1. Trang chủ
  2. » Giáo Dục - Đào Tạo

de thi chon hsg toan 11 nam hoc 2019 2020 truong thpt thi xa quang tri

5 57 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 476,64 KB

Nội dung

SỞ GD&ĐT QUẢNG TRỊ TRƯỜNG THPT THỊ XÃ QUẢNG TRỊ ĐỀ THI CHÍNH THỨC (Đề có 01 trang) KỲ THI CHỌN HSG VĂN HĨA LỚP 11 Khóa thi ngày 12 tháng năm 2020 Mơn thi: TỐN Thời gian làm bài: 180 phút, không kể thời gian giao đề  x 1  x 1 x   Câu I.(5,5 điểm) 1.Cho hàm số f  x    Tìm m để hàm số f  x  liên tục x m  x   x  Một tổ gồm 10 học sinh gồm học sinh nam học sinh nữ có hai học sinh nữ tên Trang Thủy Xếp ngẫu nhiên 10 học sinh thành hàng ngang Tính xác suất để xếp hàng ngang mà hai học sinh nữ Trang Thủy đứng cạnh nhau, đồng thời học sinh nữ lại khơng đứng cạnh không đứng cạnh Trang Thủy Câu II (7,0 điểm) Cho hình chóp S ABC có đáy ABC tam giác vuông A , ABC  300 BC  2a Gọi H hình chiếu vng góc A lên BC Biết hai mặt phẳng  SHA  SBC  vuông góc với mặt phẳng  ABC  , đồng thời SA tạo với mặt phẳng  ABC  góc 600 a) Tính góc tạo SA mặt phẳng  SBC  b) Tính khoảng cách từ B đến mặt phẳng  SAC  theo a Trong mặt phẳng Oxy , cho tam giác ABC vng A Gọi H hình chiếu vng góc A BC , điểm M, N trung điểm HB HC ; điểm K trực tâm tam giác AMN a) Gọi I trung điểm AH Chứng minh K trung điểm IH b) Tìm tọa độ điểm A ; biết M  2; 1 , K   ;  điểm A nằm đường thẳng x  y   đồng  2 thời điểm A có tung độ âm 1 4 x3  y  x  y  3xy  x  y  Câu III (4,0 điểm) Giải hệ phương trình sau tập số thực    y   x  x y  xy  x  Tìm tất giá trị thực tham số m để phương trình  3  sin x 1 2sin x   2m  3 sin x  m  2  có nghiệm phân biệt thuộc đoạn  ;  6  u1   Câu IV (3,5 điểm) Cho dãy số  un  xác định  Xác định công 3n.un 2n  6n  un 1  n   n  n  13 , n    n.u  thức tổng quát un theo n tính lim  nn    Cho x , y , z số thực dương thỏa mãn x2  y  z  x z x  a) Chứng minh y 1 x  y x  y  z    z  y  3 3x b) Tìm giá trị lớn biểu thức P    x  y  1 y  1  x  y HẾT Thí sinh khơng sử dụng tài liệu MTCT (đối với mơn Tốn) Cán coi thi khơng giải thích thêm Họ tên thí sinh:……………………………….Số báo danh:……………… HƯỚNG DẪN CHẤM HSG 11 NĂM HỌC 2019-2020 CÂU NỘI DUNG ĐIỂM (2,5 điểm) TXĐ D   1;    , x   D f    m  Ta có lim f  x   lim x 0 lim x 0 x 0 0,5 x   x 1 x  1   x 1 x  1  x 1  lim  lim  lim x 0 x 0 x 0 x x x x  x 1 x  1 1  lim  lim  lim x  x  x  x x x 1 1  x 1  1  x 1   0,5 Suy lim f  x     x 0 Câu I 0,5 0,5 Hàm số f  x  liên tục x   lim f  x   f    m    m  x 0 (5,5 (3,0 điểm) Không gian mẫu   10! điểm) -Gọi A biến cố xếp theo yêu cầu toán 17 0,5 0,5 -Xếp học sinh nam có 6! cách xếp Mỗi cách xếp học sinh nam ta xem học sinh nam vách ngăn tạo vị trí trống bao gồm vị trí trống vị trí trống hai đầu hàng -Số cách xếp hai bạn nữ Trang Thủy cạnh 2! -Hai hs nữ Trang Thủy cạnh nên xem bạn bạn bạn nữ lại ta có bạn 0,5 0,5 nữ -Số cách xếp cho hai bạn nữ lại khơng cạnh không cạnh Trang Thủy A73 Khi đó,  A  6!.2! A73 Vậy p  A  0,5 6!.2! A  10! 