1. Trang chủ
  2. » Đề thi

TỔ 9 đề 18 CHUYÊN NGOẠI NGỮ HN 2019 bản nộp

14 16 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 1,47 MB

Nội dung

Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề 18 Trường THPTCNN HN Lần I Năm 2019 ĐỀ 18 TRƯỜNG THPT CHUYÊN NGOẠI NGỮ HN LẦN I NĂM 2019 MƠN TỐN TIME: 90 PHÚT Câu [2D3-3.1-1] Tính diện tích S hình phẳng giới hạn đồ thị hàm số y  x  x  đường thẳng y  x  A S 32 B 49 S C S 22 D 11 S Câu [2D3-3.1-1] Cho hình phẳng D giới hạn đồ thị ( P) : y  x  x trục Ox Tính thể tích khối trịn xoay sinh cho hình D quay quanh trục Ox 64 9 81 81 V V  V V 15 10 A B C D Câu [2D4-1.1-2] Cho số phức z thõa z.z  A B e2 I Câu [2D3-2.2-2] Tính A Câu I Tính tổng phần thực phần ảo z C 1 D  ln x dx x � 22 z 1  B I 2 C I 32 D I 32 z  3i   z [2D4-3.2-1] Cho số phức z thỏa mãn Tìm giá trị nhỏ A B C D  Câu [2D4-1.2-3] Cho tích phân A I  �tdt , đặt t   cos x ta có B e Câu I � sin x  cos xdx [2D3-2.3-2] Cho x ln xdx  � A a  b  30 I  �tdt C I  2.�tdt I D �tdt 4e a  b , với a, b số nguyên Khi đẳng thức đúng? B a  b  7 C ab  120 D a  b  10  x cos xdx   b � a , a ��, b �� Tìm khẳng định đúng? ab   B ab  2 C D ab  Câu [2D3-2.3-2] Cho ab  A Câu [2D3-2.2-2] Cho với a, b �� Tìm khẳng định Đúng Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề 18 Trường THPTCNN HN Lần I Năm 2019 A B C D Câu 10 [2D4-5.2-3] Trong số phức thỏa mãn Tìm phần thực số phức cho nhỏ A B C D Câu 11 [2D3-3.1-1] Tính diện tích hình phẳng giới hạn đường y = ln x , trục hoành đường thẳng x = e B S = 3e A S = 2e - C S = e +1 D S = 3e + Câu 12 [2D4-1.1-2] Cho số phức z thỏa mãn điều kiện z + z = 12 + 4i Tính mô đun số phức z A B 13 C 11 D   i  z  2i   Tính tổng phần thực Câu 13 [2D4-2.3-2] Cho số phức z thỏa mãn điều kiện phần ảo số phức z A 2 B 1 C 3 D Câu 14 [2D3-3.3-2] Cho hình phẳng  H giới hạn đường y  x , y  2  x trục Ox Tính  H  quanh trục Ox thể tích V khối trịn xoay tạo thành quay hình 10 1864 3 V= V= V= 21 105 A B C V=2 D I �  x  1  x  x  1 Câu 15 [2D3-2.2-2] Tính tích phân 32018  32017  I I 2018 2017 A B C 2017 dx I 32017  2017 D I 32018  2018 Câu 16 [2D4-1.2-2] Trên mặt phẳng tọa độ Oxy , tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện z  i   z   2i A x  y   đường thẳng có phương trình: B x  y   C x  y   D x  y   Câu 17 [2D4-4.4-2] Gọi z1 , z2 hai nghiệm phức phương trình z  z  25  z1 w  z1  z nghiệm phức có phần ảo âm Tìm tọa độ điểm M biểu diễn số phức A M (8; 6) B M ( 8, 6) C M (6;8) D M ( 6; 8)  Câu 18 [2D3-2.1-2] Tính A I   12 I � sin xdx B I   12 C I   12 D I   12 x Câu 19 [2D3-3.3-2] Cho hình thang cong ( H ) giới hạn đường y  x e , y  , x  , x  Tính thể tích khối trịn xoay sinh cho hình ( H ) quay quanh trục Ox A  