Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 29 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
29
Dung lượng
1,02 MB
Nội dung
Chuyên đề: Phơng pháp tamgiácđồngdạng trong giải toán hình học phẳng Lớp 8 ------ Nhóm tác giả: Nguyễn Quốc Huy - Chủ biên Giang Ngọc Diệp Nguyễn Thị Nga Hà Thị Sáu Phan Hải Hà Phạm Thị Phơng Phạm Thị Nguyệt Cụm trờng thị trấn Diêm Điền Thái Thụy, Tháng 11 năm 2006 Cấu trúc chuyên đề: 1 I. Đặt vấn đề 1. Khái niệm chung về phương pháp tamgiácđồngdạng 2. Tóm tắt kiến thức liên quan 3. Các dạng toán cụ thể 4. Tiết dạy minh họa Dạng 1: Tính độ dài đoạn thẳng, tỷ số, diện tích Dạng 2: Chứng minh hệ thức Dạng 3: Chứng minh song song Dạng 4: Chứng minh đồngdạngDạng 5: Chứng minh đoạn thẳng bằng nhau, góc bằng nhau Dạng 6: Toán ứng dục thực tế Phần thứ nhất: Đặt vấn đề Trong chơng trình hình học phẳng THCS, đặc biệt là hình học 8, phơng pháp Tamgiácđồngdạng là một công cụ quan trọng nhằm giải quyết các bài toán hình học Phơng pháp Tamgiácđồngdạng là phơng pháp ứng dụng tính chất đồngdạng của tam giác, tỷ lệ các đoạn thẳng, trên cơ sở đó tìm ra hớng giải các dạng toán hình học. Trên thực tế, việc áp dụng phơng pháp Tamgiácđồngdạng trong giải toán có các thuận lợi và khó khăn chứng nh sau: * Thuận lợi: + Một là: Phơng pháp Tamgiácđồngdạng là công cụ chính giúp ta tính toán nhanh chóng các dạng toán đặc trng về tính tỷ lệ, chứng minh hệ thức, các bài tập ứng dụng các định lý sau Thales + Hai là: Với một số dạng toán quen thuộc nh chứng minh đoạn thẳng bằng nhau, góc bằng nhau, chứng minh song song, chứng minh thẳng hàng, phơng pháp Tamgiácđồngdạng có thể cho ta những cách giải quyết gọn gàng, ngắn hơn các phơng pháp truyền thống khác nhau sử dụng tính chất tam giác, tính chất tứ giác đặc biệt . + Ba là: Phơng pháp Tamgiácđồngdạng giúp rèn luyện tốt khả năng t duy logic của học sinh, rèn luyện tính sáng tạo, phát triển trí tuệ cho học sinh một cách hiệu quả. * Khó khăn: + Thứ nhất: Phơng pháp Tamgiácđồngdạng còn lạ lẫm với học sinh. Các em cha quen với việc sử dụng một phơng pháp mới để giải toán thay cho các cách chứng minh truyền thống, đặc biệt là với các học sinh lớp 8 mới. + Thứ hai: Việc sử dụng các tỷ số cạnh rất phức tạp dễ dẫn đến nhầm lẫn trong tính toán, biến đổi vòng quanh luẩn quẩn, không rút ra ngay đợc các tỷ số cần thiết, không có kỹ năng chọn cặp tamgiác cần thiết phục vụ cho hớng giải bài toán. Từ những nhận định trên, chuyênđề này giải quyết giúp cho giáo viên dạy lớp 8 và các em học sinh một số vấn đề cụ thể là : - Hệ thống lại các kiến thức thờng áp dụng trong phơng pháp. - Hệ thống các dạng toán hình học thờng áp dụng phơng pháp Tamgiácđồng dạng. - Định hớng giải quyết các dạng toán này bằng Phơng pháp Tamgiácđồngdạng - Hệ thống một số bài