yakhmi, Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor, Sensors and Actuators B: Chemical, 128 (2007) 286-292 106 S Wu, F Zeng, F Li and Y Zhu, Ammonia sensitivity of polyaniline films via emulsion polymerization, European Polymer Journal, 36 (2000) 679683 107 X Tian, Q Wang, X Chen, W Yang, Z Wu, X Xu, M Jiang and Z Zhou, Enhanced performance of core-shell structured polyaniline at helical carbon nanotube hybrids for ammonia gas sensor, Applied Physics Letters, 105 (2014) 203109-103114 116 108 J Chen, J Yang, X Yan and Q Xue, NH3 and HCl sensing characteristics of polyaniline nanofibers deposited on commercial ceramic substrates using interfacial polymerization, Synthetic Metals, 160 (2010) 2452-2458 109 M Hirata and L Sun, Characteristics of an organic semiconductor polyaniline film as a sensor for NH3 gas, Sensors and Actuators A: Physical, 40 (1994) 159-163 110 P Lobotka, P Kunzo, E Kovacova, I Vavra, Z Krizanova, V Smatko, J Stejskal, E N Konyushenko, M Omastova, Z Spitalsky, M Micusik and I Krupa, Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing, Thin Solid Films, 519 (2011) 4123-4127 111 E Song and J W Choi, Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing, Nanomaterials (Basel), (2013) 498-523 112 B Butoi, A Groza, P Dinca, A Balan and V Barna, Morphological and Structural Analysis of Polyaniline and Poly(o-anisidine) Layers Generated in a DC Glow Discharge Plasma by Using an Oblique Angle Electrode Deposition Configuration, Polymers (Basel), (2017) 732-750 113 X Du, Y Xu, L Xiong, Y Bai, J Zhu and S Mao, Polyaniline with high crystallinity degree: Synthesis, structure, and electrochemical properties, Journal of Applied Polymer Science, 131 (2014) 40827-40835 114 A N Jarad, K Ibrahim and N M Ahmed, Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application, AIP Conference Proceedings, 1733 (2016) 020020-020028 115 G Khuspe, D K Bandgar, S Sen and D V Patil, Fussy nanofibrous network of polyaniline (PANi) for NH3 detection, Synthetic Metals, 162 (2012) 1822–1827 116 P Stamenov, R Madathil and J M D Coey, Dynamic response of ammonia sensors constructed from polyaniline nanofibre films with varying morphology, Sensors and Actuators B: Chemical, 161 (2012) 989-999 117 Z Du, C Li, L Li, H Yu, Y Wang and T Wang, Ammonia gas detection based on polyaniline nanofibers coated on interdigitated array electrodes, 117 Journal of Materials Science: Materials in Electronics, 22 (2011) 418421 118 K Malook, H Khan, M Shah and I.-U.- Haque, Highly selective and sensitive response of Polypyrrole–MnO2 based composites towards ammonia gas, Polymer Composites, 40 (2019) 1676-1683 119 R Jha, M Wan, C Jacob and P Guha, Ammonia vapour sensing properties of in situ polymerized conducting PANI-nanofiber/WS2 nanosheet composites, New Journal of Chemistry, 42 (2018) 735-745 120 J Sun, X Shu, Y Tian, Z Tong, S Bai, R Luo, D Li and A Chen, Preparation of polypyrrole@WO3 hybrids with p-n heterojunction and sensing performance to triethylamine at room temperature, Sensors and Actuators B: Chemical, 238 (2017) 510-517 121 H T Giang, Cảm biến khí monoxit cacbon hydro cacbon sở oxit perovskite ABO3, Luận án tiến sĩ, (2013) 122 J Tu, N Li, Q Yuan, R Wang, W Geng, Y Li, T Zhang and X Li, Humidity-sensitive property of Fe2+ doped polypyrrole, Synthetic Metals, 159 (2009) 2469-2473 123 J Jang and J Bae, Carbon nanofiber/polypyrrole nanocable as toxic gas sensor, Sensors and Actuators B, 122 (2007) 7-13 124 C.Basavaraja, W J Kim, D G Kim and D S Huh, Synthesis and characterization of soluble polypyrrole-poly(ɛ-caprolactone) polymer blends with improved electrical conductivities, Materials Chemistry and Physics, 129 (2011) 787-793 125 H C Kang and K E Geckeler, Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: effect of the preparation technique and polymer additive, Polymer, 41 (2000) 