Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 47 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
47
Dung lượng
679,05 KB
Nội dung
A MỞ ĐẦU Lý chọn đề tài Trong nhà trường phổ thơng, hình học mơn học khó học sinh, tính chặt chẽ, logic tính trừu tượng hình học cao mơn học khác Các phép biến hình sơ cấp phần quan trọng hình học cơng cụ hữu ích tốn hình học phẳng hình học khơng gian Phép quay phép biến hình sơ cấp vận dụng để giải tốn dựng hình, tốn chứng minh tính chất hình học, tốn tập hợp điểm, tốn tính tốn, … Tuy nhiên, việc vận dụng phép quay quanh điểm để giải tốn hình học khơng phải việc dễ dàng, thực tế phần khó giáo viên học sinh Trong khuôn khổ khóa luận tốt nghiệp, em xin trình bày kiến thức phép quay quanh điểm ứng dụng việc giải tốn hình học phẳng hình học khơng gian Nhiệm vụ nghiên cứu 1) Trình bày sở lý thuyết phép quay 2)Các ví dụ minh họa thể ứng dụng phép quay việc giải bốn lớp tập hình học: tốn chứng minh, tốn dựng hình, tốn tìm tập hợp điểm, tốn tính tốn Phương pháp nghiên cứu Nghiên cứu SGK, sách tham khảo, tạp chí Tốn học , giảng chun đề, giáo trình hình học, tài liệu liên quan tới nội dung nghiên cứu kiến thức thực hành B NỘI DUNG Chương I CÁC KIẾN THỨC CHUẨN BỊ ĐẠI CƯƠNG VỀ PHÉP BIẾN HÌNH TRONG MẶT PHẲNG 1.1 Khái niệm phép biến hình a) Cho hai tập hợp điểm T T ta gọi song ánh từ T vào T ,mọi phép tương ứng mà với điểm T gắn với điểm T , ký hiệu = Ánh xạ gọi song ánh T tồn T cho Như vậy, cho song ánh : T T vào T cho quy tắc để, với điểm T ta có điểm hồn tồn xác định T cho : (i) Nếu hai điểm phân biệt T hai điểm phân biệt T (Khi ta nói đơn ánh) (ii) Với T có điểm T cho (Khi ta nói toàn ánh) Điểm gọi ảnh, hay điểm tương ứng hình biến đổi của điểm qua ánh xạ Ngược lại, điểm gọi tạo ảnh điểm qua ánh xạ Nếu ta cịn nói ánh xạ (ở song ánh) biến điểm T thành điểm T b) Khi hai tập hợp điểm T T đồng nhất, có nghĩa trùng nhau, ký hiệu T T , ta nói phép biến hình T (hay từ T vào nó) Như vậy, ta định nghĩa phép biến hình đường thẳng, mặt phẳng hay không gian tùy theo T tập điểm đường thẳng mặt phẳng, hay T tập hợp tất điểm mặt phẳng hay T tập hợp tất điểm không gian Thậm chí, T tập hợp tất điểm hình H phận ( tập ) đường thẳng , hay phận mặt phẳng ( ), hay phận khơng gian Kí hiệu H , H hay H Ta có định nghĩa sau: Định nghĩa 1.1( Định nghĩa phép biến hình ) Một song ánh từ tập điểm đường thẳng hay mặt phẳng lên gọi phép biến hình đường thẳng hay mặt phẳng Như vậy, chẳng hạn cho phép biến hình mặt phẳng cho quy tắc để với điểm (P) ta tìm điểm M hoàn toàn xác định, thỏa mãn hai điều kiện sau đây: (i) Nếu thuộc (P), M N thuộc (P), (ii) tồn điểm cho Nếu H hình (P) ta xác định tập hợp điểm H H H H hình phẳng gọi ảnh hay hình