Mục tiêu của đề tài Rèn kĩ năng giải toán bằng sơ đồ đoạn thẳng cho học sinh lớp 4 Thực hiện đề tài này với mục tiêu là giúp cho giáo viên dạy học sinh học tốt dạng toán giải bằng sơ đồ đoạn thẳng, giúp học sinh hoàn thành tốt ở các lĩnh vực kiến thức, phẩm chất.
I. Phần mở đầu 1. Lý do chọn đề tài Tốn học rất đa dạng, phong phú, có nhiều loại bài tốn ở nhiều dạng khác nhau. Trong đó loại tốn có lời văn ln giữ một vị trí quan trọng, bởi nó bộc lộ mối quan hệ qua lại với các mơn học khác cũng như trong thực tiễn cuộc sống, nó góp phần quan trọng trong việc rèn phương pháp suy luận, giải quyết các vấn đề có liên quan trong cuộc sống, phát triển thơng minh, cách suy nghĩ độc lập sáng tạo, linh hoạt góp phần hình thành phẩm chất tốt cho học sinh như: cần cù, cẩn thận, sáng tạo… Việc giải tốn dựng sơ đồ đoạn thẳng giúp học sinh củng cố vận dụng và hiểu sâu sắc tất cả kiến thức về số học, về đo lường, hình học đó được học trong mơn tốn tiểu học. Thơng qua nội dung thực tế nhiều hình vẽ của các đề tốn, học sinh tiếp nhận được nhiều kiến thức phong phú về cuộc sống, và có điều kiện rèn kỹ năng áp dụng các kiến thức tốn học vào cuộc sống hàng ngày Trong chương trình tốn lớp 4, phần lớn các dạng tốn giải đều phải dùng sơ đồ đoạn thẳng thì hướng dẫn học sinh giải mới nhanh và chính xác. Nhiều bài tốn giải bằng lời văn nhìn vào dự kiện của đề bài ta có thể hình dung được các bước giải, nhưng cũng khá nhiều bài tốn học sinh phải nắm được bản chất hàm ý của bài tốn, phải vẽ được sơ đồ đoạn thẳng thì mới giải được bài tốn đó. Khi vẽ sơ đồ đoạn thẳng thì lại phải vẽ sao cho chính xác, cho đúng dạng tốn, đề bài u cầu thì mới phát hiện ra lời giải kế tiếp và phù hợp. Trong thời gian giảng dạy chương trình ở lớp 4, bản thân tơi thấy nhiều học sinh còn lúng túng trong việc vẽ sơ đồ cho bài tốn, nhiều học sinh khơng biết vẽ, có những học sinh vẽ nhưng lại vẽ sai, chia đoạn khơng chính xác dẫn đến việc nhận dạng bài tốn sai, xác định các bước giải sai. Vấn đề này tơi thực sự trăn trở và băn khoăn. Chính vì vậy tơi mạnh dạn chọn đề tài nghiên cứu “Rèn kĩ năng giải tốn bằng sơ đồ đoạn thẳng cho học sinh lớp 4 ”. Qua đây nhằm góp phần vào nâng cao chất lượng dạy và học mơn tốn ở tiểu học, cụ thể là mơn tốn lớp 4A 2. Mục tiêu, nhiệm vụ của đề tài Mục tiêu Thực hiện đề tài này với mục tiêu là giúp cho giáo viên dạy học sinh học tốt dạng tốn giải bằng sơ đồ đoạn thẳng, giúp học sinh hồn thành tốt ở các lĩnh vực kiến thức, phẩm chất. Nhiệm vụ Bằng thực tế giảng dạy thì tơi thấy còn nhiều tồn tại khi hướng dẫn cho HS xác định ra cách giải tốn bằng sơ đồ đoạn thẳng. Học sinh nhận thức về dạng tốn giải còn thụ động, máy móc, rập khn trong khi giải, do kĩ năng vẽ sơ đồ đoạn thẳng của các em còn hạn chế, do khả năng nhận thức về đoạn thẳng của các em còn hạn hẹp, tìm hiểu một số học sinh thì tơi thấy rằng