1. Trang chủ
  2. » Giáo Dục - Đào Tạo

094 đề HSG toán 9 cần thơ 2012 2013

4 51 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 346,75 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ CẦN THƠ ĐỀ CHÍNH THỨC KỲ THI CHỌN HỌC SINH GIỎI LỚP THCS CẤP THÀNH PHỐ NĂM HỌC 2012-2013 Khóa ngày: 11/04/2013 MƠN THI: TỐN Thời gian làm bài: 150 phút , không kể thời gian phát đề Câu (5,0 điểm) Cho biểu thức P  2m  16m  m 2 m 3  m 2 m 1  m 3 2 a) Rút gọn P b) Tìm giá trị tự nhiên m để P số tự nhiên Tính giá trị  a3  15a  25 2013 với a  13   13  Câu (5,0 điểm)   Giải phương trình: x    x  15  2x  x2   Tìm giá trị m để hệ phương trình sau có nghiệm  2x  mx     mx  x   Câu (5,0 điểm) Tìm tất số nguyên dương x, y, z thỏa 1   2 x y z x  y  2 Cho hai số x, y thỏa mãn  2 x  y  xy  Tìm giá trị lớn nhất, giá trị nhỏ biểu thức T  x2  y2  xy Câu (2,0 điểm) Cho đường tròn (O;R) hai điểm A, B nằm ngồi đường tròn cho OA = 2R Tìm điểm M đường tròn để MA + MB đạt giá trị nhỏ Câu (3,0 điểm) Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O;R) Gọi P điểm di động cung BC không chứa A Gọi M, N hình chiếu vng góc hạ từ A xuống PB, PC Chứng minh đường thẳng MN qua điểm cố định Gọi I, D, E chân đường cao hạ từ A, B, C xuống cạnh BC, CA, AB Chứng minh chu vi tam giác IDE không đổi A, B, C thay đổi đường tròn (O;R) cho diện tích tam giác ABC ln a ĐÁP ÁN HỌC SINH GIỎI CẦN THƠ 2012-2013 Câu 1 a) Điều kiện : m  0;m  P m 1 m 1 b) P   m 1 Để P   m 4;9 a  13   13   a  26  15a   a3  15a  25   a  15a  25  2013 1 Câu Điều kiện : 5  x  Đặt t = x    x,t   15  2x  x2  t  2 t   t  2(loai) Phương trình cho có dạng : t  t     t   x   3x   2  x   4x  8x  59     2  x   mx  2y  x  my  2 Đặt x2  y  Hệ trở thành  m4  x  m  Hệ ln có nghiệm  y   2m  0(m  )  m2  2 m4  2m Ta có x  y      (m  1)(m  m  7)   m  1 m  m    Câu Không tính tổng quát , giả sử :  x  y  z 1     x 1 x y z x  y  (vô lý) 1   1 y z y 2 Và y = suy z = Vậy (1;2;2) hoán vị chúng nghiệm phương trình cho x  y  x  y   a (a  0)   2 2 x  y  xy  x  y  xy  Hệ  x  y   a Do   xy    a   ;   S  4P    a  T  x2  y2  xy  2xy     a  Min T= x=1; y=1 x= - , y = - Max T = x  ,y   x   ,y  Câu B M A M' C O R , ta có điểm C cố định Dễ thấy OCM đồng dạng với OMA  MA  2MC Gọi C điểm đoạn thẳng OA cho OC  Ta có MA  MB  BC (không đổi) MA  2MB  2(MA  MC)  2BC Dấu “=” xảy M nằm B C Vậy điểm M giao điểm đoạn BC đường tròn (O) MA + 2MB đạt giá trị nhỏ Câu A E D O B I C N M A' P Kẻ AI  BC , I  BC cố định Ta có BMA  BIA  900 nên tứ giác AMBI nội tiếp hay AIM  ABM Ta lại có tứ giác ABPC nội tiếp nên ABM  ACP AIM  ACP (1) Mặt khác AIC  ANC  900 nên tứ giác AINC nội tiếp suy ACP  AIN  1800 (2) Từ (1) (2) suy AIM  AIN  1800 Vậy đường thẳng MN qua điểm cố định I Tứ giác BCDE nội tiếp suy AED  ACB Kéo dài AO cắt (O;R) điểm A’ Ta có: EAO  AED  BAA'  ACB  900 1  AO  DE  S AEOD  AO.DE  R.DE 2 1 Tương tự ta có S BEOI  R.EI ;S CDOI  R.ID 2 Vậy S ABC  S AEOD  SBIOE  SCDOI  R  DE  EI  ID   DE  EI  ID  2S ABC 2a  (không đổi) R R ... HỌC SINH GIỎI CẦN THƠ 2012- 2013 Câu 1 a) Điều kiện : m  0;m  P m 1 m 1 b) P   m 1 Để P   m 4 ;9 a  13   13   a  26  15a   a3  15a  25   a  15a  25  2013 1 Câu Điều... I  BC cố định Ta có BMA  BIA  90 0 nên tứ giác AMBI nội tiếp hay AIM  ABM Ta lại có tứ giác ABPC nội tiếp nên ABM  ACP AIM  ACP (1) Mặt khác AIC  ANC  90 0 nên tứ giác AINC nội tiếp suy...  2(loai) Phương trình cho có dạng : t  t     t   x   3x   2  x   4x  8x  59     2  x   mx  2y  x  my  2 Đặt x2  y  Hệ trở thành  m4  x  m  Hệ có

Ngày đăng: 12/01/2020, 05:27

TỪ KHÓA LIÊN QUAN