1. Trang chủ
  2. » Công Nghệ Thông Tin

Sáng kiến kinh nghiệm Nâng cao chất lượng giảng dạy môn hình học lớp 7 thông qua rèn luyện kỹ năng vẽ hình và đo đạt

18 20 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 701,93 KB

Nội dung

Bài viết này hi vọng sẽ giúp đỡ các em, cũng như các bạn đồng nghiệp không cần sử dụng phương pháp đó vẫn có thể làm bài tập, không những chỉ làm với dạng bài tập đó mà còn mở rộng sang [r]

(1)Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.MATHVN.com Email: Loinguyen1310@gmail.com SỬ DỤNG PHƯƠNG TRÌNH TỔNG QUÁT CỦA MẶT PHẲNG ĐỂ VIẾT PHƯƠNG TRÌNH MẶT PHẲNG Gửi tặng: Mathvn.com Trong chương trình THPT viết phương trình tổng quát mặt phẳng chứa đường thẳng và thỏa mãn điều kiện cho trước, học sinh và đôi là giáo viên sử dụng phương pháp chùm mặt phẳng, phương pháp đó khá là ngắn gọn và hay dùng phương pháp đó với hình thức tham khảo, điều đó làm khó khăn cho học sinh quá trình làm bài tập, giáo viên quá trình giảng dạy Bài viết này hi vọng giúp đỡ các em, các bạn đồng nghiệp không cần sử dụng phương pháp đó có thể làm bài tập, không làm với dạng bài tập đó mà còn mở rộng sang các dạng khác Một số dạng cụ thể Dạng 1: Viết phương trình mặt phẳng qua điểm và thỏa mãn điều kiện cho trước Điều kiện cho trước là - Vuông góc với hai mặt phẳng cho trước - Song song với hai đường thẳng cho trước - Vuông góc với mặt phẳng và song song với đường thẳng cho trước… Dạng 2: Viết phương trình mặt phẳng qua hai điểm và thỏa mãn điều kiện cho trước Điều kiện cho trước là - Vuông góc với mặt phẳng cho trước - Song song với đường thẳng cho trước - Tạo với mặt phẳng góc cho trước… Dạng 3: Viết phương trình mặt phẳng chứa đường thẳng và thỏa mãn điều kiện cho trước - Đi qua điểm không thuộc đường thẳng đã cho - Song song với đường thẳng cho trước - Vuông góc với mặt phẳng cho trước - Tiếp xúc với mặt cầu cho trước - Tạo với đường thẳng hay mặt phẳng góc cho trước… Dạng 4: Viết phương trình mặt phẳng qua điểm phân biệt cho trước Dạng 5: Viết phương trình mặt phẳng chứa hai đường thẳng cắt song song với Phương pháp chung cho tất các dạng: Bước 1: Giả sử mặt phẳng cần tìm có dạng : Ax  By  Cz  D   A2  B  C     mặt phẳng có vtpt n   A; B; C  Bước 2: Từ điều kiện giả thiết dẫn tới hệ ba phương trình ẩn là A, B, C và D www.mathvn.com Lop12.net (2) Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com www.MATHVN.com DĐ: 01694 013 498 Bước 3: Từ phương trình ta rút C và D theo A và B từ đó dẫn tới hai dạng phương trình là TH 1:  A   B  , chọn A   , B    C , D  phương trình mặt phẳng cần tìm A  A TH 2:  A   AB   B            quay lại TH  phương trình mặt phẳng cần tìm B  B Để đơn giản, giải phương trình   ta có thể chọn luôn B    A2   A    2 B 0 Chú ý: - Đối với TH1 rơi vào trường hợp đặc biệt là  A   A  thì ta chọn B  (vì   ) và ngược lại - Thông thường để sử dụng phương pháp này thì phải có ba điều kiện thì tương đương với hệ bốn ẩn, ba phương trình và ta làm trên - Để giảm độ phức tạp ta dùng phương pháp “dồn ẩn” sau B C D B C D Giả sử A  đó ta chia hai vế cho A ta x  y  z   Đặt  b,  c,  d A A A A A A 2 Khi đó ta x  by  cz  d   b  c   , thì gặp ba điều kiện giả thiết ta ba phương trình ba ẩn, bấm máy tính là xong, nhiên chúng ta phải thử trước nhé, biết đâu A  thì sao? - Vì  A2  B  C   tức là ít ba hệ số A, B và C phải khác nên ta có thể tính A và D theo B và C A và C theo B và D A và B theo C và D B và C theo A và D điều này không ảnh hưởng gì tới kết bài toán - Ở đây Tôi dụng phương pháp tổng quát, còn các phương pháp khác hiệu (xem chuyên đề mặt phẳng – đường thẳng – mặt cầu Tôi), nhiên số trường hợp không dung phương pháp tổng quát (không tính phương pháp chùm) thì làm đây… Bài tập minh họa cho các dạng: Dạng 1: Viết phương trình mặt phẳng qua điểm và thỏa mãn điều kiện cho trước Bài 1: (SBT – Ban Cơ Bản T99) Trong không gian với hệ toạ độ Oxyz Viết phương trình mặt phẳng    qua điểm M  2; 1;  , song song với trục Oy và vuông góc với mặt phẳng   : x  y  z   Giải: Giả sử mặt phẳng    có dạng : Ax  By  Cz  D  A  B2  C  0 - Mặt phẳng    qua điểm M  2; 1;   A.2  B.