biến đổi, hình tương ứng hình H qua phép biến hình ; ngược lại, hình H gọi tạo ảnh (hay hình nguyên hình H qua phép biến hình Chú thích 1.1 Phép biến hình định nghĩa cịn gọi cách xác phép biến hình điểm ( biến đổi điểm thành điểm) Hai phép biến hình điểm tương đương với điểm M T có ảnh T T suy , ta viết 1.2 Phép biến đổi – phéo biến đổi ngược Giả sử phép biến đổi biến điểm M thành M Đương nhiên có nhiều điểm có ảnh qua phép biến đổi Chẳng hạn, phép chiếu vng góc lên đường thẳng; hình chiếu đường thẳng d ngồi cịn có vơ số điểm khác có hình chiếu Nếu ứng với điểm ta nói phép biến đổi – Định nghĩa 1.2.1 phép biến đổi – ảnh qua phép biến đổi ứng với điểm Định nghĩa 1.2.2 Nếu phép biến đổi – biến M thành tồn phép biến đổi biến thành điểm M Phép biến đổi gọi phép biến đổi ngược Kí hiệu -1 Có trường hợp -1 lại , ta nói có tính đối hợp Chẳng hạn phép đối xứng qua tâm qua trục có tính chất đối hợp Định nghĩa 1.2.3 Một phép biến đổi biến điểm M thành gọi phép đồng 1.3 Tập hợp bất biến điểm bất động Cho tập hợp điểm H phép biến đổi Nếu ảnh điểm thuộc H qua phép biến đổi cho thuộc H gọi tập hợp bất biến qua phép biến đổi Ta nói điểm bất động qua phép biến đổi Tập hợp điểm H gọi bất động qua H gồm toàn thể điểm bất động qua Chẳng hạn trục đối xứng đường thẳng bất động qua phép đối xứng với trục 1.4 Hai phép biến đổi trùng Cho hai phép biến đổi g xác định toàn mặt phẳng Ta nói g trùng g ảnh điểm qua hai phép biến đổi trùng Tức g Rõ ràng phép biến đổi đồng điểm thuộc mặt phẳng điểm bất động , nghĩa , 1.5.Tích hai phép biến hình Cho hai phép biến hình g Với điểm M, giả sử g Như tồn quy tắc để từ điểm ta tìm điểm Quy tắc gọi tích hai phép biến hình , g kí hiệu : g Trong cách kí hiệu này, thực trước g thực sau Nói chung g khác g , nghĩa ảnh điểm qua phép biến đổi g khác với ảnh qua phép biến đổi g PHÉP QUAY QUANH MỘT ĐIỂM 2.1.Góc định hướng hai tia Trong hình học, hình tạo hai tia Ox Oy gọi góc tạo Số đo góc xOy nằm khoảng từ hai tia kí hiệu xOy 0o đến 180o ( từ đến radian ) Nếu thứ tự hai cạnh góc xOy xét đến, tức hai góc xOy khác ta nói xOy định hướng kí hiệu yOx ( Ox;Oy ) Trong đó, Ox cạnh đầu Oy cạnh cuối góc Định nghĩa 2.1.1: Góc định hướng hai tia góc tạo hai tia có xét thứ tự xác định Nhận xét: - Nếu số đo góc thỏa mãn điều kiện số đo góc k với k nguyên tùy ý gọi giá trị góc - Giá trị góc định hướng khơng phải nhất,ta quy ước giá trị âm hay dương tùy theo chiều quay chiều âm hay chiều dương mặt phẳng Định nghĩa 2.1.2 Hai góc định hướng gọi số đo chúng Định nghĩa 2.1.3 Hai góc định hướng gọi đối số đo chúng đối Nếu hai điểm phân biệt khơng thẳng hàng hai góc định hướng ( ) ( O ) hướng điểm nằm phía đường thẳng Hai góc gọi ngược hướng nằm khác phía