69316934 126 M Monnier, G Davidovics and A Allouche, Conformational stability, ab initio calculations and vibrational assignment of fluoroacetyl chloride trapped and photoexcited in a low temperature xenon matrix, Journal of Molecular Structure, 243 (1991) 13-30 118 127 X Zhao, Z Zhao, M Yang, H Xia, T Yu and X Shen, Developing Polymer Cathode Material for the Chloride Ion Battery, ACS Appl Mater Interfaces, (2017) 2535-2540 128 J Tabačiarová, M Mičušík, P Fedorko and M Omastová, Study of polypyrrole aging by XPS, FTIR and conductivity measurements, Polymer Degradation and Stability, 120 (2015) 392-401 129 Y.-C Liu and B.-J Hwang, Identification of oxidized polypyrrole on Raman spectrum, Synthetic Metals, 113 (2000) 203-207 130 Y Furukawa, S Tazawa, Y Fujii and I Harada, Raman spectra of polypyrrole and its 2,5-13C-substituted and C-deuterated analogues in doped and undoped states, Synthetic Metals, 24 (1988) 329-341 131 J Duchet, R Legras and S Demoustier-Champagne, Chemical synthesis of polypyrrole: structure-properties relationship, Synthetic Metals, 98 (1998) 113-122 132 F Chen, G Shi, M Fu, L Qu and X Hong, Raman spectroscopic evidence of thickness dependence of the doping level of electrochemically deposited polypyrrole film, Synthetic Metals, 132 (2003) 125-132 133 J C Scott, J L Bredas, K Yakushi, P Pfluger and G B Street, The evidence for bipolarons in pyrrole polymers, Synthetic Metals, (1984) 165 - 172 134 S Krishnaswamy, P Panigrahi and G S Nagarajan, Tailoring the optical properties of ZnO thin film by Citrus limon doped Polypyrrole, Journal of Materials Science: Materials in Electronics, 31 (2020) 8502-8513 135 S C Hernandez, D Chaudhuri, W Chen, N V Myung and A Mulchandani, Single Polypyrrole Nanowire Ammonia Gas Sensor, Electroanalysis, 19 (2007) 2125-2130 136 M Bazzaoui, J I Martins, E Machnikova, E A Bazzaoui and L Martins, Polypyrrole films electrosynthesized on stainless steel grid from saccharinate aqueous solution and its behaviour toward acetone vapor, European Polymer Journal, 43 (2007) 1347-1358 119 137 G Gustafsson, I Lundström, B Liedberg, C R Wu, O Inganas and O Wennerstrom, The interaction between ammonia and poly(pyrrole), Synthetic Metals, 31 (1989) 163-179 138 S Carquigny, J.-B Sanchez, F Berger, B Lakard and F Lallemand, Ammonia gas sensor based on electrosynthesized polypyrrole films, Talanta, 78 (2009) 199-206 139 M Setka, J Drbohlavova and J Hubalek, Nanostructured polypyrrole-based ammonia and volatile organic compound sensors, Sensors 17 (2017) 562 140 X Guo and A Facchetti, The journey of conducting polymers from discovery to application, Nature Materials, 19 (2020) 922-928 141 G Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice?, Materials Science and Engineering B 139 (2007) 1-23 142 S Jain, N Karmakar, A Shah, D C Kothari, S Mishra and N G Shimpi, Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: Effect of CSA doping and their structural, chemical, thermal and gas sensing behavior, Applied Surface Science, 396 (2017) 1317-1325 143 A Ho, T.-S Jun and Y S Kim, Material and NH3-sensing properties of polypyrrole-coated tungsten oxide nanofibers, Sensors and Actuators B: Chemical, 185 (2013) 523–529 144 H Khan, K Malook and M Shah, Highly selective and sensitive ammonia sensor using polypyrrole/V2O5 composites, Journal of Materials Science: Materials in Electronics, 28 (2017) 13873-13879 145 K Malook, H Khan, M Shah and I U Haque, Highly selective and sensitive response of polypyrrole-MnO2 based composites towards ammonia gas, Polymer composites, 40 (2019) 1676-1683 146 H T Giang, Nghiên cứu chế tạo cảm biến khí monoxit cacbon hydrocacbon sở vật liệu perovskite ABO3, Luan an tien si, (2013) 147 H T Hien, C Van Tuan, D T Anh Thu, P Q Ngan, G H Thai, S C Doanh, H T Giang, N D Van and T Trung, Influence of surface morphology and doping