(1)  C.2  D  1   - Mặt phẳng    song song với trục Oy  n j   A.0  B.1  C.0      - Mặt phẳng    vuông góc với mặt phẳng    n n   A.2  B  1  C.3  Giải hệ (1), (2) và (3)  A  3, B  0, C  2, D  2 Vậy mặt phẳng    có phương trình là : x – z –   3 Bài 2: (SBT – Ban Cơ Bản T98) Trong không gian Oxyz.Viết phương trình mặt phẳng   qua điểm M  3; 1; 5 đồng thời vuông góc với hai mặt phẳng    : 3x – y  z   và    : x – y  3z   Giải: Giả sử mặt phẳng   có dạng : Ax  By  Cz  D  A  B2  C  0 www.mathvn.com Lop12.net (3) Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com www.MATHVN.com DĐ: 01694 013 498 - Mặt phẳng   qua điểm M  3; 1; 5  A.3  B.(1)  C  5  D  1   - Mặt phẳng   vuông góc với mặt phẳng     n n   A.3  B  2   C.2      - Mặt phẳng   vuông góc với mặt phẳng     n n   A.5  B  4   C.3   3 21 A, D  B  A vào (3) ta A  B chọn 2 B  1, A   C  2, D  15 Từ (1) và (2) ta C  B  Vậy phương trình mặt phẳng   là x  y – z – 15  Bài 3: (ĐH – B 2006) Trong không gian với hệ toạ độ Oxyz, cho điểm A  0;1;  và hai đường thẳng x  1 t x y 1 z 1  d:   , d ' :  y  1  2t 1 z   t  Viết phương trình mặt phẳng   qua A đồng thời song song với d và d’ Giải: Giả sử mặt phẳng   có dạng : Ax  By  Cz  D  A  B2  C  0 - Mặt phẳng   qua điểm M  A.0  B.1  C.2  D  1   - Mặt phẳng   song song với đường thẳng d  n ud   A.2  B.1  C  1      - Mặt phẳng   song song với đường thẳng d’  n ud '   A.1  B  2   C.1   3 Từ (1) và (2) ta C  A  B, D  4 A  3B vào (3) ta A  3B chọn A  1, B   C  5, D  13 Vậy phương trình mặt phẳng   là x  y  z  13  Bài 4: Viết phương trình mặt phẳng  P  qua điểm M 1; 2;3  và tạo với mặt phẳng Ox, Oy các góc tương ứng là 450 , 300 Giải: Giả sử mặt phẳng   có dạng Ax  By  Cz  D  ( A2  B  C  0)    Gọi n  A; B; C  là vtpt mặt phẳng  P  Các vtcp trục Ox và Oy là i 1;0;0  và j  0;1;0  Theo giả thiết ta có hệ  A  sin 45  A2  B  C   A  B  A  B    2 B sin 300   A  B  C  C  B   A2  B  C 2  Chọn B  ta A   2, C  1 Vậy phương trình mặt phẳng  P  qua điểm M 1; 2;3  là  x  1   y     z  3  0;   x  1   y     z  3  www.mathvn.com Lop12.net (4) Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com www.MATHVN.com DĐ: 01694 013 498 Bài 5: Cho mặt phẳng  P  có phương trình x  y  z  và điểm M  2; 3;1 Viết phương trình mặt phẳng  Q  qua M vuông góc với mặt phẳng và tạo với mặt phẳng góc 450 Giải: Giả sử mặt phẳng   có dạng Ax  By  Cz  D  ( A2  B  C  0)  Gọi n  A; B; C  là vtpt mặt phẳng  Q  Theo giả thiết ta có hệ phương trình  A  B  2C     A Giải hệ trên ta n 1;1;0  , n  5; 3;4     2 2  A  B C Vậy phương trình mặt phẳng  Q  qua điểm M  2; 3;1 là x  y    x     y  3   z  1  x 1 y  z   và điểm 1 M  0; 2;  Viết phương trình mặt phẳng (P) qua điểm M song song với đường thẳng  đồng thời khoảng Bài 6: Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng  : cách đường thẳng  và mặt phẳng (P) Giải: Giả sử mặt phẳng  P  có dạng : ax  by  cz  d  a  b2  c   Phẳng phẳng  P  qua M  0; 2;0   d  2b suy  P  : ax  by  cz  2b   Đường thẳng  qua điểm A(1;3;0) và có vectơ phương u  (1;1; 4)   n.u  a  b  4c  (1)   / /( P)  Từ giả thiết ta có    | a  5b | 4 (2)  d ( A; ( P ))   2  a b c a c  2 2 Thế b   a  4c vào (2) ta có (a  5c)  (2a  17c  8ac)  a  2ac  8c     a  2  c a Với  chọn a  4, c  1 b  8 Phương trình mặt phẳng  P1  : x  y  z  16  c a Với  2 chọn a  2, c  1 b  Phương trình mặt phẳng  P2  : x  y  z   c Bài 7: Viết phương trình mặt phẳng (P) qua O, vuông góc với mặt phẳng  Q  : x  y  z  và cách điểm M 1; 2; 1 khoảng Giải: Phương trình mặt phẳng (P) qua O nên có dạng : Ax + By + Cz = với  A2  B  C   Vì (P)  (Q) nên A  1.B  1.C   A  B  C   C   A  B (1) A  2B  C Theo giả thiết d  M ;  P       ( A  B  C )  2( A2  B  C ) (2) 2 A  B C www.mathvn.com Lop12.net (5) www.MATHVN.