tập luyện tập. - Minh họa một số tiết dạy luyện tập. Trong chuyênđề này tập thể tác giả đã có rất nhiều cố gắng nhằm làm rõ thêm một số phơng pháp hình học đặc trng, tuy nhiên do hạn chế về kiến thức về thực tế giảng dạy chào chấn *** chuyênđề còn nhiều thiếu sót. Kính mong các thầy giáo, cô giáo có nhiều năm kinh nghiệm trong giảng dạy, các bạn đồng nghiệp tham gia góp ý bổ sung làm cho chuyênđề trở nên hoàn chỉnh hơn. Chúng tôi xin chân thành cảm ơn./. 2 B Phần II Kiến thức cơ bản ---- 1. Đinh lý Talet trong tam giác. Nếu một đờng thẳng song song với một cạnh của tamgiác và cắt hai cnahj còn lại thì nó định ra trên cạnh đó những đoạn thẳng tơng ứng tỷ lệ. MN // BC AM AN AB AC = AM AN MB NC = 2. Khái niệm tamgiácđồng dạng. Tamgiác ABC gọi là đồngdạng với tamgiác ABC nếu: + à à 'A A= ; à à à à ' ; 'B B C C= = ' ' ' ' ' 'A B B C A C AB BC AC = = 3. Các trờng hợp đồngdạng của tam giác: a) Trờng hợp thứ nhất (ccc): Nếu 3 cạnh của tamgiác này tỷ lệ với 3 cạnh của tamgiác kia thì 2 tamgiác đó đồng dạng. b) Trờng hợp thứ 2(cgc): Nếu 2 cạnh của tamgiác này tỷ lệ với 2 cạnh của tamgiác kia và 2 góc tạo bởi tạo các cặp cạnh đó bằng nhau thì hai tam đó giácđồng dạng. c) Trờng hợp thứ 3(gg): Nếu 2 góc của tamgiác này lần lợt bằng 2 góc của tamgiác kia thì hai tamgiác đó đồng dạng. d) Các trờng hợp đồngdạng của tamgiác vuông. + Tamgiác vuông này có một góc nhọn bằng góc nhọn của tamgiác vuông kia thì hai tamgiác đó đồng dạng. + Tamgiác vuông này có hai cạnh góc vuông tỷ lẹ với hai cạnh góc vuông của tamgiác vuông kia thì hai tamgiác đó đồng dạng. + Nếu cạnh huyền và một cạnh của tamgiác vuông này tỷ lệ với cạnh huyền và cạnh góc vuông của tamgiác vuông kia thì hai tamgiác đó đồng dạng. 3 A C M N Phần III Các dạng toán cụ thể ---- Dạng 1: Tính độ dài đoạn thẳng, tỷ số , diện tích Loại 1: Tính độ dài đoạn thẳng ----- + Ví dụ minh họa: Bài 36 79 SGK (có hình vẽ sẵn) ABCD là h.thang (AB // CD) A 12,5 B GT AB = 12,5cm; CD = 28,5cm ã DBA = ã DBC x KL x = ? D C Giải ABD và BDC có : ã DAB = ã DBC (gt) à 1 B = à 1 D ( so le trong do AB // CD) ABD P BDC (g.g) BD AB = DC BD hay x 5,12 = 5,28 x x 2 = 12,5 . 28,5 x = 5,28.5,12 18,9(cm) Bài 35 72 SBT: A ABC; AB = 12cm; AC = 15cm 10 8 GT BC = 18dm; AM = 10cm; AN = 8cm KL MN = ? M N B C Giải Xét ABC và ANM ta có : AC AM = 15 10 = 3 2 AB AN = 12 18 = 3 2 Mặt khác, có à A chung Vậy ABC P ANM (c.g.c) Từ đó ta có : AN AB = NM BC hay MN 18 18 12 = 12 18.8 = 12(cm) Bài tập 3: 4 AC AM = AB AN a) Tamgiác ABC có à B = 2 à C ; AB = 4cm; BC = 5cm. Tính độ dài AC? b) Tính độ dài các cạnh của ABC có à B = 2 à C biết rằng số đo các cạnh là 3 số tự nhiên liên tiếp. A Giải a) Trên tia đối của tia BA lấy BD = BC B ACD và ABC có à A chung; à C = à D = ACD P ABC (g.g) AB AC = AC AD AC 2 = AB. AD D C = 4 . 