đường thẳng Bổ đề 2.1.4 Cho hai điểm cố định phân biệt góc với ( ) Tập hợp điểm khác cho cung chứa góc dựng dây (trừ ) Hệ thức Chasles: Nếu (Ox Oy) = y Oz) = Ox Oz) = , tức là: x ; Oy) + (Oy ; Oz) = (Ox ; Oz) Góc định hướng hai tia khác gốc: Cho hai tia Ax By có gốc A, B khác Lấy điểm O tùy ý gọi Ox,Oy hai tia theo thứ tự hướng với Ax, By Khi ta nói góc định hướng tạo Ox Oy góc định hướng tạo hai tia Ax By viết : (Ax ; By) = (Ox ; Oy) Rõ ràng, Ax / / By (Ax ; By) = (mod : (Ax ; By) = ± ( mod 2 2.2 Phép quay quanh điểm a) Định nghĩa 2.2.1 Trong mặt phẳng định hướng, cho điểm góc định hướng Phép quay Q(O; tâm , góc quay phép biến hình biến thành biến điểm khác thành điểm cho: và Khi ta nói ảnh qua phép quay tâm với góc quay kí hiệu Q(O; : M b) Tính chất: (i) Theo định nghĩa, phép quay Q(O; trở thành phép đồng Nếu phép đối xứng tâm (ii) Phép quay Q(O; k2 k z) có điểm bất động phép biến đổi – Chứng minh: Giả sử M1, M2 tạo ảnh M qua phép quay Q(O; Theo định nghĩa, ta có : OM1 = O = OM2 ( OM1; O ) = Điều chứng tỏ M1 M2 nằm tia cách O khoảng Vì vậy, M1 M2 Nếu điểm bất động khác O phép quay theo định nghĩa ta có : (Vơ lý) Vì (iii) Phép quay Q phép dời hình Chứng minh: Giả sử : Q(O; : M N OM OM Theo định nghĩa ta có : ON ON (OM ;OM ) (ON ;ON ) OM OM ON ON (OM ;ON ) (OM ;ON ) (c.g.c) Vậy Q phép dời hình (đpcm) (iv) Phép quay Q biến ba điểm thẳng hàng thành ba điểm thẳng hàng bảo tồn thứ tự chúng Chứng minh: Theo tính chất (iii) phép quay Q(O; phép dời hình Do đó, ,C ba ảnh ba điểm thẳng hàng A,B,C A,C thẳng hàng theo thứ tự * Hệ quả: Phép quay Q biến: - Một đường thẳng d thành đường thẳng d góc định hướng (d;d = , d d - Biến tia Sx thành tia Sx góc tạo hai tia - Biến đoạn PQ thành đoạn PQ PQ = PQ thành góc xS y hai góc xSy = xS y - Biến góc xSy - Biến đường trịn R) thành đường trịn (I R) (v) Tích hai phép quay phép tịnh tiến phép quay Chứng minh: Xét hai phép quay Q(O; Q(O Đặt Q = Q0 Q0 *TH1: O O OM OM Q0 : M M (OM ,OM ) OM OM Q0 : M M (OM ,OM ) OM OM Do : (OM ,OM ) (OM ,OM ) (OM ,OM ) Vậy : Q = Q0 *TH2: O O Chương ỨNG DỤNG CỦA PHÉP QUAY QUANH MỘT ĐIỂM TRONG E2 VÀO VIỆC GIẢI LỚP CÁC BÀI TOÁN CƠ BẢN Cũng phép biến hình khác, phép quay cơng cụ hữu hiệu để giải tốn hình học Để giải toán phép quay ta cần ý số điểm sau: - Chọn cách vẽ hình tốn cho thực tổng hợp phép quay riêng biệt dễ quan sát - Những tốn hình học mà giả thiết xuất yếu tố góc đặc biệt góc: 90o,30o,60o,…và yếu tố dài như: tam giác cân, tam giác đều, hình thoi, hình vng,…thường gợi ý cho ta ý tưởng dùng phép quay để giải Cụ thể: Ứng dụng phép quay vào giải toán chứng minh 1.1 Bài toán chứng minh Bài tốn chứng minh có dạng A B , đó: A giả thiết, bao gồm: +) Những yếu tố cho : điểm, đường