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 Email: Loinguyen1310@gmail.com B  Thay (1) vào (2) , ta : AB  5B    B   8A  (1) TH 1: B   C   A Chọn A  1, C  1 thì  P1  : x  z  8A (1) Chọn A  5, B  1   C  thì  P2  : x  y  z  x y z 1 Bài 8: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng  :   và điểm M  0;3; 2  Viết 1 phương trình mặt phẳng (P) qua M, song song  và khoảng cách đường thẳng  và mặt phẳng (P) HD: Giả sử phương trình mặt phẳng (P) có dạng Ax  By  Cz  D   A2  B  C   TH 2: B =     3B  2C  D   B  2C  Từ giả thiết ta có hệ  A  B  4C    B  8C  C  D  3  A2  B  C TH 1: B  2C chọn C  1, B   A  2, D  8 TH 2: B  8C chọn C  1, B  8  A  4, D  26 ( d (;  P )  d ( M ,  P ) , với M(0; 0; 1)   ) Vậy có mp (P) thỏa mãn là: x  y  z –  0; x – y  z  26  Bài 9: Trong không gian tọa độ Oxyz cho mặt cầu  S  : x  y  z  x  y  z   , mặt phẳng (Q): 2x + y – 6z + = Viết phương trình mặt phẳng (P) Biết mặt phẳng (P) qua A(1;1;2), vuông góc với mặt phẳng (Q) và tiếp xúc với mặt cầu (S) Giải: Giả sử mặt phẳng  P  có dạng : ax  by  cz  d   a  b  c   Mặt phẳng (P) qua A(1;1;2)  a  x  1  b  y  1  c  z    Mặt cầu (S) có tâm I 1; 2;  bán kính R =  Mặt phẳng (Q) có VTPT nQ  (2;1; 6)  2a  b  6c   3b Ta có (P) vuông góc với (Q) và tiếp xúc (S) nên  2  2  a b c  a  2c   a  6c  b  b  2c  a  6c  b  a  6c  b      b  2c   b  5c 2 2  9b  4a  4b  4c b  3bc  10c   b  5c   a  11 c   (I) www.mathvn.com Lop12.net (6) Giáo viên: Nguyễn Thành Long www.MATHVN.com DĐ: 01694 013 498 Nếu c = thì a = b = (loại) suy c  TH 1: Chọn c   a  1, b    P1  : x  y  z   TH 2: Chọn c   a  Email: Loinguyen1310@gmail.com 11 11 , b  5   P2  :  x  1   y  1   z     11x  10 y  z   2 Chú ý: Nếu thay đổi giả thiết là (P) qua điểm M, song song với đường thẳng d và tiếp xúc với mặt cầu thì làm tương tự Bài 10: (ĐH – D 2010) Trong không gian toạ độ Oxyz, cho hai mặt phẳng  P  : x  y  z   và  Q  : x  y  z   Viết phương trình mặt phẳng  R  vuông góc với  P  và  Q  cho khoảng cách từ O đến  R  Giải: Giả sử mặt phẳng  R  có dạng : Ax  By  Cz  D   A2  B  C     - Mặt phẳng  R  vuông góc với mặt phẳng  P   nR nP   A.1  B.1  C.1  1   - Mặt phẳng  R  vuông góc với mặt phẳng  Q   nR nQ   A.1  B  1  C.1    - Khoảng cách d  0;  R     D   D   2  3 Cộng (1) và (2) ta A  C  , chọn A   C  1, B  kết hợp với (3) ta hai phương trình mặt phẳng cần tìm là  R1  : x  z  2  và  R2  : x  z  2  Dạng 2: Viết phương trình mặt phẳng qua hai điểm và thỏa mãn điều kiện cho trước Bài 11: (SGK – Ban Cơ Bản T80) Trong không gian với hệ toạ độ Oxyz Viết phương trình mặt phẳng   qua hai điểm M 1; 0;1 , N  5; 2;3 và vuông góc với mặt phẳng    : x – y  z –  Giải: Giả sử mặt phẳng   có dạng : Ax  By  Cz  D  A  B2  C  0 - Mặt phẳng   qua M 1;0;1  A.1  B.0  C  D  1 - Mặt phẳng   qua N  5; 2;3  A.5  B.2  C  D      - Mặt phẳng   vuông góc với mặt phẳng     n n   A.2  B  1  C.1   3 Từ (1) và (2) ta C  – A – B, D  A  B thể vào (3) ta –2 B  chọn A  1, B   C  2, D  Vậy phương trình mặt phẳng   là x – z 1  Bài 12: Trong không gian với hệ toạ độ Oxyz Viết phương trình mặt phẳng   qua hai điểm  x  1  t  M  2;1;3 , N 