9 = 36 AC = 6(cm) b) Gọi số đo của cạnh BC, AC, AB lần lợt là a, b, c. Theo câu (a) ta có. AC 2 = AB. AD = AB(AB+BC) b 2 = c(c+a) = c 2 + ac (1) Ta có b > c (đối diện với góc lớn hơn) nên chỉ có 2 khả năng là: b = c + 1 hoặc b= c + 2 * Nếu b = c + 1 thì từ (1) (c + 1) 2 = c 2 + ac 2c + 1 = ac c(a-2) = 1 (loại) vì c= 1 ; a = 3; b = 2 không là các cạnh của 1 tamgiác * Nếu b = c + 2 thì từ (1) (c + 2) 2 = c 2 + ac 4c + 4 = ac c(a 4) = 4 Xét c = 1, 2, 4 chỉ có c = 4; a = 5; 5 = 6 thỏa mãn bài toán. Vậy AB = 4cm; BC = 5cm; AC = 6cm. Bài tập đề nghị: + Bài 1: Cho ABC vuông ở A, có AB = 24cm; AC = 18cm; đờng trung trực của BC cắt BC , BA, CA lần lợt ở M, E, D. Tính độ dài các đoạn BC, BE, CD. + Bài 2: Hình thoi BEDF nội tiếp ABC (E AB; D AC; F AC) a) Tính cạnh hình thoi biết AB = 4cm; BC = 6cm. Tổng quát với BC = a, BC = c. b) Chứng minh rằng BD < ca ac + 2 với AB = c; BC = a. c) Tính độ dài AB, BC biết AD = m; DC = n. Cạnh hình thoi bằng d. Loại 2: Tính góc Ví dụ minh họa: + Bài 1: Cho ABH vuông tại H có AB = 20cm; BH = 12cm. Trên tia đối của HB lấy điểm C sao cho AC = 3 5 AH. Tính ã BAC . A ABH; à H = 90 0 ; AB = 20cm 5 20 GT BH = 12cm; AC = 3 5 AH KL ã BAC = ? B 12 H C Giải: Ta có AH AC BH AB === 3 5 12 20 AH BH AC AB = Xét ABH và CAH có : ã AHB = ã CHA = 90 0 AH BH AC AB = (chứng minh trên) ABH P CAH (CH cạnh gv) ã CAH = ã ABH Lại có ã BAH + ã ABH = 90 0 nên ã BAH + ã CAH = 90 0 Do đó : BAC = 90 0 Bài 2: Cho hình thoi ABCD cạnh a, có A = 60 0 . Một đờng thẳng bất kỳ đi qua C cắt tia đối của các tia BA, DA tơng ứng ở M, N. Gọi K là giao điểm của BN và DM. Tính BKD? M Hình thoi ABCD; à A = 60 0 ; B GT BN DM tại K KL Tính ã BKD = ? K C A D Giải: N Do BC // AN (vì N AD) nên ta có : NC MC AB MB = (1) Do CD // AM (vì M AB) nên ta có : DN AD NC MC = (2) Từ (1) và (2) DN AD AB MB = ABD có AB = AD (đ/n hình thoi) và à A = 60 0 nên là đều AB = BD = DA Từ DN AD AB MB = (cm trên) DN BD BD MB = Mặt khác : ã MBD = ã DBN = 120 0 Xét 2MBD và BDN có : DN BD BD MB = ; ã MBD = ã DBN MBD P BDN (c.g.c) ả 1 M = à 1 B 6 MBD và KBD có ả 1 M = à 1 B ; ã BDM chung ã BKD = ã MBD = 120 0 Vậy ã BKD = 120 0 Bài tập đề nghị: ABC có AB: AC : CB = 2: 3: 5 và chu vi bằng 54cm; DEF có DE = 3cm; DF = 4,5cm; EF = 6cm a) Chứng minh AEF P ABC b) Biết A = 105 0 ; D = 45 0 . Tính các góc còn lại của mỗi Loại 3: Tính tỷ số đoạn thẳng, tỷ số chu vi, tỷ số diện tích Ví dụ minh họa: + Bài 1: Cho ABC, D là điểm trên cạnh AC sao cho ã ã BDC ABC= . Biết AD = 7cm; DC = 9cm. Tính tỷ số BA BD B ABC; D AC : ã ã BDC ABC= ; GT AD = 7cm; DC = 9cm KL Tính BA BD . C B A Giải: CAB và CDB có C chung ; ã ABC = ã BDC (gt) CAB P CDB (g.g) CB CA CD CB = do đó ta có : CB 2 = CA.CD Theo gt CD = 9cm; DA = 7cm nên CA = CD + DA = 9 + 7 = 16 (cm) Do đó CB 2 = 9.16 = 144 CB = 12(cm) Mặt khác lại có : 4 3 = BA DB + Bài 2: (Bài 29 74SGK) A A ABC và ABC: AB =6 ; 6 9 GT AC = 9; AC = 6; BC = 8 KL a) ABC P ABC B 12 C B 12 C b) Tính tỉ số chu vi của ABC và ABC Giải: a) ABC P ABC (c.c.c) Vì 3 2'''''' === BC CB AC CA AB BA b) ABC P A + B + C + (câu a) BC CB AC CA AB BA '''''' == = BCACAB CBCABA ++ ++ '''''' = 27 18 1296 864 = ++ ++ Vậy 27 18''' = ABCChuvi CBAChuvi 7 6 4 6 + Bài 3: Cho hình vuông ABCD, gọi E và F theo thứ tự là trung điểm của Ab, BC, CE cắt DF ở M. Tính tỷ số ABCD CMB S S ? D C Hình vuông ABCD; AE = EB ; M GT BF = CF; CE DF tại M F KL Tính ABCD CMB S S ? A E B Giải: Xét DCF và CBE có DC = BC (gt); à C = à B = 90 0 ; BE = CF DCF = CBE (c.g.c) à D 1 = à C 2 Mà à C 1 + à C 2 = 1v à C 1 + à D 1 = 1v CMD vuông ở M CMD P FCD (vì à D 1 = à C 2 ; à C = ả M ) FC CM FD DC = FCD CMD S S = 2 2 FD CD S CMD = 2 2 FD CD . S FCD Mà S FCD = 2 1 CF.CD = 2 1 . 2 1 BC.CD = 4 1 CD 2 Vậy S CMD = 2 2 FD CD . 4 1 CD 2 = 4 1 . 2 4 FD CD (*) áp dụng định lý pitago vào tamgiác vuông DFC, ta có: DF 2 = CD 2 + CF 2 = CD 2 + ( 2 1 BC) 2 = CD 2 + 4 1 CD 2 = 4 5 CD 2 Thay DF 2 = 4 5 CD 2 ta có : S CMD = 5 1 CD 2 = 5 1 S ABCD ABCD CMB S S = 5 1 Bài tập đề nghị: Cho ABC, D là trung điểm của BC, M là trung điểm của AD. a) BM cắt AC ở P, P là điểm đối xứng củ P qua M. Chứng minh rằng PA = PD. Tính tỷ số PC PA và AC AP b) Chứng minh AB cắt Q, chứng minh rằng PQ // BC. Tính tỷ số BC PQ và MB PM c) Chứng minh rằng diện tích 4 tamgiác BAM, BMD, CAM, CMD bằng nhau. Tính tỷ số diện tích MAP và ABC. Loại 4: Tính chu vi các hình + Bài 1(bài 33 72 SBT) ABC; O nằm trong ABC; GT P, Q, R là trung điểm của OA, OB, OC KL a) PQR P ABC 8 b) Tính chu vi PQR. Biết chu vi ABC 543cm Giải: a) PQ, QR và RP lần lợt là đờng trung bình của OAB , ACB và OCA. Do đó ta có : PQ = 2 1 AB; QR = 2 1 BC ; RP = 2 1 CA Từ đó ta có : 2 1 === CA RP BC QR AB PQ A PQR P ABC (c.c.c) với tỷ số đồngdạng K = 2 1 P b) Gọi P là chu vi của PQR ta có : O P là chu vi của PQR ta có : Q R 2 1' == K P P P = 2 1 P = 2 1 .543 = 271,5(cm) B C Vậy chu vi của PQR = 271,5(cm). + Bài 2: Cho ABC, D là một điểm trên cạnh AB, E là 1 điểm trên cạnh AC sao cho DE // BC. Xác định vị trí của điểm D sao cho chu vi ABE = 5 2 chu vi ABC. Tính chu vi của 2 tamgiác đó, biết tổng 2 chu vi = 63cm A ABC; DE//BC; C.viADE= 5 2 C.vi ABC GT C.vi ADE + C.viADE = 63cm D E KL Tính C.vi ABC và C.vi ADE B C Giải: Do DE // BC nên ADE PABC theo tỷ số đồng dạng. K = AB AD = 5 2 . Ta có . 