thẳng, đường tròn,… +) Những quan hệ biết: liên thuộc, song song, vng góc,… +) Những yếu tố lượng : độ dài, góc,… B kết luận cần khẳng định “ ’’ suy luận hợp logic dựa giả thiết có mặt A , định nghĩa, định lí, …để khẳng định B 1.2 Giải toán chứng minh sử dụng phép biến hình Nếu ta thiết lập mối quan hệ điểm hay đường cho giả thiết A với điểm hay đường kết luận B thơng qua 10 Khi đó, theo cách xác định tích phân hai phép quay tam giác MNP ta có: m n , MNP 2 n m NPM 180 PMN Đặt P 360 ( n m) * TH1: n m 180 p 180 Vì : Q nP m : B C P : B C Q360 P nên P khác phía với A đường thẳng BC hay tam giác BCP cân P dựng phía ngồi tam giác ABC có góc BPC = p Từ phân tích ta xây dựng toán sau: Bài toán: Cho tam giác ABC Dựng phía ngồi tam giác tam giác cân AMB, ANC , BPC cân M , N, P AMB m, ANC n, BPC p cho m n p 360 Tính góc cụ thể tam giác PMN Khi cho m, n, p giá trị xác định ta có toán cụ thể sau: Bài toán 1: Cho tam giác ABC Dựng phía ngồi tam giác có tam giác cân AMB, ANC , BPC có tâm K , H , G Chứng minh rằng: tam giác KHG tam giác Bài toán 2: Cho tam giác ABC Dựng phía ngồi tam giác cân AMB, ANC cân M , N Gọi P trung điểm BC Chứng minh rằng: tam giác MNP tam giác vuông cân 33 * TH2: n m 180 p 180 Vì : Q nP m : B C P : B C Q360 P nên P phía với A đường thẳng BC hay tam giác PBC cân P dựng vào phía tam giác ABC BPC 3600 P n m Từ phân tích ta xây dựng tốn sau: Bài toán: Cho tam giác ABC Dựng phía ngồi tam giác tam giác cân AMB, ANC ; Dựng vào phía tam giác ABC tam giác cân BCP cân M , N , P AMB m, ANC n, BPC p; p n m Tính góc tam giác MNP Cho m, n, p có giá trị xác định ta có tốn cụ thể, chẳng hạn ta xây dựng toán sau: Bài toán: Cho tam giác ABC Dựng phía ngồi tam giác tam giác AMB, ANC cho : tam giác AMB vuông cân M , tam giác ANC ; dựng vào phía tam giác ABC tam giác BPC cân P cho BPC 150 Tính góc tam giác PMN BÀI TẬP: Bài 1: hai tia Om, On tùy ý góc Trên cạnh Cho góc vng xOy Ox ta lấy điểm A , cạnh Oy lấy điểm B cho OA OB Gọi A ', A '' hình chiếu vng góc A Om, On ; B ', B '' hình chiếu vng góc B Om, On Chứng minh A ' A '' B ' B '' A ' A '' B ' B '' 34 Bài 2: Cho đường tròn (O) điểm A thuộc đường tròn Phép quay QA biến đường tròn (O) thành đường tròn (O ') điểm M thuộc (O ) thành điểm M ' thuộc (O ') Chứng minh đường thẳng MM ' qua điểm chung thứ hai hai đường tròn (O) (O ') Bài 3: Cho tam giác ABC nội tiếp đường tròn (O ) góc nhọn Trên đường trịn (O) ta lấy điểm S Phép quay Q ( S , ) biến A thành, thành, thành Phép quay biến thành, thành, thành Chứng minh đường thẳng đồng quy Bài 4: Hai đoạn thẳng AB A ' B ' Phép quay với tâm quay M biến A thành A ' , B thành B ' Phép quay với tâm quay N biến A thành B ' , B thành A ' Gọi S trung điểm đoạn AB Chứng