1; 2;1 và song song với đường thẳng d có phương trình là: d :  y  2t  z  3  2t  Giải: Giả sử mặt phẳng   có dạng : Ax  By  Cz  D  A  B2  C  0 www.mathvn.com Lop12.net (7) Giáo viên: Nguyễn Thành Long www.MATHVN.com DĐ: 01694 013 498 - Mặt phẳng   qua M  2;1;3   A.2  B.1  C  D  1 Email: Loinguyen1310@gmail.com - Mặt phẳng   qua N 1; 2;1  A.1  B  2   C.1  D      - Mặt phẳng   song song với đường thẳng d  n ud   A.1  B.2  C  2    3 Từ (1) và (2) ta C   A  B, D   A  B vào (3) ta A  5 B chọn 2 2 19 A  5, B  2  C  , D   2 19 Vậy phương trình mặt phẳng   là x  y  z    10 x  y  z  19  2 Bài 13: Trong không gian với hệ trục tọa độ Oxyz, cho các điểm M  1;1;  , N  0; 0; 2  và I 1;1;1 Viết phương trình mặt phẳng  P  qua hai điểm A và B, đồng thời khoảng cách từ I tới mặt phẳng  P  Giải: Giả sử mặt phẳng  P  có dạng : Ax  By  Cz  D  A  B2  C  0 - Mặt phẳng  P  qua M  1;1;   A  1  B.1  C  D  1 - Mặt phẳng  P  qua N  0; 0; 2   A.0  B.0  C  2   D    Từ (1) và (2) ta C   A  B, D  A  B Nên mặt phẳng  P  có phương trình là Ax  By   A  B z   A  B  Theo giả thiết A B d  I ;  P     A  B   A  B 1  A2  B    A  B   2    A2  AB  B   A A  1   B B A  1 chọn A  1, B  1  C  1, D    P  : x  y  z   B A TH 2:  chọn A  7, B   C  1, D    P  : x  y  z   B Bài 14: (ĐH – B 2009 ) Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD có các đỉnh A 1; 2;1 , B  2;1;3 , C  2; 1;1 và D  0;3;1 Viết phương trình mặt phẳng  P  qua A, B cho khoảng TH 1: cách từ C đến mặt phẳng  P  khoảng cách từ D đến mặt phẳng  P  Giải: Giả sử mặt phẳng  P  có dạng : ax  by  cz  d  a  b2  c   - Mặt phẳng  P  qua A 1; 2;1  a.1  b.2  c.1  d  1 - Mặt phẳng  P  qua B  2;1;3  a  2   b.1  c.3  d    Từ (1) và (2) ta c  a  b, d    a  b  2 www.mathvn.com Lop12.net (8) www.MATHVN.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 Email: Loinguyen1310@gmail.com  3 Nên mặt phẳng  P  có phương trình là ax  by   a  b  z   a  b    2 Theo giả thiết d C ,  P    d  D,  P    5 3 a.2  b  1   a  b   a  b  2 2  3 a  b   a  b  2  2a  4b  a  3b  a  b    2b  2   5 3 a.0  b.3   a  b   a  b  2 2  3 a  b   a  b  2 2 Với 2a  4b chọn a  4, b   c  7, d  15   P1  : x  y  z  15  5 , d     P2  : x  z     P2  : x  z   2 2 Bài 15: Trong không gian tọa độ Oxyz, lập phương trình mặt phẳng  P  qua hai điểm A  0; 1;  , Với 2b  chọn b  0, a   c  B 1; 0;3 và tiếp xúc với mặt cầu  S  có phương trình: ( x  1)  ( y  2)2  ( z  1)  Giải: Giả sử mặt phẳng  P  có dạng : ax  by  cz  d  a  b2  c   - Mặt phẳng  P  qua A 1; 2;1  a.0  b  1  c.2  d  1 - Mặt phẳng  P  qua B  2;1;3  a.1  b.0  c.3  d    Mặt cầu  S  có tâm I 1; 2; 1 và có bán kính R  a.1  b.2  c  1  d - Mặt phẳng (P) tiếp xúc với mặt cầu  d  I ,  P    R  a2  b2  c2   3 a  b  1 2 Từ (1) và (2) ta c  a  b, d  2a  3b thể vào (3) và rút gọn ta 3a  8b  11ab    a    b a TH 1:  1 Chọn a  1, b  1  c  0, d  1 , suy phương trình  P1  : x  y   b a TH 2:   Chọn a  8, b  3  c  5, d  , suy phương trình  P2  : x  y  z   b Bài 16: Trong không gian với hệ trục tọa độ Oxyz cho hai điểm M (0; 1; 2) và N (1;1;3) Viết phương trình mặt phẳng (P) qua M, N cho khoảng cách từ K  0; 0;  đến (P) đạt giá trị lớn Giải: Giả sử mặt phẳng  P  có dạng : Ax  By  Cz  D  A  B2  C  0 Phương trình mặt phẳng (P) qua M và N nên ta có www.mathvn.com Lop12.net (9) Giáo viên: Nguyễn Thành Long www.MATHVN.com DĐ: 01694 013 498  A.0  B  1  C.2  D  1   A  1  B.1  C.3  D    Từ (1) và (2) ta A   B  C  , D  B  2C Email: Loinguyen1310@gmail.com   P  :  B  C  x  By  Cz  B  2C  Khoảng cách từ K đến mp(P) là: d  K ,  P   B 2 B  2C  BC TH 1: Nếu B  thì d  K ,  P    (loại) TH 2: Nếu B  thì d  K ,  P    B B  2C  BC   C    1  B  Dấu “=” xảy