các em mới hiểu đoạn thẳng là vẽ để đo độ dài chứ chưa hiểu được đoạn thẳng trong giải tốn người ta có thể vẽ để biểu thị một đại lượng, một dự kiện mà đã cho trong đề bài tốn ( như vẽ đoạn thẳng biểu thị số gà, hoặc số vịt, số thóc số lít dầu đã cho trong từng đề bài ). Khi chưa biết chắc chắn và kĩ năng vẽ chưa thành thục thì các em sẽ khơng dám nghĩ đến cách sử dụng sơ đồ đoạn thẳng để giải. Bên cạnh đó cũng có một số ít giáo viên, cách dạy còn phụ thuộc nhiều vào hướng dẫn, chưa có sáng tạo, chưa có sự chú ý đến từng đối tượng học sinh, giáo viên kẻ sơ đồ khơng chuẩn nên ngại áp dụng vào giải tốn sợ mất thời gian. Xác định được những ưu thế và những tồn tại của việc giải tốn bằng sơ đồ đoạn thẳng cho nên tơi mới nhận thức rằng việc nghiên cứu đề tài này của tơi nhằm mục đích: Đánh giá thực trạng kĩ năng giải tốn bằng sơ đồ đoạn thẳng đối với học sinh lớp 4. Tìm ngun nhân dẫn tới việc học sinh giải sai tốn Tìm những khó khăn giải tốn sơ đồ đoạn thẳng đối với học sinh lớp theo chương trình đổi mới. Tìm hiểu các kỹ năng giải tốn bằng sơ đồ đoạn thẳng đối với một số dạng tốn ở lớp 4. Trên cơ sở đó giúp học sinh hiểu về dạng tốn giải bằng sơ đồ đoạn thẳng, từ đó có đề xuất một số biện pháp về việc rèn kỹ năng giải tốn bằng sơ đồ đoạn thẳng đối với học sinh lớp 4 nhằm nâng cao chất lượng mơn học cho học sinh. 3. Đối tượng nghiên cứu “Rèn kĩ năng giải toán bằng sơ đồ đoạn thẳng cho học sinh lớp 4A”. 4. Giới hạn của đề tài Học sinh lớp 4A trường Tiểu học Lê Lợi năm học 2016 2017 5. Phương pháp nghiên cứu Khi nghiên cứu đề tài này tơi sử dụng một số các phương pháp nghiên cứu như sau: Phương pháp nghiên cứu tài liệu Phương pháp quan sát. Phương pháp phân tích Phương pháp kiểm tra đánh giá Phương pháp thực nghiệm Phương pháp tổng kết kinh nghiệm. II. Phần nội dung 1. Cơ sở lí luận Xuất phát từ quy luật nhận thức của con người: Từ trực quan sinh động đến tư duy trừu tượng; từ tư duy trừu tượng trở về thực tiễn. Đối với học sinh tiểu học là lứa tuổi hồn nhiên ngây thơ, trong sáng hiếu động, tò mò thích hoạt động khám phá, thường độc lập, thích khẳng định mình. Tư duy của các em chưa thốt khỏi tính cụ thể. Khi các em tiến hành phân tích tổng hợp thường căn cứ vào những đặc điểm bên ngồi, cụ thể trực quan. Vì vậy giúp học sinh lớp 4 rèn kĩ năng giải tốn bằng sơ đồ đoạn thẳng là một vấn đề rất thiết thực. 2. Thực trạng Đối với trường Tiểu học Lê Lợi, lãnh đạo nhà trường ln chú trọng, quan tâm đến việc giáo dục học sinh. Trường tiểu học Lê Lợi đóng trên địa bàn được sự quan tâm của chính quyền địa phương nên cũng đang từng bước phát triển Cơ sở vật chất, trang thiết bị phục vụ cho cơng tác giảng dạy và học tập nhà trường cung cấp tương đối đầy đủ. Khn viên trường khang trang sạch đẹp. Sự cần cù chịu khó và tinh thần đồn kết, trách nhiệm của tập thể cán bộ giáo viên cơng nhân viên