1. Trang chủ
  2. » Vật lý

Toán học 10 - Bài 1: CUNG VÀ GÓC LƯỢNG GIÁC

23 13 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 1,19 MB

Nội dung

CUNG VÀ GÓC LƯỢNG GIÁC.. Giả sử ta gọi chiều ngược kim đồng hồ trên là chiều dương thì đường tròn này là đường tròn định hướng... Vậy đường tròn định hướng là đường tròn như thế nào??.[r]

(1)(2)

Chương 6:

GÓC LƯỢNG GIÁC VÀ

CÔNG THỨC LƯỢNG GIÁC

y

x o

M K

H

j

i

OM = (cos) i + (sin) j

M (cos; sin)

(3)

Giả sử ta gọi chiều ngược kim đồng hồ chiều dương đường trịn đường tròn định hướng

Vậy đường tròn định hướng đường tròn nào??

a) Là đường trịn ta chọn chiều chuyển động gọi chiều dương ,chiều ngược lại chiều âm

Quy ước:

Chiều (+): ngược chiều quay kim đồng hồ Chiều (-): chiều quay kim đồng hồ

A

+

-o

BÀI: CUNG VÀ GÓC LƯỢNG GIÁC

(4)

b) CUNG LƯỢNG GIÁC: Trên đường tròn định hướng cho điểm A,B Một điểm di động đường trịn ln theo chiều (âm dương)

VD 1: Hình ảnh bốn cung lượng giác có điểm đầu A điểm cuối B :

-Hình a: Điểm M di động từ A đến B theo chiều dương , dừng lại gặp B lần đầu -Hình b: Điểm M di động từ A đến B theo chiều dương , dừng lại gặp B lần thứ hai -Hình c: Điểm M di động từ A đến B theo chiều dương ,dừng lại gặp B lần thứ ba -Hình d: Điểm M di động từ A đến B theo chiều âm , dừng lại gặp B lần đầu

(5)

Với hai điểm A, B cho đường tròn định

hướng ta có vơ số cung lượng giác điểm đầu A, điểm cuối B

Mỗi cung kí hiệu: AB Chú ý:

KẾT LUẬN:

Trên đường tròn định hướng, lấy hai điểm A B :

 Ký hiệu AB cung hình học (cung lớn cung

bé) hoàn toàn xác định

 Ký hiệu AB cung lượng giác có điểm đầu A

,điểm cuối B

(6)

2 Góc lượng giác

C D

M O

-Trên đường tròn định hướng cho cung lượng giác CD

-Một điểm M chuyển động đường tròn từ

C đến D tạo nên cung CD nói

-Khi tia OM quay xung quanh gốc O từ vị trí

OC tới vị trí OD tạo góc lượng giác có tia đầu OC tia cuối OD Kí hiệu

(OC,OD)

BÀI: CUNG VÀ GÓC LƯỢNG GIÁC

(7)

3 Đường tròn lượng giác

Trong mp Oxy cho đường trịn định hướng tâm O bán kính R=1 Đường tròn cắt hai trục tọa độ điểm :

A(1;0) ; A’(-1;0) ; B(0;1) ; B’(0;-1).

Đường tròn xác định gọi đường tròn lượng giác (gốc A).

O

x y

A(1;0)

A’(-1;0)

B(0;1)

B’(0;-1) +

BÀI: CUNG VÀ GÓC LƯỢNG GIÁC

(8)

Xét tính sai mệnh đề sau :

a, Đường tròn định hướng có chiều dương chiều chiều quay kim đồng hồ

b, Với hai điểm A ,B trên đường trịn định hướng ta có hai cung lượng giác có điểm đầu A ,điểm cuối B

c, Ký hiệu (OC,OD) góc lượng giác có tia đầu tia

OD,tia cuối tia OC

d, Đường tròn lượng giác đường trịn định hướng có bán kính có tâm trùng với gốc tọa độ

A,Đúng B,Sai

A,Đúng

A,Đúng

A,Đúng B,Sai B,Sai B,Sai

(9)

o

10 R

Cung 10

a) Độ:

Đường trịn bán kính R có độ dài 2лR

và có số đo 3600.

Chia đường trịn thành 360 phần bằng nhau cung trịn có độ dài bằng:

R

360 =

лR

180

Và có số đo 10, góc tâm chắn cung có số đo 10.

Vậy cung trịn bán kính R có số đo a0 ( ≤ a ≤ 360) có độ dài:

лa

180 .R l =

II SỐ ĐO CỦA CUNG VÀ GÓC LƯỢNG GIÁC

1 ĐỘ VÀ RA ĐIAN

(10)

b) Rađian.

Định Nghĩa:

Cung tròn có độ dài bán kính gọi cung có số đo

rađian, gọi tắt cung rađian Góc tâm chắn cung rađian gọi góc có số đo rađian, gọi tắt góc rađian

1 rađian cịn viết tắt rad

O R

R

R 1rad

Số đo 1rad

BÀI: CUNG VÀ GÓC LƯỢNG GIÁC II SỐ ĐO CỦA CUNG VÀ GÓC LƯỢNG GIÁC

(11)

rad rad Ví dụ:

a) chuyển sang radian Ta có:

?

b) Chuyển sang độ Thực tương tự

BÀI: CUNG VÀ GÓC LƯỢNG GIÁC

1 180 o   180 o        135o

 180o

(12)

BÀI TẬP

1, Đổi số đo sau rad:

Giải :

2,Đổi số đo sau sang đơn vị độ :

(Nhóm 1)

(Nhóm 2)

( Nhóm 3)

( Nhóm 4 )

