1. Trang chủ
  2. » Cao đẳng - Đại học

Giáo án Giải tích 12 - Tiết 45: Bài tập phần nguyên hàm

2 7 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 107,85 KB

Nội dung

Vận dụng linh hoạt các phương pháp tìm nghàm = 2 phân số đối biến Vận dụng linh hoạt phương pháp đổi biến và phương pháp tích phân từng phần.. Bài tập về nhà: Các bài tập trong SBT.[r]

(1)Tuần: 17 Ngày soạn: Ngày dạy: Tiết: 45 BÀI TẬP PHẦN NGUYÊN HÀM I MỤC TIÊU: Về kiến thức: - Nắm khái niệm nguyên hàm số - Biết các tính chất nguyên hàm - Các phương pháp tính nguyên hàm Về kĩ năng: - Tìm nguyên hàm hàm số tương đối đơn giản dựa vào bảng nguyên hàm số hàm số thường gặp - Cách tìm nguyên hàm phần - Sử dụng phương pháp đổi biến số để tính nghàm Về tư và thái độ: - Thấy mối liên hệ nguyên hàm và đạo hàm - Rèn luyện tính cảm nhận, chính xác - Giáo dục tính khoa học và tư logic II CHUẨN BỊ: Giáo viên: Giáo án, sgk, thước thẳng Học sinh: Học thuộc bảng hàm & làm BTVN III PHƯƠNG PHÁP: Gợi mở, vấn đáp, giải vấn đề IV TIẾN TRÌNH: Ổn định lớp: Kiểm tra sĩ số Kiểm tra bài cũ: Nhắc lại phương pháp đổi biến dạng Bài Hoạt động giáo viên GV: Giới thiệu bài tập H: Hàm số dâu nguyên hàm cho dạng gì? H: Nhận xét hàm, cung, bậc? H: Đề xuất phương án biến đổi để đưa hs dễ tìm nguyên hàm? GV: Hướng dẫn: Biến đổi cùng hs lượng giác GV: Yêu cầu hs lên bảng tính GV: Nhận xét, đánh giá H: Hàm số dâu nguyên hàm cho dạng gì? H: Đề xuất phương án biến đổi để đưa hs dễ tìm nguyên hàm? GV: Hướng dẫn: Biến đổi hàm số dấu nguyên hàm dạng: Hoạt động Hs - Hàm số lương giác - Nhận xét HS: Trả lời theo suy nghĩ - Dùng công thức: sin x   cos x HS: Thực bài giải:  cos x I1   dx = cos x  cos2 x dx   dx = =tanx – x + C HS: Nhận xét - Hàm phân thức hữu tỷ Nội dung Bài Tính các nguyên hàm sau: a I1   tan xdx KQ: I1  tanx – x + C b I   dx (1  x)(1  x) KQ: 1 I  ln |1  x |  ln |1  x | C 3 Lop11.com (2) A B  x 1 1 2x A B  = = (1  x)(1  x) x  1  x 1/ /  1 x 1 2x GV: Yêu cầu hs lên bảng tính GV: Nhắc lại phương pháp đổi biến số Đạt t=1-x suy dx=? GV: Yêu cầu hs lên bảng tính? GV: Nhận xét, đánh giá H: Đặt t=x2+1 suy xdx=? GV: Yêu cầu hs lên bảng tính? GVHD: Đặt t=sinx GV: Yêu cầu hs lên bảng tính? H: Hàm số dâu nguyên hàm cho dạng gì? H: Dùng phương pháp nào để tính? H: Đặt u=? dv=? GVHD: Đặt:  u  ln x du  dx  x  dv  (4 x  3)dx v  x  x  GV: Yêu cầu hs lên bảng giải? HS: I = dx dx   1 x  1 2x = 1 ln |1  x |  ln |1  x | C 3 - dx=-dt HS: Thực bài giải: I1    t dt   t10  C 10 Vậy I1   (1  x)10  C 10 HS: Nhận xét HS: xdx  dt 2 - Đặt t=x +1 đó: 32 I   t dt  t C HS: Thực bài giải Đặt t=sinx đó dt I     t 3 dt    C t 2t - Dạng tích hàm đa thức và hàm mũ - Phương pháp phần u  x  - Đặt:   x dv  e dx du  2dx  x v  e Khi đó: I  (2 x  1)e x   2e x dx = (2 x  1)e x  2e x  C Bài Tính các nguyên hàm sau: a I1   (1  x)9 dx b I   x(1  x ) dx c I   cos xdx sin x Bài Tính các nguyên hàm sau: I   (2 x  1)e x dx KQ: I  (2 x  1)e x  2e x  C I   (4 x  3) ln xdx KQ: I  ln x.(2 x  x)  x  x  C HS: Thực bài giải Củng cố: - Nắm vững bảng nghàm Vận dụng linh hoạt các phương pháp tìm nghàm = phân số đối biến Vận dụng linh hoạt phương pháp đổi biến và phương pháp tích phân phần Bài tập nhà: Các bài tập SBT - Lop11.com (3)

Ngày đăng: 02/04/2021, 07:55

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w