of PPy film simultaneously polymerized by vapour phase oxidation on gas sensing, Synthetic Metals, 250 (2019) 35-41 120 148 Z Parsaee, Synthesis of novel amperometric urea-sensor using hybrid synthesized NiO-NPs/GO modified GCE in aqueous solution of cetrimonium bromide, Ultrason Sonochem, 44 (2018) 120-128 149 K Mahendraprabhu and P Elumalai, Influence of citric acid on formation of Ni/NiO nanocomposite by sol–gel synthesis, Journal of Sol-Gel Science and Technology, 73 (2015) 428-433 150 P Singh and S K Shukla, A structurally aligned nickel oxide encapsulated polypyrrole nanocomposite for hydrogen peroxide sensing, Dalton Trans, 49 (2020) 8744-8754 151 N Mironova-Ulmane, A Kuzmin, I Steins, J Grabis, I Sildos and M Pärs, Raman scattering in nanosized nickel oxide NiO, Journal of Physics: Conference Series, 93 (2007) 012039-012044 152 T P Mokoena, H C Swart and D E Motaung, A review on recent progress of p-type nickel oxide based gas sensors: Future perspectives, Journal of Alloys and Compounds, 805 (2019) 267-294 153 S G Bachhav and D R Patil, Study of Polypyrrole-Coated MWCNT Nanocomposites for Ammonia Sensing at Room Temperature, Journal of Materials Science and Chemical Engineering, 03 (2015) 30-44 154 P Patil, G Gaikwad, D R Patil and J Naik, Gas Sensitivity Study of Polypyrrole Decorated Graphene Oxide Thick Film, Journal of The Institution of Engineers (India): Series D, 97 (2016) 47-53 155 J Zhang, X Liu, S Wu, x Hongyan and B Cao, One-pot fabrication of uniform polypyrrole/Au nanocomposites and investigation for gas sensing, Sensors and Actuators B: Chemical, 186 (2013) 695-700 156 Y Li, M Jiao and M Yang, In-situ grown nanostructured ZnO via a green approach and gas sensing properties of polypyrrole/ZnO nanohybrids, Sensors and Actuators B: Chemical, 238 (2017) 596-604 157 H Tai, Y Jiang, G Xie, J Yu and M Zhao, Self-assembly of TiO2/polypyrrole nanocomposite ultrathin films and application for an NH3 gas sensor, International Journal Chemistry, 87 (2007) 539-551 121 of Environmental Analytical 158 Y Wu, S Xing and J Fu, Examining the Use of TiO2 to Enhance the NH3 Sensitivity of Polypyrrole Films, Journal of Applied Polymer Science - J APPL POLYM SCI, 118 (2010) 159 T A Ho, T.-S Jun and Y S Kim, Material and NH3-sensing properties of polypyrrole-coated tungsten oxide nanofibers, Sensors and Actuators B: Chemical, 185 (2013) 523-529 160 H A Khorami, A Eghbali, M Keyanpour-Rad, M R Vaezi and M Kazemzad, Ammonia sensing properties of (SnO2–ZnO)/polypyrrole coaxial nanocables, Journal of Materials Science, 49 (2014) 685-690 161 K Kaneto, Y Kohno and K Yoshino, Polythiophene, Electrochemical Doping and Photoexcitation, Molecular Crystals and Liquid Crystals, 118 (1985) 217-220 162 G Tourillon and F Garnier, Morphology and Crystallographic Structure of Polythiophene and Derivatives, Molecular Crystals and Liquid Crystals, 118 (1985) 221-226 163 T C Chung, J H Kaufman, A J Heeger and F Wudl, Charge Storage In Doped Poly(Thiophene): In-Situ Opto-Electrochemical Spectroscopy, Molecular Crystals and Liquid Crystals, 118 (1985) 205-215 164 N Barsan, D Koziej and U Weimar, Metal oxide-based gas sensor research: How to?, Sensors and Actuators B, 121 (2007) 18-35 122 ...BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CƠNG NGHỆ HỒNG THỊ HIẾN NGHIÊN CỨU CHẾ TẠO VẬT LIỆU LAI GIỮA POLYPYROL VÀ NiO CẤU TRÚC NANO CHO... phần vật liệu Hơn nữa, chế hình thành vật liệu lai hóa, chế nhạy khí vật liệu lai hóa, hay chứng thành lai hóa vơ – hữu thực chƣa rõ ràng cần đƣợc làm sáng tỏ Vì vậy, ngồi việc nghiên cứu tìm vật. .. vị nghiên cứu nƣớc Trên sở này, luận án chọn đề tài với tên ? ?Nghiên cứu chế tạo vật liệu lai polypyrol NiO cấu trúc nano cho nhạy khí NH3‖ Trong ý tƣởng kết hợp PPy (nhạy tốt với khí NH3) với NiO

Ngày đăng: 10/06/2021, 09:57

Tài liệu cùng người dùng

Tài liệu liên quan