1. Trang chủ
  2. » Giáo Dục - Đào Tạo

TONG CUA HAI VECTOHH 10 NC

26 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 2,26 MB

Nội dung

Vectơ là một đoạn thẳng trong đó đã chỉ rõ điểm mút nào là điểm đầu, điểm mút nào là điểm cuối.. Hiểu và xác định được tổng của hai hay nhiều vectơ. Nhớ và biết vận dụng qui tắc ba điểm[r]

(1)

GV LÊ THỊ NGA TỔ TOÁN – TIN

(2)

BÀI GIẢNG

(3)

KIỂM TRA BÀI CŨ Câu hỏi 1: Vectơ gì?

Câu hỏi 2: Hai vectơ khi:

Câu hỏi 3: Cho điểm O Qua O dựng vectơ

a

a

A. Cùng phương độ dài

C. Cùng phương hướng

B. Cùng hướng độ dài

A. Khơng có

B. Vơ số D. Duy

C. Hai

(4)

MỤC TIÊU:

Hiểu xác định tổng hai hay nhiều vectơ. Nhớ biết vận dụng qui tắc ba điểm, qui tắc hình bình hành.

Nhớ tính chất phép cộng vectơ, vận dụng được tính tốn.

Nhớ vận dụng biểu thức vectơ gắn với trung điểm đoạn thẳng, trọng tâm tam giác.

(5)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ

1 Định nghĩa tổng hai vectơ

M

M’

Ta thấy: MM  'AA'

(I)

A’

(6)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 1 Định nghĩa tổng hai vectơ

A

C

B

(I) (III)

(II)

*Xét chuyển động vật thể

Vectơ tổng củaAC hai vectơ vàABBC

Hãy mô tả chuyển động vật theo hình vẽ? Vật tịnh

tiến lần từ vị trí (I) đến vị trí (III) hay

(7)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 1 Định nghĩa tổng hai vectơ

ĐN: Cho hai vectơ .ab

a

b

Lấy điểm A xác định

các điểm B C cho: AB a , BC b

  

a

b

A

B

C

a b

 

Khi vectơ tổng

của hai vectơ

AC

ab

Kí hiệu: hayAC a b 

 

AC AB BC 

  

(8)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 1 Định nghĩa tổng hai vectơ

Kết phép cộng hai vectơ gì?

Kết phép cộng hai vectơ vectơ Nêu cách dựng tổng hai vectơ?

Để dựng tổng hai vectơ ta qui dựng hai vectơ “ liên tiếp’’

a

b

A

a

b

B

C

a b

(9)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 1 Định nghĩa tổng hai vectơ

VD1:

Giải:

D

E

Để xác định vectơ tổng làm nào?

,

) )

a AB CB b AC BC   



Cho tam giác ABC Hãy xác định vectơ tổng sau

Ta dựng BD CB

A

B C

)

a AB CB  

AB CB AB BD AD   

                                                         Khi đó: )

b AC BC

 

Ta dựng CE BC 

AC BC AC CE AE   

    

(10)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 1 Định nghĩa tổng hai vectơ

VD2:

Giải:

,

) )

a AB CB b AC BC   



Vẽ hình bình hành ABCD với tâm O ( O giao điểm hai đường chéo) Hãy viết dạng tổng hai vectơ mà điểm mút chúng lấy từ năm điểm A, B, C, D, O

AC



B

O A

C

(11)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 1 Định nghĩa tổng hai vectơ

VD2:

Giải:

,

) )

a AB CB b AC BC 

   

Vẽ hình bình hành ABCD với tâm O ( O giao điểm hai đường chéo) Hãy viết dạng tổng hai

vectơ mà điểm mút chúng lấy từ năm điểm

A, B, C, D, O

AC

B

C BC

A A

  

Ta có:

AC ADDC

  

AC AOOC

  

A

A

AC AC

   B O A C D abAB AD     a b     AD AB     b a     AC    

Ta thấy: a b

  b a     0 a a       aAC ACCC

  

0 AC

 

(12)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 1 Định nghĩa tổng hai vectơ

Kiểm tra xem phép cộng vectơ có tính chất kết hợp khơng?

a b   

O C

B A

acb

O C

B A

acb

?

OB

(a b c  )

 

OB BC OC 

   b c 

 

?AC

( )

a b c   

 

OA AC OC 

  

(a b c  )

 

Như vậy: a b c  ( )

(13)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 2 Các tính chất phép cộng vectơ

1) Tính chất giao hoán: a b b a   , a b,

  

  

2) Tính chất vectơ-khơng: a o a a     ,

3) Tính chất kết hợp: (a b c a b c    ) ( ), a b c, ,

  

(14)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 3 Các qui tắc cần nhớ

QUY TẮC BA ĐIỂM M

P N

Với ba điểm M, N, P

ta có MN NP MP   

Cho ba

điểm M, N, P

Hãy trả lời nhanh?

PM MN 

 

?