B = – C Chọn C = và B = – Vậy phương trình mặt phẳng  P  : x  y – z   Chú ý: Cũng có thể dùng khảo sát hàm số tìm Max với TH Dạng 3: Viết phương trình mặt phẳng chứa đường thẳng và thỏa mãn điều kiện cho trước Chú ý: Đối với dạng này ngoài cách chọn hai điểm thuộc đường thẳng và thuộc mặt phẳng cần tìm ta phương trình (1) và (2) ta có thể chọn điểm và áp dụng điều kiện đường thẳng chứa mặt phẳng  nên n.u  từ đó ta phương trình (1) và (2) Bài 17: Trong không gian với hệ toạ độ Oxyz Viết phương trình mặt phẳng  P  qua giao tuyến hai mặt phẳng   : x – y  z –  và    : x  y  z –  đồng thời song song với mặt phẳng   : x  y  z –  Giải: Gọi  là giao tuyến   và      có phương trình x  y  z   : 3 x  y  z   Giả sử mặt phẳng  P  có dạng : Ax  By  Cz  D  A  B2  C  0 Chọn hai điểm M  7;0; 4  và M 1; 2;    - Mặt phẳng  P  qua M  7;0; 4   A.7  B.0  C  4   D  1 - Mặt phẳng  P  qua M 1; 2;   A.1  B  2   C.0  D    B  3A và D  B – A  B  3A   Nên mặt phẳng  P  có vtpt nP   A; B;    Từ (1) và (2) ta C  www.mathvn.com Lop12.net (10) Giáo viên: Nguyễn Thành Long www.MATHVN.com DĐ: 01694 013 498  Mặt phẳng    có vtpt n  1;1;  , mặt phẳng  P  song song với    Email: Loinguyen1310@gmail.com   A B B  3A   chọn A  1, B   C  2, D   n P và n cùng phương  1 2 Vậy mặt phẳng  P  có phương trình là x  y  z   Bài 18: (SBT – Ban Nâng Cao T125) Trong không gian với hệ toạ độ Oxyz Viết phương trình mặt phẳng  P  a Đi qua điểm M o  2;1; 1 và qua giao tuyến hai mặt phẳng  Q  và  R  có phương trình là: x – y  z –  và x – y  z –  b Qua giao tuyến hai mặt phẳng   : x – y  z –  và    : x  y –  đồng thời vuông góc với mặt phẳng    : x – z   Giải: a Gọi  là giao tuyến  Q  và  R    có phương trình x – y  z –  : 3 x – y  z –   11   11  Chọn hai điểm M   ;  ;0  và N   ; 0;    2  2   Giả sử mặt phẳng  P  có dạng : Ax  By  Cz  D   A2  B  C    11   3  11  - Mặt phẳng  P  qua M   ;  ;0   A     B.    C.0  D  1  2   2  2 11  11   3 - Mặt phẳng  P  qua N   ; 0;   A     B.0  C  D    2   2 - Mặt phẳng  P  qua M o  2;1; 1  A.2  B.1  C  1  D   3 Giải hệ (1), (2) và (3) ta A  15, B  7, C  7, D  16   P  : 15 x – y  z – 16  b Gọi  là giao tuyến   và      có phương trình 3 x  y  z   :  x  y   Chọn hai điểm M  5; 0; 13 và N 1;1;    Giả sử mặt phẳng  P  có dạng : Ax  By  Cz  D  A  B2  C  0 - Mặt phẳng  P  qua M  5; 0; 13  A.5  B.0  C  13  D  1 - Mặt phẳng  P  qua N 1;1;   A.1  B.1  C  D    4A  B và D   A  B 13  4A  B   Nên mặt phẳng  P  có vtpt nP   A; B;  13   Từ (1) và (2) ta C  www.mathvn.com 10 Lop12.net (11) Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com www.MATHVN.com DĐ: 01694 013 498  Mặt phẳng    có vtpt n   2;0; 1 , mặt phẳng  P  vuông góc với       4A  B   nP n  A.2  B.0     1   22 A   B chọn A  1, B  22  C  2, D  21  13  Vậy mặt phẳng  P  có phương trình là x – 22 y  z  21  Bài 19: (ĐH – A 2002) Trong không gian với hệ toạ độ vuông góc Oxyz cho hai đường thẳng x   t x  y  z    2 :  y   t 1 :  x  y  2z    z   2t  Viết phương trình mặt phẳng  P  chứa đường thẳng 1 và song song với đường thẳng  Giải:  8 Chọn hai điểm M  ; 0;  và N  0; 2;   1  3 Giả sử mặt phẳng  P  có dạng : Ax  By  Cz  D  A  B2  C  0  8 - Mặt phẳng  P  qua M  ; 0;   A  B.0  C  D  1 3  3 - Mặt phẳng  P  qua N  0; 2;   A.0  B  2   C.0  D    Từ (1) và (2) ta C   A  B và D  B    Nên mặt phẳng  P  có vtpt nP   A; B;  A  B     Đường thẳng  có vtcp u2  1;1;  , mặt phẳng  P  song song với đường thẳng       nP u2  A.1  B.1    A  B    5B  chọn A  1, B   C   , D    Vậy mặt phẳng  P  có phương trình là x – z   x  z  x 1 y z 1 Bài 20: Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d1 :   và 2 1 x y  z 1 d2 :   Viết phương trình mặt phẳng chứa d1 và hợp với d góc 300 1 Giải: Giả sử mặt phẳng  P  có dạng : Ax  By  Cz  D   A2  B  C     mặt phẳng  P  có vtpt nP   A; B; C  - Trên đường thẳng d1 lấy điểm M 1; 0; 1 , N  1;1;   AC  D  C  A  B Do  P  qua M , N nên:    A  B  D   D  A B Nên ( P) : Ax  By  (2 A  B) z  A  B  www.mathvn.com 11 Lop12.net (12) Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com www.MATHVN.com DĐ: 01694 013 498 A  1.B  1.