trong trường Giáo viên có kế hoạch dạy phân hóa đối tượng và phụ đạo học sinh yếu, bồi dưỡng học sinh năng khiếu ngay từ đầu năm (thống kê phân loại học sinh học yếu tốn để theo dõi thường xun vào những giờ học chính và buổi thứ 2) 75 % học sinh của trường là người đồng bào dân tộc Ê đê Đại đa số nhân dân trong xã sống chủ yếu bằng nghề nơng thu nhập thấp, khơng ổn định có nhiều hộ còn thuộc diện khó khăn, cha mẹ còn lo đi làm đồng để kiếm sống, chưa thực sự quan tâm đến việc học của các em, chưa biết được tầm quan trọng của mơn Tốn nói chung và phần rèn kĩ năng giải tốn bằng sơ đồ đoạn thẳng nói riêng trong việc học của các em. Nhiều phụ huynh học sinh chưa thơng thạo tiếng phổ thơng bên cạnh đó có những phụ huynh khơng biết chữ nên khơng thể giúp con em mình việc học ở nhà Việc giải tốn bằng sơ đồ đoạn thẳng ở trường tiểu học Lê Lợi qua nhiều năm thực tế giảng dạy và dự giờ các giáo viên tơi nhận thấy rằng: Hiện nay ngồi việc đảm bảo thực hiện đúng chương trình giảng dạy của mơn tốn, cần đặc biệt chú ý đến các kỹ năng giải các bài tốn có lời văn cho học sinh. Các bài tốn có lời văn thường bắt nguồn từ thực tế. Nên ngồi cách giải tốn học sinh còn hình thành các mối quan hệ giữa kiến thức với đời sống. Rèn cho học sinh có khả năng tư duy. Nên giáo viên phải chú ý rèn cả kỹ năng tính tốn cho học sinh và cả về kỹ năng giải tốn cho học sinh. Nhưng thực tế thì một số học sinh khơng thích giải tốn có lời văn, đặc biệt các bài tốn dạng sơ đồ đoạn thẳng. Đa số học sinh chưa biết biểu diễn các yếu tố tốn học bằng các đoạn thẳng. Nếu có thì cách biểu diễn chưa chính xác, nhìn vào sơ đồ chưa tốt lên được nội dung cần biểu đạt. Từ lớp 1,2,3 học sinh đã gặp các dạng tốn này, nhưng hầu hết là giáo viên vẽ lên bảng và hướng dẫn giải, chưa u cầu học sinh vẽ. Lên lớp 4 các đại lượng tốn học cần biểu thị bằng đoạn thẳng đa dạng và phức tạp hơn. Nếu khơng có hình vẽ thì học sinh khơng thể hình dung được, nên dùng sơ đồ đoạn thẳng là hết sức cần thiết Mà thực tế học sinh chưa có kỹ năng này. Mặt khác khả năng tư duy ở nhiều học sinh còn hạn chế, khơng có khả năng thiết lập các mối liên hệ giữa các đại lượng trong bài tốn. Qua khảo sát trước khi thực hiện đề tài, lớp tơi có 24 học sinh nhưng chỉ có 4 em biết cách giải tốn có lời văn bằng sơ đồ đoạn thẳng. Các em còn lại chưa nắm rõ cách giải tốn bằng sơ đồ. Chính vì vậy việc giảng dạy phân mơn chưa hiệu quả, học sinh tiếp thu bài chưa nhanh. Chính vì vấn đề này giúp học sinh giải tốn nhanh và chính xác hơn 3. Nội dung và hình thức của giải pháp a. Mục tiêu của giải pháp Dạy tốn theo bài giải bằng sơ đồ đoạn thẳng là mơt dạng tốn phổ biến ở bậc tiểu học, đặc biệt là lớp 4. Để học sinh tiếp thu bài học nhanh, chính xác và hiệu quả đòi hỏi mỗi giáo viên cần phải có kế hoạch và phương pháp dạy học nhằm giúp học sinh tiếp thu bài nhanh b. Nội dung