5 2' = ABCChuvi ADEChuvi 25 ADEChuviABCChuvi = = 7 63 2% = + + ADEChuviABCChuvi = 9 Do đó: Chu vi ABC = 5.9 = 45 (cm) Chu vi ADE = 2.9 = 18 (cm) Bài tập đề nghị: + Bài 1: ABC P ABC theo tỷ số đồngdạng K = 5 2 . Tính chu vi của mỗi tam giác, biết hiệu chu vi của 2 tamgiasc đó là 51dm. 9 + Bài 2: Tính chu vi ABC vuông ở A biết rằng đờng cao ứng với cạnh huyền chia tamgiác thành 2 tamgiác có chu vi bằng 18cm và 24cm. Loại 5: Tính diện tích các hình + Bài 1(Bài 10 63 SGK): A ABC; đờng cao AH, d// BC, d cắt AB, AC, AH GT theo thứ tự tại B, C, H B H C KL a) BC CB AH AH ''' = b) Biết AH = 3 1 AH; S ABC = 67,5cm 2 B H C Tính S ABC Giải: a) Vì d // BC AH AH ' = BH HB '' = HC CH '' = HCBH CHHB + + '''' = BC CB '' (đpcm) b) Từ BC CB AH AH ''' = ( AH AH ' ) 2 = BCAH CBAH . '''. = ABC CAB S S 2 2 '' = ABC CAB S S '' Mà AH = 3 1 AH AH AH ' = 3 1 ( AH AH ' ) 2 = ( 3 1 ) 2 = 9 1 Vậy ABC CAB S S '' = 9 1 và S ABC = 67,5cm 2 Nên ta có : ABC CAB S S '' = 9 1 5,67 ''CAB S = 9 1 S ABC = 9 5,67 = 7,5(cm 2 ) + Bài 2(bài 50 75 SBT) ABC( à A = 90 0 ); AH BC GT BM = CM; BH = 4cm; CH = 9cm KL Tính S AMH Giải: A Xét 2 vuông HBA và vuông HAC có : ã BAH + ã HAC = 1v (1) ã HCA + ã HAC = 1v (2) Từ (1) và (2) ã BAH = ã HCA Vậy HBA P HAC (g.g) B 4 H M C HC HA HA HB = HA 2 = HB.HC = 4.9 = 36 9 HA = 6cm Lại có BC = BH + HC = 4cm + 9cm = 13cm S ABM = 2 1 S ABC = 2 1 . 2 13.6 = 19,5(cm 2 ) S AHM = S BAH = 19,5 - 2 1 .4.6 = 7,5(cm 2 ) 10 [...]... định nghĩa tam giácđồng dạng, các trờng hợp đồngdạng của tam giác, định lý Ta lét đảo, để giải quyết các bài toán về chứng minh quan hệ song song - Thông bao các bài tập khắc sâu các kiến thức về tam giácđồng dạng, định lý Ta lét đảo - Rèn kỹ năng t duy, suy luận lô gic, sáng tạo khi giải bài tập II Kiến thức áp dụng - Định nghĩa tamgiácđồngdạng - Các trờng hợp đồngdạng của tamgiác - Dấu... thẳng ở mẫu bằng nhau Dạng 6 : toán ứng dụng thực tế I Mục tiêu chung: - Học sinh biết vận dụng kiến thức về tamgiácđồngdạngđể xác định đợc các chiều cao, các khoảng cách mà không cần đo trực tiếp - Rèn kỹ năng nhận biết hình (đọc hình) kỹ năng vẽ hình, kỹ năng t duy và óc tởng tợng 23 III Các kiến thức áp dụng: - Các trờng hợp đồngdạng của tamgiác - Định nghĩa hai tamgiácđồngdạng * Ví dụ minh... bài của bạn GV đặt vấn đề: Nh các em đã biết các trờng 25 hợp = nhau của 2 tamgiác có rất nhiều ứng dụng trong giải toán Vậy các trờng hợp đồngdạng của 2 tamgiác có ứng dụng nh thế nào trong giải toán Chúng ta cùng nghiên cứu bài học hôm nay * Hoạt động 2: Tiết 27: Luyện tập - Dạng 1: Bài tập nhận biết và tính toán F Bài 43 (SGK T80) H A E K D B C a) Tìm các cặp tamgiácđồngdạng GV chỉ vào bài kiểm... diện tích của 2 đồngdạng luôn bằng bình phơng tỷ số đồngdạng Bài toán Cho ABC có AB = 15cm, AC = 20cm Lấy D AB; AD = 8cm; E AC; AE = 6cm Hỏi ABC và AED có đồngdạng không? Hình vẽ 28 Trả lời ? ABC và ADE có đồngdạng không? AB AC = Không đồngdạng vì *Hoạt động3:Củng cố và hớng dẫn về nhà AD AB GV yêu cầu HS nhắc lại phơng pháp giải một HS nhắc lại nội dung kiến thức