minh SM SN Bài 5: Trên đoạn thẳng AC ta lấy điểm B dựng hình vng ABMN , BCEF nằm phía đường thẳng AC Gọi P, Q trung điểm đoạn thẳng CM ,AF Chứng minh tam giác BPQ vuông cân Bài 6: Cho tam giác vuông cân ABC (CA CB ) Trên cạnh CA CB , ta lấy điểm tương ứng D E cho CD CE Các dường vng góc hạ từ C D xuống AE cắt K H Chứng minh K trung điểm đoạn HB 35 Bài 7: Khoảng cách từ điểm P cố định đến hai đỉnh A B tam giác ABC Xác định khoảng cách lớn từ P đến đỉnh C Bài 8: , D tứ giác có Dựng tứ giác ABCD , biết AB a, AD b, B tổng cặp cạnh đối Bài 9: Cho đường tròn (O) , điểm A cố định góc Với điểm B thuộc đường tròn, ta dựng tam giác cân ABC có A Tìm tập hợp đỉnh C B thay đổi Bài 10: Cho phép quay Q(O, ) điểm S cố định khác O Tìm tập hợp điểm A mà phép quay biến A thành A ' cho AA ' qua S Bài 11: Điểm P nằm hình vuông ABCD thỏa mãn điều kiện PA : PB : PC 1: : Tính APB Bài 12: Cho tam giác cân ABC ( AB AC ) có A 20 Trên cạnh AB , ta lấy điểm M cho AM BC Tính BMC 36 Hướng dẫn: Bài 1: Rõ ràng nửa đường trịn đường kính OA qua điểm A ' A '' Nửa y đường trịn đường kính OB qua điểm B ' B '' Hai nửa đường Thực trịn nằm góc xOy phép quay tâm O góc quay 90 biến B thành A , B ' biến thành B '1 , B '' biến thành B ''1 tứ giác OA ' AB '1 , OA '' AB ''1 x hình chữ nhật nội tiếp đường trịn đường kính OA Phép quay biến đoạn B ' B '' thành B '1 B ''1 B ' B '' B '1 B ''1 Vì phép đối xứng qua trung điểm OA biến A ' thành B '1 , A '' thành B ''1 , A ' A '' B '1 B ''1 A ' A ''/ / B '1 B ''1 Từ kế ta suy đpcm Bài 2: Ta kí hiệu giao điểm thứ hai (O ) (O ') B coi B nằm góc AOM Phép quay Q( A, ) biến M thành M ' , tam giác AOM biến thành tam giác AOM ' AOM AOM ' 37 Mặt khác, ABM AOM 180 , ABM ABM ' ABM AO ' M ' 180 (đpcm) Bài 3: Gọi (O ') ảnh (O ) phép quay Q( S , ) ; (O '') ảnh (O ) phép quay Q( S , ) S ' giao điểm thứ hai (O ') (O '') Theo kết đường thẳng A ' A '', B ' B '', C ' C '' qua S ' Bài 4: Phép quay Q( M , ) biến A thành A ' , B thành B ' , S biến thành S ' trung điểm A ' B ' Phép quay Q( N , ) biến A thành B ' , B thành A ' ,do S biến thành S ' Theo tính chất cùa phép quay, ta có: ( AB, A ' B ') ( AB, B ' A ') 38 nên hai phép quay ngược hướng suy cá tâm quay M N nằm khác phía đường thẳng SS ' Tứ giác MSNS ' tứ giác lồi có MS MS ', NS NS ' Hai tam giác SMN S ' MN nên 'N MSN MS Từ : ( AB, A ' B ') ( AB, B ' A ') 180 180 ' N 180 , từ Tứ giác MSNS ' tứ giác nội tiếp, suy MSN MS MSN 90 Bài 5: Phép quay tâm , góc quay biến thành, biến thành biến thành Bài 6: Thực phép quay tâm , góc quay biến thành; thành; thành, biến thành, biến thành và,biến thành nằm Ta thấy đường trung bình tam giác, trung điểm đoạn Bài 7: Thực phép quay tâm A , góc quay 60 , biến B thành C , P biến