1. Trang chủ
  2. » Giáo Dục - Đào Tạo

047 đề HSG toán 7 huyện kim thành 2018 2019

5 195 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 223,53 KB

Nội dung

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO HUYỆN KIM THÀNH ĐỀ THI HỌC SINH GIỎI CẤP HUYỆN Mơn : Tốn lớp Năm học 2017-2018 Câu (4,0 điểm) 3 1     11 13 a) Tính A   5 5 5     11 13 b) Chứng minh với n nguyên dương 3n2  2n2  3n  2n chia hết cho 10 Câu (4,0 điểm) a) Tìm cặp số nguyên  x; y  thỏa mãn: x  y  3xy  1 1 2015 2016 b) Cho A      ;B       2017 2016 2015 2014 A Tính B Câu (3,0 điểm) 2016 a) Cho x   y    x  y  z    Tính giá trị A  5x y 2016 z 2017 a c b) Cho số dương a, b, c, d ; c  d  b d a CMR: c 2016  b2016  a   c 2016  d 2016 2017 2017 2017 2017  b2017  2016  d 2017  2016 Câu (3,0 điểm) 1 1     a  b  c b  c  d c  d  a d  a  b 40 a b c d Tính giá trị S     bcd cd a d ab abc a) Cho a  b  c  d  2000 b) Xác định tổng hệ số đa thức f  x     x  x  2016   x  x  2017 Câu (6 điểm) Cho tam giác ABC có ba góc nhọn  AB  AC  Vẽ phía ngồi tam giác ABC tam giác ABD ACE Gọi I giao CD BE, K giao AB DC a) Chứng minh ADC  ABE b) Gọi M N trung điểm CD BE Chứng minh AMN c) Chứng minh IA phân giác DIE ĐÁP ÁN Câu 3   11 13  a) A  5   11 13 A 1 3.    1         11 13   5 1 1  1 1   5.         11 13     1 5 b) Ta có: 3n  2n  3n  2n   3n2  3n    2n2  2n   3n.10  2n1.10   3n  2n1 .10 10 Vậy 3n2  2n2  3n  2n 10 Câu a) Ta có: x  y  3xy   3x  y  xy    3x  xy    y     3x 1  y   1  y     3x  1  y   Vì x, y  nên 3x  2;1  y số nguyên Mà  3x  .1  y    3x  2;1  y ước Ta lại có U (7)  1; 7  3x  2;1  y 1; 7 Bảng giá trị: 3x   3y x y -7 -1 -5/3 2/3 ktm Vậy  x; y  1; 2 ; 3;0  -1 -7 1/3 8/3 ktm -2 tm tm 2015 2016      2016 2015 2014        2015  B  1    1    1     1   2016   2015   2014    2017 2017 2017 2017 2017  1 1 B       2017.      2016 2015 2014 2017 2017  2 A Do  B 2017 b) B  Câu a) Vì x   x; y   0y;  x  y  z   Do x   y    x  y  z   2016 2016  0x, y, z  x2 0 x   x       y 1   y 1  y 1   x  y  z   z  2016   x  y  z     Do A  5.22.12016.12017  20 Vậy A  20 a c a b b) Vì a, b, c, d số dương c  d , mà  nên  b d c d  a 2016  a 2016 b 2016 a 2016  b 2016  2016  2016  2016   2016  c d c  d 2016 c  2017  a 2016  b 2016    2016 2016  c d  2017 2016  a 2017  b 2017    2017 2017  c d  2016 2016 2016 a 2016.2017  a  b   2016.2017  (1) 2016 2016 2017 c c  d  2017  a 2017  a 2017 b 2017 a 2017  b 2017  2017  2017  2017   2017  c d c  d 2017 c   2017.2016 a c 2017.2016 a  c 2017 2017  b 2017  d 2016  2017 2016 (2) a Từ (1) (2)  c a  b  Vậy c  d  2016 2016 2016 2016 2017 2016 2017 2017  b 2016  a  d  c a  b   c  d  2017 2017 2016 2017 2017 2017 2017 2016 2017 2017 2016  b 2017  d 2016  2017 2016 Câu a) Ta có: a b c d S    bcd cd a d a b a bc abcd a bcd a bc d a bc d S 4    bcd cd a d ab abc Do S  4  2000  46 40 b) Vì tổng hệ số đa thức f  x  f 1 Mà đa thức f  x   5  x  x2  Có f 1    6.1  12  2016 2016   x  x    6.1  12  2016 2017 0 Vậy đa thức cho có tổng hệ số Câu E A D J N K I M B C a) Ta có: AD  AB; DAC  BDE AC  AE Suy ADC  ABE (c.g.c) b) Từ ADC  ABE  ABE  ADC mà BKC  AKD (đối đỉnh) Khi xét BIK DAK  BIK  DAK  600 (dfcm) Từ ADC  ABE  CM  EN ACM  AEN  ACM  AEN (c.g.c)  AM  AN , CAM  EAN MAN  CAE  600 Do AMN c) Trên tia ID lấy điểm J cho IJ  IB  BIJ  BJ  BI JBI  DBA  600 Suy IBA  JBD, kết hợp BA  BD  IBA  JBD(c.g.c)  AIB  DJB  1200 mà BID  600  DIA  600 Từ suy IA phân giác DIE

Ngày đăng: 16/02/2020, 21:53

TỪ KHÓA LIÊN QUAN

w