và cách thực hiện giải pháp Thơng thường khi giải bài tốn người giáo viên phải định hướng cho học sinh nắm vững 4 bước sau đây: Bước 1: Tìm hiểu đề Xác định đâu là những cái đã cho, đâu là cái phải tìm? Trong bước này cần lưu ý: Cần hướng sự tập trung suy nghĩ của học sinh vào những từ quan trọng của đề tốn, từ nào chưa hiểu hết ý nghĩa, thì phải tìm hiểu ý nghĩa của nó Học sinh cũng cần phân biệt rõ những gì thuộc về bản chất của đề tốn để hướng sự chú ý của mình vào những chỗ cần thiết Bước 2: Tóm tắt bài tốn Bước đầu học sinh tóm tắt bằng lời, nhớ được các điều kiện đã cho, các điều kiện phải tìm, mối tương quan lẫn nhau giữa các đại lượng. Tiếp đó học sinh tự tóm tắt bằng lời sang dạng biểu thị bằng sơ đồ đoạn thẳng Cụ thể là sau khi đọc kỹ đề bài, học sinh phải xác định được bài tốn cho biết gì? tìm gì? phân tích đề bài loại bỏ yếu tố thừa. Thiết lập các mối quan hệ để từ đó dựng các đoạn thẳng thay cho các số (số đã biết, số phải tìm). Sắp xếp các đoạn thẳng để minh hoạ cho mối quan hệ trong bài Lưu ý khi dựng các đoạn thẳng giáo viên nên cho học sinh chọn độ dài thích hợp như: số lớn dựng đoạn thẳng dài, số bé dựng đoạn thẳng ngắn Học sinh tự so sánh hơn kém, tỷ lệ giữa các đoạn thẳng sao cho phù hợp cân đối Giáo viên hướng dẫn các em sắp xếp các đoạn thẳng phù hợp với điều kiện bài tốn. Các số liệu trừu tượng dựng nét đứt Học sinh dựa trên tóm tắt sơ đồ, có thể đọc được nội dung bài tốn, thấy được mối liên hệ phụ thuộc vào các đại lượng tốn học để từ đó tìm ra cách giải Bước 3: Lập kế hoạch giải tốn Tức là dựng lối phân tích đi từ câu hỏi chính của bài tốn, tìm ra câu hỏi phụ có liên quan đến câu hỏi chính. Bằng suy luận từ các câu hỏi ấy kết hợp với các điều kiện đã cho của đầu bài, học sinh lập thành một quy trình giải. Nghĩa là muốn tìm được yếu tố chưa biết cần dựa vào đâu? dựa vào yếu tố nào? đã biết chưa? Tóm lại để giải được loại bài này cần tìm cái gì trước? Cái gì sau? Bước 4: Giải tốn và thử lại kết quả Sau khi đã lập xong kế hoạch giải tốn, giáo viên hướng dẫn học sinh thực hiện kế hoạch đó. Bước này cần hướng dẫn học sinh tính tốn và trình bày lời giải sao cho phù hợp. Chú ý cần thử lại sau khi làm xong từng phép tính, cũng như thử lại đáp số xem có phù hợp với đề tốn khơng Cách thức thực hiện giải pháp, biện pháp Áp dụng cụ thể từng dạng tốn Dạng 1: Dạy tốn hợp sử dụng sơ đồ đoạn thẳng Đây là loại tốn đã được học ở lớp dưới, lên lớp 4 giúp học sinh củng cố hệ thống hố lại phương pháp theo lối phân tích để giải, đồng thời tập cho các em làm quen và rèn kỹ năng sử dụng sơ đồ đoạn thẳng để giải. Dạng này được viết dưới hình thức ơn tập Bài 1 Một trại ni được 596 con vịt, số gà kém số vịt 4 lần. Hỏi trại đó ni được tất cả bao nhiêu con gà vịt? Đối với bài này cần hướng dẫn học sinh vẽ sơ đồ đoạn thẳng như thế nào để dễ dàng thấy được hai điều kiện của bài