thành P ' ta có BP CP ' Mặt khác, tam giác APP ' tam PP ' PA giác Rõ nên ràng PP ' P ' C PC , PC lớn P ' nằm đoạn PC , max PC 39 Bài 8: Ta kí hiệu M , N tiếp điểm đường tròn nội tiếp tứ giác ABCD với cạnh CB, CD Phép quay tâm C biến M thành N biến B thành B ' thuộc tia CD , A thành A ' A ' B ' AB a Từ điều kiện AB CD AD BC Ta suy CD CB ' CD CB AD AB b a coi b a Vậy B ' D b a Cách dựng dựng tam giác A ' B ' D (biết c.g.c) Dựng A (khác phía với A ' ADB ' AD b Đỉnh C giao điểm trung trực DB ' ) cho AA ' với B ' D Phép quay biến A ' thành A biến B ' thành B Bài 9: Thuận : Điểm C ảnh điểm B phép quay Q ( A, ) (0 180) phép quay Q( A, ) , tập hợp điểm C thuộc đường tròn (O '),(O ') ảnh (O ) qua phép quay Đảo: Nếu C điển thuộc đường trịn (O ') phép quay Q( A, ) phép quay Q ( A, ) (với chiều ngược lại) biến điểm C thành điểm B Vì tạo ảnh nên thuộc đường tròn (O ) 40 Bài 10: Phần thuận : Phép Q(O, ) quay biến A thành A ' S thành S ' , ( SA, S ' A ') Mặt khác (OS , OS ') , ( SA, S ' A ') (OS , OS ') Tứ giác OSA ' S ' nằm đường tròn đường trịn cố định chứa điểm O, S , S ' cố định Ta ký hiệu đường tròn qua O, S , S ', A ' ( ) Tập hợp A ' thuộc ( ) Phép quay Q(O, ) biến A ' thành A biến ( ) thành ( ') chứa A Tập hợp A thuộc đường tròn ( ) Bài 11: Thực phép quay tâm B biến A thành C , P biến thành P ' PA P ' C Đặt PA , ta có PB 2 , P’ PC 3 Tam giác BPP ' vuông cân B nên PP '2 8a Xét tam giác PP ' C có ' C 135 Hiển PC 9a PP '2 P ' C PP ' P ' C BP ' C 135 nhiên tam giác APB CP ' B nhau, APB BP Bài 12: Thực phép quay tâm A , góc quay 60 (hoặc 60 ) biến C thành C ' cho C ' B nằm hai phía AC Hai tam giác AMC ' ' MC 70 Từ : ABC (c.g.c) C ' M CA C ' C C 41 ' MC ) BMC 180 ( AMC ' C 180 150 30 42 C KẾT LUẬN Việc đưa phép biến hình vào chương trình phổ thơng giúp học sinh biết mội quan hệ nhờ ánh xạ – tập điểm mặt phẳng Nó cung cấp công cụ hữu hiệu để giải tốn hình học, phát triển tư cho học sinh Cụ thể khóa luận tơi đưa số toán cách sử dụng phép quay mặt phẳng toán: tốn chứng minh, tốn tính tốn, tốn dựng hình, tốn quỹ tích Mỗi tốn có ví dụ minh họa số kết rút từ ví dụ đó, đưa ví dụ việc sử dụng phép quay để xay dựng sáng tạo tốn Bên cạnh cịn bổ sung số tập luyện tập có gợi ý cách giải giúp người đọc thấy tính ưu việt giải tốn hình học sử dụng biến hình ( cụ thể phép quay) Mặc dù thân cố gắng song hạn chế trình độ chun mơn tính gấp rút thời gian nên chắn khóa luận khơng tránh khỏi khuyết điểm sai xót, em kính mong thầy cơ, bạn sinh viên đóng góp ý kiến để khóa luận hồn thiện Em xin chân thành cảm ơn ! 