12 1,0 (5,0 điểm) Câu II (7,0 điểm)  SHA   SBC   SH   a) (2,5 điểm) (Ta có  SHA   ABC    SH   ABC    SBC    ABC   Mặt khác AH  BC (2) AH   ABC  nên SH  AH 1 0,5 Từ (1) (2) suy AH   SBC  , suy hình chiếu vng góc SA lên mặt phẳng  SBC  SH Do đó,  SA,  SBC     SA, SH   ASH (vì tam giác SHA vuông H ) Theo gt  SA,  ABC     SA, AH   SAH  60  ASH  30 Vậy  SA,  SBC    30 0 b) (2,5 điểm).Ta có AB  BC.cos300  a  AH  AB.sin 300  0,5 0,5 1,0 a 3a  SH  AH tan 600  2 AC  a Gọi I hình chiếu vng góc H lên AC , suy AC   SHI    SAC    SHI  0,5  SHI    SAC   SI Trong tam giác SHI kẻ HK  SI  HK   SAC  hay d  H ;  SAC    HK 0,5 Mặt khác d  B;  SAC   BC BC BC  2a          d  B;  SAC    4d  H ;  SAC    HK d  H ;  SAC   HC HC.BC AC  a  Ta có HI  AB a Trong tam giác vuông SHI ta có  4 9a 3a SH HI 3a 3a 6a 16 HK    Vậy d  B;  SAC    HK   2 2 SH  HI 13 13 13   a  3a          2 1,0 (2,0 điểm) a)(1,0 điểm) I trung điểm AH , ta có MI / / AB  MI  AC  I trực tâm tam giác AMC  CI  AM Mặt khác NK  AM  NK / /CI  K trung điểm HI  2a  2  a  AK  KH  H  ;    a  1 AK MH   10a  13a  23     A  2; 1  a  23  lo¹i   10 b) (1,0 điểm).Giả sử Lại từ 0,5 A  2a  4; a , từ 4 x3  y  x  y  3xy  x  y  1.(2,5 điểm)    y   x  x y  xy  x  (1) (2) 0,5 0,5 0,5 0,5  x  2 y  1) Điều kiện  (1)   x  y    x  y   y  y     x  y  y   x  y   y  x  y   y   x  y 0,5 Thay x  y vào phương trình   ta được:  x   x  x3  x  x  Câu III (4,0 điểm) x    x4 x  x     3 x   (*)  2 x    x  x  4x 1    3  x     x   Với 2  x  , ta có   2 x  x4       x2  x   x2  x   (*)         x  x  2  x  2  x  x   3 x   2 x  3       1    x  x  2     x  2   x4   x  x   2 x  3    x2  x    1     x    VT  0, x   2;3 x  x4  2 x    x  3  x  1  y  1   x2  x      x   y  Vậy hệ phương trình cho có hai nghiệm  x; y   1; 1  2;  0,5 0,5 0,5 0,5 2) (1,5 điểm) sin x    sin x  1 2sin x   2m  3 sin x  m  2   sin x   sin x  m     3   ;  6   5   3  +) pt sin x  có nghiệm   ;  x  ; x  6 6  Ycbt  1  m     m  2 +) pt sin x  có nghiệm x   0,5 0,5 0,5 1) (1,5 điểm) Ta có: un 1   3n.un 2n2  6n  2n  6n     n  u  n u   n  u  n u         n 1 n n 1 n  n2  n  12  n  n  n  13 n  n  1     n  1 un 1   n  1     n.un   , n  n   0,5 v  Đặt  n.un  , n  Khi ta có dãy   xác định  n vn 1  3vn , n  1 Suy dãy   cấp số nhân công bội q  , suy  v1.q n1  3n  n.un   3n n n  un   , n  n n   n   n.u  lim  nn   lim    n       n  0,5 0,5 2) (2,0 điểm) a) (0,5 điểm) Ta có x2  y  z  x  x  2xy   x  y   z   x  y  z (1) z x  y 1 x  y x  y  z    z  y  3 2 x  z 3x z 3x b)(1,5 điểm).Ta có P      2  x  y  1 y  1  x  y x  y 1 y 1  x  y 0,25  x  y  1   x  y  z  Câu IV (3,5 điểm) Theo a)  x  y z z x   y 1  y 1 x  y x Khi x  y   x  y   y  1 Ta  x  y  z  x  y    x  y  x  z   x y 2 x  z 2 x  z x 2x   x  y   x  y  x  z  x  y x x 2 x  z z 3x 2x x 3x Do P       x  y  y   x  y 2 x  y x  y  x  y 2 0,25 0,5 0,5  x  x  x 1 (2)  P          3 x y  x y 2  x y Vậy Pmax  (1) (2) đồng thời xảy x  y  z  x  y  z  x y   x      z  2x  x y  x2  y  z  2x z   2  x  y  z  2x   0,5 ...HƯỚNG DẪN CHẤM HSG 11 NĂM HỌC 2019- 2020 CÂU NỘI DUNG ĐIỂM (2,5 điểm) TXĐ D   1;    , x   D f    m  Ta có lim... điểm) -Gọi A biến cố xếp theo yêu cầu toán 17 0,5 0,5 -Xếp học sinh nam có 6! cách xếp Mỗi cách xếp học sinh nam ta xem học sinh nam vách ngăn tạo vị trí trống bao gồm vị trí trống vị trí trống

Ngày đăng: 21/06/2020, 15:04

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w