(2 A  B) - Theo giả thiết ta có  sin 300  12  (1)2  12 A2  B  (2 A  B)  A  B  3(5 A2  AB  B )  21A2  36 AB  10 B  18  114 21 18  114 15  114  114 Vậy có mặt phẳng thỏa mãn: x y z  21 21 21 Bài 21: Trong không gian với hệ toạ độ Oxyz cho điểm A 1; 2;0  , B  0; 4;  , C  0; 0;3 Viết phương trình mặt Dễ thấy B  nên chọn B  , suy ra: A  phẳng  P  chứa OA, cho khoảng cách từ B đến  P  khoảng cách từ C đến  P  Giải: Giả sử mặt phẳng  P  có dạng : Ax  By  Cz  D  A  B2  C  0 - Vì  P  chứa OA suy  P  qua điểm O  0;0;  và A 1; 2;  D  D     A  2B   A  2 B Suy mp(P) có phương trình là:  Bx  By  Cz  - Theo giả thiết thì: 4B 3C B d  B,  P    d  C ,  P      B  3C  B  3C    2 2 C 5B  C 5B  C Chọn C = suy B =  Vậy có mp thoả mãn:  P1  : 6 x  y  z  ;  P2  : x  y  z  Bài 22: Trong không gian Oxyz, viết phương trình mặt phẳng (P) chứa đường x  y   thẳng d :  cho giao tuyến mặt phẳng (P) và mặt 2 x  z   cầu  S  : x  y  z  x  y  z   là đường tròn có bán kính r = Giải: Giả sử mặt phẳng  P  có dạng Ax  By  Cz  D  ( A2  B  C  0) - Chọn hai điểm M  2; 0; 2  , N  3;1;   d A B   A.2  B.0  C  2   D  C   - Mặt phẳng  P  chứa d nên M , N   P      A.3  B.1  C.0  D   D  3 A  B A B Suy mặt phẳng có phương trình là Ax  By  z  3A  B  2 2 - Mặt cầu  S  :  x  1   y  1   z  1  có tâm I  1;1; 1 và bán kính R  Mặt phẳng cắt mặt cầu theo đường tròn có bán kính r  www.mathvn.com 12 Lop12.net (13) www.MATHVN.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 A  1  B.1   d ( I ; P)  R2  r   A B  1  A  B  A B A2  B      Email: Loinguyen1310@gmail.com  A B 1 A  5B 2    17 A  10 AB  B    A2  5B  AB A    B 17 A TH 1:  Chọn A  B   C  1, D  4  ( P1 ) : x  y  z   B A TH 2:   Chọn A  7, B  17  C  5, D  5  ( P2 ) : x  17 y  z   B 17 Bài 23: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d có x 1 phương trình:  P  : x  y  z   và d :  y   z  Viết phương trình mặt phẳng (Q) chứa đường thẳng d và tạo với mặt phẳng (P) góc nhỏ Giải: Giả sử mặt phẳng  Q  có dạng Ax  By  Cz  D  ( A2  B  C  0) - Chọn hai điểm M  1; 1;3 , N 1;0;   d  A  1  B  1  C.3  D  C  1A  B - Mặt phẳng  Q  chứa d nên M , N   Q      A.1  B.0  C.4  D   D  A  4B  Suy mặt phẳng có phương trình là Ax  By   2 A  B  z  A  B  và có vtpt nQ   A; B; 2 A  B   - Mặt phẳng (P) có vtpt nP  1; 2; 1 Gọi  là góc hai mặt phẳng (P) và (Q) ta có cos   A B A2  B  AB TH 1: A  đó cos   TH 2: A  đó cos   Xét hai trường hợp B 6 2B2     1 B A Đặt x  B B  2   A  A B và f  x   cos  A x2  x    Xét hàm số f  x   , khảo sát hàm số này ta thấy Min f  x    cos        2x2  4x Vậy có TH thỏa mãn, tức là A  , chọn B   C  1, D    P  : y  z   Chú ý: Ta có thể xét trường hợp B  , B  A  B  , A  B  www.mathvn.com 13 Lop12.net (14) Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.MATHVN.com Email: Loinguyen1310@gmail.com x   t  Bài 24: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :  y  2  t  z  2t  Viết phương trình mặt phẳng  P  chứa đường thẳng d và tạo với trục Oy góc lớn Giải: - Giả sử mặt phẳng  P  có dạng Ax  By  Cz  D  ( A2  B  C  0) - Chọn hai điểm M 1; 2;  , N  0; 1;   d A B  A.1  B  2   C.0  D  C  - Mặt phẳng  P  chứa d nên M , N   P      A.0  B  1  C.2  D   D   A  B   A B A B Suy mặt phẳng có phương trình là Ax  