43 D TÀI LIỆU THAM KHẢO 1) Đồn Quỳnh (Chủ biên), Tài liệu chun Tốn - Bài tập Hình học 10 (2012), NXBGDVN 2) Đồn Quỳnh (Chủ biên),Tài liệu chun Tốn - Hình học 10 (2012), NXBGDVN 3) Nguyễn Mộng Hy, Các phép biến hình mặt phẳng (2003), NXB Giáo Dục 4) Nguyễn Vĩnh Cận, Các tốn quỹ tích dựng hình (1998), NXB Giáo Dục 5) Đỗ Thanh Sơn, Phép biến hình mặt phẳng (2006), NXB Giáo Dục 44 LỜI CẢM ƠN Trong q trình thực khóa luận em nhận nhiều giúp đỡ quý báu bổ ích từ thầy cô bạn bè Em xin chân thành cảm ơn: Các thầy khoa Tốn, trường Đại học sư phạm Hà Nội tận tình giảng dạy, truyền thụ kiến thức kinh nghiệm q báu để em hồn thành tốt khóa học Đặc biệt, em xin bày tỏ lòng biết ơn sâu sắc tới thầy Phan Hồng Trường, người trực tiếp hướng dẫn, tận tâm,nhiệt tình giúp đỡ bảo suốt q trình em thực khóa luận Em xin chân thành cảm ơn thầy cô giáo tổ Hình học – khoa Tốn, thư viện nhà trường, gia đình bạn bè tạo điều kiện, động viên, giúp đỡ để em hoàn thành khóa luận Hà Nội, ngày 10 tháng năm 2013 Sinh viên Khúc Thị Tuyền 45 LỜI CAM ĐOAN Tơi cam đoan khóa luận “Phép quay quanh điểm E2” kết nghiên cứu thân hướng dẫn thầy Phan Hồng Trường Tơi xin khẳng định kết nghiên cứu khóa luận không trùng với kế tác giả khác Nếu sai tơi xin chịu hồn toàn trách nhiệm Hà Nội, ngày 10 tháng năm 2013 Sinh viên Khúc Thị Tuyền 46 MỤC LỤC A MỞ ĐẦU 1 Lý chọn đề tài Nhiệm vụ nghiên cứu Phương pháp nghiên cứu B NỘI DUNG Chương I CÁC KIẾN THỨC CHUẨN BỊ ĐẠI CƯƠNG VỀ PHÉP BIẾN HÌNH TRONG MẶT PHẲNG 2 PHÉP QUAY QUANH MỘT ĐIỂM Chương ỨNG DỤNG CỦA PHÉP QUAY QUANH MỘT ĐIỂM TRONG E2 VÀO VIỆC GIẢI LỚP CÁC BÀI TOÁN CƠ BẢN 10 Ứng dụng phép quay vào giải toán chứng minh 10 1.1 Bài toán chứng minh 10 1.2 Giải toán chứng minh sử dụng phép biến hình 10 1.3 Một số ví dụ: 11 1.4 Khai thác toán chứng minh nhờ phép biến hình 15 Ứng dụng phép quay vào giải toán quỹ tích 16 2.1 Bài tốn quỹ tích 16 2.2 Giải tốn quỹ tích nhờ sử dụng phép biến hình 16 2.3 Một số ví dụ 17 Ứng dụng phép quay vào giải tốn dựng hình 19 3.1 Bài tốn dựng hình 19 3.2 Giải tốn dựng hình nhờ phép biến hình 20 3.3 Một số ví dụ 20 Ứng dụng phép quay vào giải tốn tính tốn 24 4.1 Bài tốn tính tốn 24 4.2.Giải tốn tính tốn sử dụng phép biến hình 24 Xây dựng toán nhờ sử dụng phép quay 26 BÀI TẬP: 34 C KẾT LUẬN 43 D TÀI LIỆU THAM KHẢO 44 47 ... CƯƠNG VỀ PHÉP BIẾN HÌNH TRONG MẶT PHẲNG 2 PHÉP QUAY QUANH MỘT ĐIỂM Chương ỨNG DỤNG CỦA PHÉP QUAY QUANH MỘT ĐIỂM TRONG E2 VÀO VIỆC GIẢI LỚP CÁC BÀI TOÁN CƠ BẢN 10 Ứng dụng phép quay vào... MP NQ Giải Phép quay tâm B với góc quay 60 biến điểm M thành điểm A , điểm P thành điểm C , MP AC Phép quay tâm D với góc quay 60 biến điểm Q thành điểm A , điểm N thành điểm C , QN ... DỤNG CỦA PHÉP QUAY QUANH MỘT ĐIỂM TRONG E2 VÀO VIỆC GIẢI LỚP CÁC BÀI TOÁN CƠ BẢN Cũng phép biến hình khác, phép quay cơng cụ hữu hiệu để giải tốn hình học Để giải toán phép quay ta cần ý số điểm