NP



NP PM 

  ? ? PM   ? NMPN

NM MP

                           

PN NP

(15)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 1 Định nghĩa tổng hai vectơ

VD2:

Giải:

,

) )

a AB CB b AC BC   



Vẽ hình bình hành ABCD với tâm O ( O giao điểm hai đường chéo) Hãy viết dạng tổng hai vectơ mà điểm mút chúng lấy từ năm điểm A, B, C, D, O

AC



Ta có: B

O A

C

D

a

b

ACABAD

 



b

Nêu đặc điểm các vectơ

trong tổng? ACABAD

 

(16)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 3 Các qui tắc cần nhớ

QUY TẮC BA ĐIỂM M

P N

Với ba điểm M, N, P

ta có MN NP MP   

O

A

C

B

Nếu OABC hình bình hành

ta có OA OC OB 

  

(17)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 3 Các qui tắc cần nhớ

QUY TẮC HÌNH BÌNH HÀNH

Nếu OABC hình bình hành

ta có OA OC OB 

  

O

A

C

B

Cho hình bình hành OABC

Hãy trả lời nhanh?

BA BC

 

CO CB 

 

AO AB 

 

BO

CAAC

(18)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 3 Các qui tắc cần nhớ

QUY TẮC HÌNH BÌNH HÀNH

Nếu OABC hình bình hành

ta có OA OC OB 

  

O

A

C

B

Chú ý:

1

F

F

F



Khi lực lớn nhất, nhỏ nhất?

F

Hãy cho biết trong trò chơi kéo co, vận động viên cần chú ý đến kĩ thuật nào?

(19)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ

3 Các qui tắc cần nhớ M

P N

Ta có: MN NP MP   

Hãy so sánh

MN NP

 

MN NP

 

MN NP

 

MP

MP

 MN NP MN NP  

 

Như vậy: a b a b a b   , ,

 

(20)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 3 Các qui tắc cần nhớ

BÀI TOÁN 1: Chứng minh với bốn điểm A, B, C, D,

ta có AC BD AD BC  

   

Giải:

Để chứng minh đẳng thức ta làm

như nào?

*Chứng minh cho VP = VT *Chứng minh cho VT = VP *Chứng minh cho hai vế biểu thức trung gian

(21)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 3 Các qui tắc cần nhớ

BÀI TOÁN 1: Chứng minh với bốn điểm A, B, C, D,

ta có AC BD AD BC  

   

Giải:

Dùng quy tắc ba điểm ta viết AC AD DC 

  

Do AC BD AD DC BD   

    

AD BD DC AD BC

  

 

 

 

*Cách khác: AD BC AD BD DC     

AD DC BD AC BD

  

 

 



(22)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 3 Các qui tắc cần nhớ

Giải:

BÀI TOÁN 2: Cho tam giác ABC có cạnh a

Tính độ dài vectơ tổng AB AC 

H

D

A

C B

Lấy điểm D cho ABDC hình bình hành

Theo quy tắc hbh ta có AB AC AD 

  

AB AC AD AD  

                                          Suy

Từ gt có ABDC hình thoi nên

2

2

a

ADAH  a

Nhận xét hai vectơ , từ đưa cách dựng vectơ tổng ; AB AC                            

AB AC

(23)

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ 3 Các qui tắc cần nhớ

Giải:

BÀI TOÁN 3:

a) Gọi M trung điểm đoạn thẳng AB CMR MA MB 0

  

b) Gọi G trọng tâm tam giác ABC CMR GA GB GC  0

   

M

B A

Khi đóa) Vì M trung điểm AB nên

AM MB

 

0

MA MB MA AM MM    

    

b)

C

G

Trọng tâm G nằm trung tuyến CM GC = 2GM

Muốn tìm tổng nhiều hai vectơ ta thực như nào?

Ta ghép cặp hai vectơ rồi sử dụng hai qui tắc để tìm tổng.

Ta có GA GB GC GA GB GC  (  )

     

Tìm tổng

GA GB

 

C’

Dựng hbh GAC’B, ta thấy G trung điểm CC’

( )

GA GB GC GA GB GC    

(24)

GHI NHỚ

BÀI GIẢNG: TỔNG CỦA HAI VECTƠ

Nếu M trung điểm đoạn thẳng AB MA MB  0

Nếu G trọng tâm tam giác ABC GA GB GC  0

(25)

CỦNG CỐ

*Định nghĩa tổng hai vectơ * Tính chất phép cộng vectơ

QUY TẮC BA ĐIỂM M

P N

Với ba điểm M, N, P

ta có MN NP MP   

O

A

C

B

Nếu OABC hình bình hành

ta có OA OC OB   

QUY TẮC HÌNH BÌNH HÀNH

Nếu M trung điểm đoạn thẳng AB MA MB 0

  

Nếu G trọng tâm tam giác ABC GA GB GC  0

(26)

CHÚC CÁC EM ĐẠT NHIỀU THÀNH CÔNG

Ngày đăng: 28/04/2021, 22:32

TỪ KHÓA LIÊN QUAN

w