By  z  A  B  và có vtpt nP   A; B;  2   Gọi  là góc hai mặt phẳng  P  và Oy ta có sin   B  2B A2  5B  AB  A B A2  B      TH 1: B   sin      00 A TH 2: B   sin   Đặt x  và f  x   sin  B A  A 5    B  B f  x  , khảo sát hàm số này ta Maxf  x    x  5x  x  Hiển nhiên trường hợp này   A Vậy TH thỏa mãn tức là  Chọn A  1, B   C  2, D    P  : x  y  z   B Chú ý: Có thể làm TH tam thức bậc hai sau sau 2 B   sin     x 2 24 A  24  A  5    5 x    B 5 B  Bài 25: (ĐH – A 2008) Trong không gian với toạ độ Oxyz, cho điểm A(2;5;3) và đường thẳng x 1 y z  d:   Viết phương trình mặt phẳng () chứa d cho khoảng cách từ A đến () lớn 2 Giải: Giả sử mặt phẳng  P  có dạng Ax  By  Cz  D  ( A2  B  C  0)   mặt phẳng  P  có vtpt nP   A; B; C  www.mathvn.com 14 Lop12.net (15) Giáo viên: Nguyễn Thành Long www.MATHVN.com DĐ: 01694 013 498  - Đường thẳng d qua điểm M 1; 2;  và có vtcp ud   2;1;  Email: Loinguyen1310@gmail.com - Vì  P  chứa d , nên nói riêng chứa điểm (1,0,2) có  M   P   A  2C  D  1   và nP ud   A  B  2C    2A  B  C   Từ (1) và (2) ta   D  A  B suy mặt phẳng  P  : Ax  By   A  B  z  A  B  TH 1: B  thì  P  : Ax  Az  A   x  z   (vì A  ) Khi đó d  A,  P     1  (loại) 12  12 TH 2: B  Chọn B  thì  P  : Ax  y   A  1 z  A   Khi đó d  A,  P    A  10  A   A  A2  A   A2  A    1  2 2A    2  1 0 A 1 Với A   , B   C   , D    P  : x  y  z   4 Bài 26: Trong không gian với hệ tọa độ Oxyz cho điểm A 10; 2; 1 và đường thẳng d có Vậy d  A,  P   Max  A   x   2t  phương trình  y  t Lập phương trình mặt phẳng (P) qua A, song song với d và khoảng cách từ d tới (P)  z   3t  là lớn Giải: - Giả sử mặt phẳng  P  có dạng Ax  By  Cz  D  ( A2  B  C  0)   mặt phẳng  P  có vtpt nP   A; B; C   - Đường thẳng d qua điểm M 1;0;1 và có vtcp ud   2;1;3 - Mặt phẳng qua điểm A 10; 2; 1  10 A  B  C  D  1   - Mặt phẳng (P) song song với đường thẳng d nên nP ud   A  B  3C    2A  B 32 A  B ,D  3 Vậy mặt phẳng (P) có phương trình Ax  3By   A  B  z  32 A  B  Từ (1) và (2) ta C   d  d ,  P   d  M ,  P   A.1  3B.0   A  B 1  32 A  B A2  B   A  B   33 A  B 13 A2  10 B  AB www.mathvn.com 15 Lop12.net (16) Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com www.MATHVN.com DĐ: 01694 013 498 Xét hai trường hợp B  B  ta phương trình  P  : x  y  z  77  …Bạn đọc tự giải Dạng 4: Viết phương trình mặt phẳng qua điểm cho trước Bài 27: (SGK – Ban Cơ Bản T80) Trong không gian với hệ toạ độ Oxyz Viết phương trình mặt phẳng   qua ba điểm M  3; 0;  ; N  0; 2;  và P  0; 0; 1 Giải: Giả sử mặt phẳng   có dạng Ax  By  Cz  D  ( A2  B  C  0) - Mặt phẳng   qua M  3; 0;   A  1  B.0  C.0  D  1 - Mặt phẳng   qua N  0; 2;   A.0  B  2   C.0  D  - Mặt phẳng   qua P  0; 0; 1  A.0  B.0  C  1  D  Giải hệ (1), (2) và (3) ta A = 2, B = 3, C = và D = Vậy mặt phẳng   có phương trình là x  y  z    2  3 Dạng 5: Viết phương trình mặt phẳng   chứa hai đường thẳng 1 và  cắt song song với Nhận xét: Thực chất đây là bài toán viết phương trình mặt phẳng qua ba điểm phân biệt đó lấy hai điểm thuộc đường thẳng này mà điểm thuộc đường thẳng (dạng 4) Bài 28: (ĐH – D 2005) Trong không gian với hệ toạ độ Oxyz cho hai đường thẳng x  y  z   x 1 y  z 1 d1 :   và d :  Chứng minh d1 và d2 song song với Viết phương trình 1  x  y  12  mặt phẳng   chứa hai đường thẳng d1 và d2 Giải: - Chứng minh d1 và d2 song song với ,ta có  d1 qua điểm M 1; 2; 1 và có vtcp u1 = (3;-1;2)   d2 có vtcp u = (3;-1;2) = u1 và M1  d2 d1 // d2 - Viết phương trình mặt phẳng   chứa d1 và d2 Chọn hai điểm N  3;5;  và Q 12; 0;10   d Mặt phẳng   chứa d1 // d2  mặt phẳng   qua ba điểm M, N và Q Giả sử mặt phẳng   có dạng Ax  By  Cz  D  ( A2  B  C  0) - Mặt phẳng   qua M 1; 2; 1  A.1  