0

, 60 60

180

b   

0

,30 30

180

a   

0 a,30 c,135 b,60 d,180 e,  f,  g,  2 h,  c,135 135 180     d,180 180 180     0 180 e, 45 4            0

5 180

f, 150 6            0 180 g, 90 2            0

2 180

(13)

II SỐ ĐO CỦA CUNG VÀ GÓC LƯỢNG GIÁC:

c) Độ dài cung tròn:

Chúng ta biết nửa chu vi đường tròn

C R

Độ dài nửa cung tròn

Số đo theo đơn vị rad nửa cung tròn

Bán kính đường trịn

Vậy:

Cung có số đo rad đường trịn bán kính R có độ dài là:

BÀI: CUNG VÀ GÓC LƯỢNG GIÁC

.R

R

l   

(14)

II SỐ ĐO CỦA CUNG VÀ GÓC LƯỢNG GIÁC:

c) Độ dài cung tròn:

Ví dụ: Một đường trịn có bán kính 20 cm Tính độ dài cung đường trịn có số đo ,

- Độ dài cung có số đo l = .20  4,19

cm

-Độ dài cung có số đo 37o ( ) l = 20

 12,92 cm

BÀI: CUNG VÀ GÓC LƯỢNG GIÁC

15

 37o

15

15

37 180

 37

180

(15)

BT3 : Cho đường trịn có bán kính R=20 cm Hãy tính độ dài cung có số đo :

Giải

II SỐ ĐO CỦA CUNG VÀ GÓC LƯỢNG GIÁC:

0

) 15 )1,5 )37

a b c

) 20 4,19

15

a l   cm

0 37

)37 37

180 180

c     rad

37

.20 12,91 180

l    cm

) 1,5.20 30

(16)

2 Số đo cung lượng giác:

Ví dụ:

Khi M di động từ A từ A tới B tạo nên cung đường trịn ta nói cung có số đo

Sau điểm M thêm vịng Ta cung lượng giác AB

có số đo

Điểm M thêm vòng Ta cung lượng giác AB có số đo

II SỐ ĐO CỦA CUNG VÀ GÓC LƯỢNG GIÁC:

2

1.2

2.2

(17)

2 Số đo cung lượng giác:

Ví dụ:

Số đo cung AC

Sau điểm M thêm vòng Ta cung lượng giác AB

có số đo

Nhận xét:

Số đo cung lượng giác AM (A#M)

một số thực, âm hay dương

Kí hiệu số đo cung AM sđ AM

II SỐ ĐO CỦA CUNG VÀ GÓC LƯỢNG GIÁC:

4

 

3.2

(18)

2 Số đo cung lượng giác:

Vậy ta có số đo cung lượng giác AM sau:

Số đo cung lượng giác có điểm đầu

điểm cuối sai khác bội Ta viết: sđ

Trong số cung lượng giác tuỳ ý có

điểm đầu A điểm cuối M

Khi điểm cuối M trùng với A ta có: sđ Người ta viết số đo độ

Trong số cung lượng giác tuỳ ý có điểm đầu A điểm cuối M

II SỐ ĐO CỦA CUNG VÀ GÓC LƯỢNG GIÁC:

 ,

AM   kk

Ð

Z

2 ,

AA k  k

Ð

Z

0

360 , o

AMak k

Ð

Z

(19)

II SỐ ĐO CỦA CUNG VÀ GÓC LƯỢNG GIÁC:

3 Số đo góc lượng giác:

Ta định nghĩa:

Số đo góc lượng giác (OA,OC) số đo cung lượng giác AC tương ứng

Ví dụ:

Ta biết sđ AC =

Vậy số đo cung lượng giác (OA,OB)

Từ sau ta nói cung điều

cho góc ngược lại

5

2

  

 

5

(20)

II SỐ ĐO CỦA CUNG VÀ GÓC LƯỢNG GIÁC:

3 Biểu diễn cung lượng giác đường tròn lượng giác:

Chọn điểm gốc A(1,0) làm điểm đầu tất cung

Ví dụ: biểu diễn đường trịn lượng giác

cung lượng giác có số đo a) b) Giải

a) Ta có:

Vậy điểm cuối điểm M nằm cung nhỏ AB

25

 765o

25

3.2 4

 

 

25

(21)

II SỐ ĐO CỦA CUNG VÀ GÓC LƯỢNG GIÁC:

4 Biểu diễn cung lượng giác đường tròn lượng giác:

Chọn điểm gốc A(1,0) làm điểm đầu tất cung

Ví dụ: biểu diễn đường trịn lượng giác

cung lượng giác có số đo a) b) Giải

b) Ta có:

Vậy điểm cuối cung điểm N nằm cung nhỏ AD

765o 45o ( 2).360o

   

765o

25

 765o

(22)

II SỐ ĐO CỦA CUNG VÀ GÓC LƯỢNG GIÁC:

4 Biểu diễn cung lượng giác đường tròn lượng giác:

Chọn điểm gốc A(1,0) làm điểm đầu tất cung

Để biểu diễn cung lượng giác có số đo

đường tròn lượng giác ta cần chọn điểm cuối cung Điểm cuối M xác định hệ

thức sđ

Bài tập nhóm: đường trịn lượng giác biểu diễn cung có số đo: a) b)

AM 

Ð

5

(23)

BÀI: CUNG VÀ GÓC LƯỢNG GIÁC

CỦNG CỐ VÀ BTVN

+ Quan hệ độ radian; độ dài cung

+ Biểu diễn cung lượng giác đường tròn lượng giác.

Ngày đăng: 24/02/2021, 15:37

TỪ KHÓA LIÊN QUAN

w