cần ghi nhớ số dạng toán trong... OF TL: DC TL : EO DC = OF (1) DC H: OE; DC là cạnh của những tamgiác nào? (AEO; ADC, các tamgiác này đã đồngdạng cha? Vì dao? H: Đặt câu hỏi tơng tự cho OF , DC EO OF = DC DC EO AO OF BO TL: = ; = DC AC DC BD H: lập tỷ số bằng H: Vậy để chứng minh (1) ta cần chứng minh điều gì? TL: AO BO = AC BD H: Đây là tỷ số có đợc từ cặp tamgiácđồngdạng nào? TL: AOB; COD H: Hãy chứng minh điều đó Ví dụ 2:... sánh với các trờng hợp bằng nhau của hai tamgiác - Vận dụng các định lý đó để chơng trình các tam giácđồng dạng, để tính các đoạn thẳng hoặc chứng minh các tỷ lệ thức, đẳng thức trong các bài tập B Chuẩn bị: - Giáo viên: Máy chiếu, bảng phụ ghi câu hỏi, bài tập, thớc thẳng, compa, eke, phấn màu - Học sinh : Ôn các định lý về trờng hợp đồngdạng của hai tam giác, thớc kẻ, compe, eke C Tiến trình dạy... 7 = = =2 KF BF 3.5 ?Có nhận xét gì về tỷ số của 2 đờng cao tơng ứng của 2 đồngdạng GV: Ta sẽ chứng minh định lý này trong bài - Tỉ số 2 đờng cao tơng ứng của 2 đồngdạng bằng tỷ số đồngdạng sau ? Muốn tính độ dài đoạn thẳng, tỷ số 2 đoạn thẳng ta làm thế nào - Chứng minh 2 chứa các đoạn thẳng đó đồngdạng - Rút ra tỷ lệ thức Dạng 2; Chứng minh - Thay số rồi tính Bài 39 (SGK T79) H B A HS yêu cầu... FM = MN = NE Tóm lại: Tam giácđồngdạng có nhiều ứng dụng trong giải toán Khi ứng dụng để chứng minh đoạn thẳng bằng nhau, góc bằng nhau thì các phơng pháp thờng dùng ở đây là : * Đa 2 đoạn thẳng cần quy bằng nhau về là tử của 2 tỷ số có cùng mẫu * Chứng minh các đoạn thẳng cùng bằng một độ dài nào đó * Đa 2 góc cần chứng minh bằng nhau về là 2 góc tơng ứng của 2 tamgiácđồngdạng * Chứng minh 2 tỷ... BD; F là giao điểm của MB và AC Chứng minh rằng EF / / AB A B ABCD (AB // CD) DM = MC gt F MA DB = { E} KL E MB AC = { F } EF // AB D M C Định hớng giải: - Sử dụng trờng hợp đồngdạng của tamgiác - Định nghĩa hai tamgiácđồngdạng - Dấu hiệu nhận biết hai đờng thẳng song song (định lý Ta lét đảo) Sơ đồ phân tích: AB // CD (gt) AB // CD (gt) AB // DM AB // MC MED P AEB GT MFC P BFA ME EA = MD... ta các tamgiácđồngdạng và ta chứng minh đợc: MN DM = AB DA E PQ AB DM DA B A O M N P rồi chứng minh Q C D CQ CB CQ = (kéo dài AD cắt BC tại E CB = MN CQ = MN = PQ DA CB Ví dụ 3: Bài 32 T77 SGK ả Trên một cạnh của góc xoy ( xoy 1800), đặt các đoạn thẳng OA = 5cm, OB = 16cm Trên cạnh thứ nhất của góc đó, đặt các đoạn thẳng OC = 8cm, OD = 10cm a) Chứng minh hai tamgiác OCB và OAD đồngdạng b) . 2 góc của tam giác này lần lợt bằng 2 góc của tam giác kia thì hai tam giác đó đồng dạng. d) Các trờng hợp đồng dạng của tam giác vuông. + Tam giác vuông. trờng hợp đồng dạng của tam giác: a) Trờng hợp thứ nhất (ccc): Nếu 3 cạnh của tam giác này tỷ lệ với 3 cạnh của tam giác kia thì 2 tam giác đó đồng dạng. b)