B  2   C  1  D  1 - Mặt phẳng   qua N  3;5;   A  3  B.5  C.0  D    - Mặt phẳng   qua Q 12; 0;10   A.12  B.0  C 10  D   3 Giải hệ (1), (2) và (3) ta A  15, B  11, C  17 và D  10 www.mathvn.com 16 Lop12.net (17) Giáo viên: Nguyễn Thành Long www.MATHVN.com DĐ: 01694 013 498 Vậy mặt phẳng   có phương trình là 15 x  11 y  17 z  10  Email: Loinguyen1310@gmail.com Bài tập áp dụng: Bài 1: a Trong không gian với hệ toạ độ Oxyz cho điểm M  3; 4;1 , N  2;3;  , E 1; 0;  Viết phương trình mặt phẳng   qua điểm E và vuông góc với MN (Đề thi tốt nghiệp BTTHPT lần năm 2007) b Viết phương trình mặt phẳng   qua K 1; 2;1 và vuông góc với đường  x  1  t  thẳng d :  y   2t  z  1  3t  Đs: a   : x  y  z   (Đề thi tốt nghiệp THPT lần năm 2007) b   : x  y  z   Bài 2: Trong không gian với hệ toạ độ Oxyz cho điểm M  1; 1;  và mặt phẳng (  P  có phương trình: x  y  z   Viết phương trình mặt phẳng   qua M và song song với  P  Đs:   : x  y  z   (Đề thi tốt nghiệp THPT hệ phân ban năm 2007) Bài 3: Viết phương trình mặt phẳng   qua điểm M  2;3;1 và vuông góc với hai mặt phẳng  P  : x  y  z   và  Q  : 3x  y  z   (Sách bài tập nâng cao hình học 12) Đs:   : 3x  y  z  19  Bài 4: Lập phương trình mặt phẳng  P  qua M  1; 1;3 , N 1;0;  và tạo với mặt phẳng  Q : x  y  z   Đs:  P  : y  z   góc nhỏ Bài 5: Viết phương trình mặt phẳng   qua hai điểm M 1; 2;3 , N  2; 2;  và song song với Oy (Tài liệu ôn thi tốt nghiệp năm 2009) Đs:   : x  z   Bài 6: Trong không gian với hệ toạ độ Oxyz cho mặt phẳng  P  : 2 x  y  z   Viết phương trình mặt phẳng (  ) qua A 1;1;  , B  1; 2;  và vuông góc với  P  (Tài liệu ôn thi tốt nghiệp năm 2009) Đs:   :11x  y  z  19  Bài 7: Trong không gian với hệ toạ độ Oxyz cho đường thẳng d có phương trình x  y 1 z 1   và mặt phẳng  P  : x  y  z   Viết phương trình mặt phẳng   chứa d và vuông góc với  P  (Đề thi tốt nghiệp THPT năm 2007) www.mathvn.com 17 Lop12.net (18) Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 Đs:   : x  z   www.MATHVN.com Bài 8: Viết phương trình mặt phẳng   chứa d :   Email: Loinguyen1310@gmail.com x 1 y 1 z    cho khoảng cách từ A  5;1;  đến lớn Đs:   : x  y  z   Bài 9: Trong các mặt phẳng qua điểm A  2; 1;  và song song với đường thẳng d : x 1 y  z 1   1 1 Viết phương trình mặt phẳng   tạo với mặt phẳng  xOy  góc nhỏ Đs:   : x  y  z   Bài 10: Trong các mặt phẳng qua A 1;1; 1 và vuông góc với mặt phẳng    : x  y  z   Viết phương trình mặt phẳng tạo với Oy góc lớn Đs:   : y  z  0;   : x  y  z   2 Bài 11: Trong các mặt phẳng qua các điểm A 1; 2; 1 , B  1;1;  , viết phương trình mặt phẳng   tạo với mặt  xOy  góc nhỏ Đs:   : x  y  z   Bài 12: Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d và d’ có phương trình : y2 x2 z 5 d:x  z và d ’ :  y 3 Viết phương trình mặt phẳng ( ) qua d và tạo với d’ góc 1 1 300 Đs: x  y  z   ; x  y  z   LỜI KẾT: Chuyên đề gồm 28 bài tập giải mẫu và 12 bài tập tự giải có đáp số chưa minh họa hết các dạng bài tập minh họa cách tối ưu phương pháp dùng PTTQ mặt phẳng Tôi không có tư tưởng nhà viết sách hay gì cả, tôi viết lên dòng suy nghĩ và mạch cảm xúc mình và mong các em học tốt hơn, tôi mong đó đọc tài liệu này và sử dụng nó để giảng dạy… hãy nhớ tới tôi người bạn… Chào thân ái Mọi yêu cầu thắc mắc, bổ sung xin gửi theo địa Email: Loinguyen1310@gmail.com Hoặc địa chỉ: Nguyễn Thành Long: Số nhà 15 – Khu phố – Phường ngọc trạo – Thị xã bỉm sơn – TP Thanh hóa Tôi trả lời cho bạn Vẫn biết “ Biển học vô bờ “ đừng lo nhé, tôi luôn bên cạnh bạn, nào chúng ta hãy cùng nắm tay nhé các bạn www.mathvn.com 18 Lop12.net (19)

Ngày đăng: 01/04/2021, 08:54

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w