e B  e C 2 e Hãy tham gia STRONG TEAM TỐN VD-VDC- Group dành riêng cho GV-SV tốn! D 3 e Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề 18 Trường THPTCNN HN Lần I Năm 2019 Câu 20 [2D4-1.1-1] Cho số phức z  2(4  3i) Trong khẳng định đây, khẳng định sai? A Số phức z có phần thực , phần ảo 6i B Số phức z có phần thực , phần ảo 6 C Số liên hợp z z   6i D Môđun z 10 Câu 21 [2D3-1.1-1] Cho hàm số f  x liên tục � ;1 f  x  dx  � f  x  dx  � Tính tích phân f  x  dx � A f  x  dx  7 � B f  x  dx  � C f  x  dx  � D f  x  dx  3 �  Câu 22 [2D3-1.1-1] Cho hàm số f  x có f�  x f   1 liên tục � ; f�  x  dx  � Tính f  1 A f  1  B f  1  C f  1  4 D f  1  z z z  z2  z1  z2  Câu 23 [2D4-1.1-2] Cho hai số phức z1 , z2 thỏa mãn , Tính A Câu 24 [2D3-2.1-2] Cho tích phân: C B a dx  ln � x  x  12 b D , a , b số nguyên dương a b phân số tối giản Khẳng định sau SAI a b  2 a  b  11 A B C a  b  10 D a b 4 z  1  Câu 25 [2D4-1.1-3] Có số phức z thỏa mãn z   i số thực A B C D ………….Hết ………… Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề 18 Trường THPTCNN HN Lần I Năm 2019 ĐÁP ÁN CHI TIẾT Câu [2D3-3.1-1] Tính diện tích S hình phẳng giới hạn đồ thị hàm số y  x  x  đường thẳng y  x  A S 32 B S 49 C S 22 D S 11 Lời giải Tác giả:Cao Thị Nguyệt; Fb:Chuppachip Chọn A Xét phương trình hồnh độ giao điểm đồ thị hàm số y  x  x  đường thẳng y  x  là: x2 � x2  x   2x  � x   � � x  2 � S Khi Câu 2 �x  dx  2   x  dx  �4 x  x3 �2  163  316  32 � 2 � � �2 � [2D3-3.1-1] Cho hình phẳng D giới hạn đồ thị ( P) : y  x  x trục Ox Tính thể tích khối trịn xoay sinh cho hình D quay quanh trục Ox 64 9 81 81 V V  V V 15 10 A B C D Lời giải Tác giả:Cao Thị Nguyệt; Fb:Chuppachip Chọn D Xét phương trình x0 � 3x  x  � � x3 � Khi thể tích khối trịn xoay sinh cho hình D quay quanh trục Ox là: 3 V �  3x  x  dx   �  x  6x  x  dx � 3 x �3 81  � 3x  x  �  �0 10 � Câu z 1  [2D4-1.1-2] Cho số phức z thõa z.z  Tính tổng phần thực phần ảo z A B C 1 D Lời giải Tác giả: Trần Hương Trà; Fb:tranhuongtra Chọn C Gọi z  x  yi, (x, y �R) Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề 18 Trường THPTCNN HN Lần I Năm 2019 � � z.z  � x  y2  �x  1 � �� �� 2 z   � (x  1)  y  � �y  Ta có � Vậy x  y  1 e2 Câu  ln x I � dx x [2D3-2.2-2] Tính A I 22 B I 2 C I 32 D I 32 Lời giải Tác giả: Trần Hương Trà; Fb:tranhuongtra Chọn D Đặt t   ln x nên t    ln x � 2tdt  dx x Đổi cận: x  � t  1; x  e � t  e2 I Khi Câu  ln x dx  � x 3 2t dx  � 32 t  3 1  3   z  3i   z [2D4-3.2-1] Cho số phức z thỏa mãn Tìm giá trị nhỏ A B C D Lời giải Tác giả: Phú An; Fb: Phu An Chọn C Đặt z  x  yi  x; y �� z  3i   � x    y  3 i  �  x     y  3  Ta có Do tập hợp điểm R2 Từ hình vẽ suy M  x; y  I  4;3 biểu diễn số phức z nằm đường trịn tâm bán kình z  OM  OI  R   4   32   Hãy tham gia STRONG TEAM TỐN VD-VDC- Group dành riêng cho GV-SV tốn! Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề 18 Trường THPTCNN HN Lần I Năm 2019  Câu I � sin x  cos xdx [2D4-1.2-3] Cho tích phân A I  �tdt , đặt t   cos x ta có B I  �tdt 7 C Lời giải I  2.�tdt I D �tdt Tác giả: Phú An; Fb: Phu An Chọn C Đặt t   cos x (đổi cận: � dt   sin xdx Do 7  t :7 ) I   �tdt  �tdt e Câu x : � [2D3-2.3-2] Cho x ln xdx  � A a  b  30 4e a  b , với a, b số nguyên Khi đẳng thức đúng? B a  b C ab  120 D a  b  10 Lời giải Tác giả: Nguyễn Thị Thế; Fb:Nguyễn Thị Thế Chọn A e e e e 1 1 1 x dx= e5  x5  ln xd  x   x5 ln x  � x ln xdx  � � 51 x 5 51 Ta có: e 5 4e5  e  e   25 25 25 Suy ra: a  5, b  25 Vậy a  b  30  Câu [2D3-2.3-2] Cho ab  A  x cos xdx   b � a , a ��, b �� Tìm khẳng định đúng? ab   B ab  2 C D ab  Lời giải Tác giả: Nguyễn Thị Thế; Fb:Nguyễn Thị Thế Chọn B Ta có: Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC   Đề 18 Trường THPTCNN HN Lần I Năm 2019     1 1 x cos x dx  x d sin x  x sin x  sin x dx   cos x   1    � � � 2 2 2 0 0  �1� �  � � � Suy ra: a  8, b   Vậy ab  2 Câu [2D3-2.2-2] Cho với a, b �� Tìm khẳng định Đúng A B C D Lời giải Tác giả:Nguyễn Thị Thoa; Fb: Thoa Nguyễn Thị Chọn D Ta có Do Vậy: Câu 10 [2D4-5.2-3] Trong số phức thỏa mãn Tìm phần thực số phức cho nhỏ A B C D Lời giải Tác giả:Nguyễn Thị Thoa; Fb: Thoa Nguyễn Thị Chọn C Đặt z  x  yi  x, y �� Ta có Suy Vậy Câu 11 [2D3-3.1-1] Tính diện tích hình phẳng giới hạn đường y = ln x , trục hoành đường thẳng x = e A S = 2e - B S = 3e C S = e +1 D S = 3e + Lời giải Chọn C Xét phương trình ln x = 0,( x > 0) � x = Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề 18 Trường THPTCNN HN Lần I Năm 2019 Khi diện tích hình phẳng giới hạn đường y = ln x , trục hoành đường thẳng e2 x = e S =� ln xdx = e +1 Tác giả:Ngô Văn Toản; Fb: Câu 12 [2D4-1.1-2] Cho số phức z thỏa mãn điều kiện z + z = 12 + 4i Tính mơ đun số phức z A B 13 C 11 D Lời giải Tác giả:Ngô Văn Toản; Fb: Chọn B Giả sử z = a + bi,(a, b ��) Khi z + z = 12 + 4i � 3( a + bi ) + (a - bi ) = 12 + 4i � a =3 4a + 2bi =12 + 4i � � � � b = Vậy z = + 2i � z = 13 � Suy   i  z  2i   Tính tổng phần thực Câu 13 [2D4-2.3-2] Cho số phức z thỏa mãn điều kiện phần ảo số phức z A 2 B 1 C 3 D Lời giải Tác giả: Hiếu Lưu; Fb: Hiếu Lưu Chọn B Ta có   i  z  2i   � z  2i  3   i 1 i 2 3   1 Vậy tổng phần thực phần ảo số phức z 2 Câu 14 [2D3-3.3-2] Cho hình phẳng H giới hạn đường y  x , y  2  x trục Ox Tính  H  quanh trục Ox thể tích V khối trịn xoay tạo thành quay hình 10 1864 3 V= V= V= 21 105 A B C V=2 D Lời giải Tác giả: Hiếu Lưu; Fb: Hiếu Lưu Chọn A Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề 18 Trường THPTCNN HN Lần I Năm 2019 Phương trình hoành độ giao điểm đồ thị hàm số y  x y  2  x là: x3  2  x � x  1 3 Phương trình hồnh độ giao điểm đồ thị hàm số y  x trục Ox là: x  � x  Phương trình hồnh độ giao điểm đồ thị hàm số y  2  x trục Ox là: 2  x  � x  2  H  quanh trục Ox Vậy thể tích V khối trịn xoay tạo thành quay hình V= 1 � dx    2  x   02 � � � � 2 � x  � � 1 10  02 � d x  � 21 I �  x  1  x  x  1 Câu 15 [2D3-2.2-2] Tính tích phân 32018  32017  I I 2018 2017 A B 2017 dx 1 I 2017 C 2017 32018  I 2018 D Lời giải Tác giả:Vũ Kiều Oanh; Fb: Rio Vũ Vũ Chọn D � du   x  1 dx Đặt u  x  x  Đổi cận x u 1 Khi đó: I � u 2017du  u 2018 2018  32018  2018 Câu 16 [2D4-1.2-2] Trên mặt phẳng tọa độ Oxy , tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện z  i   z   2i A x  y   đường thẳng có phương trình: B x  y   C x  y   Hãy tham gia STRONG TEAM TỐN VD-VDC- Group dành riêng cho GV-SV tốn! D x  y   Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề 18 Trường THPTCNN HN Lần I Năm 2019 Lời giải Tác giả: Vũ Kiều Oanh; Fb: Rio Vũ Vũ Chọn A Gọi z  a  bi  a; b �� M  a; b  , điểm biểu diễn số phức z mặt phẳng tọa độ Ta có:  a  4 z  i   a  bi  i    a     b  1 i � z  i   z   2i  a  bi   2i   a  3   b   i � z   2i  Vì z  i   z   2i �  a  4   b  1  �  a     b  1   a  3   b   2 2  a  3 2   b  1  a  3   b  2 2   b  2 2 � a  8a  b  2b  17  a  6a  b  4b  13 � 2a  6b   � a  3b   � M  a; b  � d  : x  y   Vậy tập hợp điểm M biểu diễn số phức z mặt phẳng tọa độ có phương trình là: x  3y   Câu 17 [2D4-4.4-2] Gọi z1 , z2 hai nghiệm phức phương trình z  z  25  z1 w  z1  z nghiệm phức có phần ảo âm Tìm tọa độ điểm M biểu diễn số phức A M (8; 6) B M ( 8, 6) C M (6;8) D M ( 6; 8) Lời giải Tác giả: Phạm Thị Minh Thuận; Fb: Minh Thuận Chọn C z  3  4i � z  z  25  � � z  3  4i � Ta có Do z1 nghiệm phức có phần ảo âm nên z1  3  4i � � w  z1  z2  3  4i  (3  4i )  6  8i � M (6,8) � z2  3  4i �  Câu 18 [2D3-2.1-2] Tính A I   12 I � sin xdx B I   12 C I   12 D I   12 Lời giải Hãy tham gia STRONG TEAM TỐN VD-VDC- Group dành riêng cho GV-SV tốn! Trang 10 Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề 18 Trường THPTCNN HN Lần I Năm 2019 Tác giả:Phạm Thị Minh Thuận; Fb: Minh Thuận Chọn D       6  cos2x cos2x x 6 cos2x I � sin xdx  � dx  �dx  � dx   d (2 x ) 2 20 � 0 0   sin2x      12 12 x Câu 19 [2D3-3.3-2] Cho hình thang cong ( H ) giới hạn đường y  x e , y  , x  , x  Tính thể tích khối trịn xoay sinh cho hình ( H ) quay quanh trục Ox A  e C 2 e B  e D 3 e Lời giải Tác giả: Phan Trung Hiếu; Fb: Hieu Pt Chọn B 2 � 2x � V � x e dx   x.e x dx � � � � 1� � �du  dx u x �� � x x dv  e dx Cho� n v  e � � Đặt Khi   � 2 x � 2 V   �xe x  � e dx �  xe x  e x    2e  e  e  e    e 1 � � Câu 20 [2D4-1.1-1] Cho số phức z  2(4  3i) Trong khẳng định đây, khẳng định sai? A Số phức z có phần thực , phần ảo 6i B Số phức z có phần thực , phần ảo 6 C Số liên hợp z z   6i D Môđun z 10 Lời giải Tác giả: Phan Trung Hiếu; Fb: Hieu Pt Chọn A z  2(4  3i)   6i Do số phức z có phần thực , phần ảo 6 Vậy, khẳng định A sai Câu 21 [2D3-1.1-1] Cho hàm số f  x liên tục � f  x  dx  � f  x  dx  � ;1 Tính tích phân f  x  dx � Hãy tham gia STRONG TEAM TỐN VD-VDC- Group dành riêng cho GV-SV tốn! Trang 11 Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC A f  x  dx  7 � Đề 18 Trường THPTCNN HN Lần I Năm 2019 B f  x  dx  � C f  x  dx  � D f  x  dx  3 � Lời giải Tác giả:Vũ Kiều Oanh ; Fb: Rio Vũ Vũ Chọn D Ta có: 7 1 f  x  dx  � f  x  dx  � f  x  dx � 7 3 1 �� f  x  dx  � f  x  dx  � f  x  dx    3  Câu 22 [2D3-1.1-1] Cho hàm số f  x có f�  x f   1 liên tục � ; f�  x  dx  � Tính f  1 A f  1  B f  1  C f  1  4 D f  1  Lời giải Tác giả: Vũ Kiều Oanh ; Fb: Rio Vũ Vũ Chọn C  Ta có: f�  x  dx  f     f  1 �  � f  1  f     � f�  x  dx    4 z  z2  z1  z2  z z Câu 23 [2D4-1.1-2] Cho hai số phức z1 , z2 thỏa mãn , Tính A B C D Lời giải Tác giả: Hiếu Lưu; Fb: Hiếu Lưu Chọn C Giả sử z1  a  bi , z2  c  di với a, b, c, d số thực �z  � � a  b2  a  b2  � � � � � c2  d  � � c2  d  � z2  � � � � � 2 z1  z2  �  a  c    b  d   �2ca  2bd  3 � Theo đề ta có z1  z2   a  c    b  d   a  b  c  d  2ac  2bd  Ta có Vậy z1  z2  Hãy tham gia STRONG TEAM TỐN VD-VDC- Group dành riêng cho GV-SV tốn! Trang 12 Mã đề X Sản phẩm Group FB: STRONG TEAM TỐN VD VDC Câu 24 [2D3-2.1-2] Cho tích phân: Đề 18 Trường THPTCNN HN Lần I Năm 2019 a dx  ln � x  x  12 b , a , b số nguyên dương a b phân số tối giản Khẳng định sau SAI a b  2 A a  b  11 B C a  b  10 D a b 4 Lời giải Tác giả: Hiếu Lưu; Fb: Hiếu Lưu Chọn D 5 1 �1 � dx  �  dx  � � ln x   ln x  � �  ln � � � �x  x  � 7 Ta có x  x  12 Vì a dx  ln � x  x  12 b nên a  , b  a b 1 � � a b �  2 � � � a  b   10 � a  b  2  Suy � Vậy khẳng định a  b  11 sai z  1  Câu 25 [2D4-1.1-3] Có số phức z thỏa mãn z   i số thực A B C D Lời giải Tác giả:Vũ Kiều Oanh; Fb: Rio Vũ Vũ Chọn C Gọi z  a  bi  a; b �� Ta có: z   i  a  bi   i   a     b  1 i z   i số thực � b   � b  1 z   i  a  bi   i   a     b  1 i  a  � z 2i  � a 2  a2  a4 � � �� �� a   2 a0 � � z  4i � �� z  i � Vậy có số phức z thỏa mãn yêu cầu toán Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! Trang 13 Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề 18 Trường THPTCNN HN Lần I Năm 2019 Hãy tham gia STRONG TEAM TỐN VD-VDC- Group dành riêng cho GV-SV tốn! Trang 14 Mã đề X

Ngày đăng: 08/03/2021, 09:42

TỪ KHÓA LIÊN QUAN

w