tốn: Số vịt trại ni được là 596 con và số gà kém số vịt 4 lần. (biểu thị quan hệ so sánh số này kém số kia một số lần) Bước 1: Tìm hiểu đề bài Để làm được điều này cần phân tích nội dung đề bài tốn (giáo viên dựng câu hỏi)? Bài tốn cho biết gì? (số vịt 596 con, gà kém vịt 4 lần). Bài tốn hỏi gì? (tính tổng số vịt và gà của cả trại)? Muốn tính được số vịt và gà của cả trại thì phải tính gì trước? (tính số gà trước ) Bước 2: Tóm tắt bài tốn + Tóm tắt bằng lời: Số vịt : 596 con Số gà kém vịt : 4 lần Tất cả :…? con gà vịt + Tóm tắt bằng sơ đồ: 596 con Số vịt: Số gà: ? con ? con Hai cách tóm tắt trên ta thấy tóm tắt bằng sơ đồ đoạn thẳng học sinh dễ nhận ra số gà bằng 1/4 số vịt. Đây là chỗ dựa cơ bản để học sinh tìm ra trình tự giải Bước 3: Lập kế hoạch giải Giáo viên dựng hệ thống câu hỏi giúp học sinh thiết lập được quy trình giải Nhìn vào sơ đồ ta thấy muốn tìm cả số gà, số vịt của cả trại ta phải tìm cái gì trước? (tìm số gà trước) Muốn tìm được số gà ta làm như thế nào? (lấy số vịt chia đều 4 phần, ta tìm được một phần, chính là số gà ) Khi đó tìm được số gà rồi, ta có tính được số gà và vịt của trại khơng? Và làm như thế nào? (tính được bằng phép cộng) Bước 4: Giải bài tốn Đáp số: 745 con Qua ví dụ trên ta thấy rằng đây là dạng tốn đơn giản mà học sinh đã làm quen từ lớp 3. Điều quan trọng là tập cho học sinh thói quen và khắc sâu cách tóm tắt bài tốn bắng sơ đồ đoạn thẳng. Dạng 2: Dạy dạng tốn trung bình cộng Dạng tốn tìm trung bình cộng của hai hay nhiều số. Loại tốn này lớp 3 học sinh đã gặp nhưng chưa đặt thành dạng tốn điển hình. Với dạng tốn này học sinh sử dụng quy tắc chung có thể giải được, nhưng để học sinh hiểu sâu, chắc thì dựng sơ đồ đoạn thẳng có hiệu quả tốt Bài 1: Một tổ sản xuất muối thu hoạch trong năm đợt như sau: 45 tạ, 60 tạ,72 tạ, 75 tạ, 98 tạ. Hỏi trung bình mỗi đợt thu hoạch được bao nhiêu tạ muối? Để giải được bài tốn này, học sinh có thể áp dụng quy tắc chung để tính Nhưng như vậy học sinh sẽ giải một cách máy móc khơng hiểu rõ bản chất của vấn đề đó là tìm trung bình số muối mỗi đợt thu hoạch được chính là tìm cái gì Vì vậy muốn học sinh hiểu rõ được bản chất của bài tốn phải hướng dẫn học sinh vẽ sơ đồ đoạn thẳng. Ứng với mỗi đợt thu hoạch ta biểu diễn bằng một đoạn thẳng. Số muối ít dựng đoạn thẳng ngắn, số muối nhiều dựng đoạn thẳng dài, năm đoạn thẳng này được đặt liên tiếp trên một đường thẳng. Muốn tính trung bình mỗi đợt thu hoạch là bao nhiêu tạ muối tức là ta tính đoạn thẳng tổng đó rồi chia 5 45 tạ 60 tạ 72 tạ 75 tạ 98 tạ ? tạ ? tạ ? tạ ? tạ ? tạ Từ đây giáo viên hướng dẫn học sinh muốn tìm được trung bình mỗi đợt ta phải tính được đoạn thẳng tổng (bằng tổng các đoạn thẳng ngắn) rồi chia cho 5 Hướng dẫn như trên học sinh có thể tự giải được Cả 5 đợt tổ sản xuất thu hoạch được là: 45 + 60 + 72 + 75 + 98 = 350 (tạ) Trung bình mỗi đợt thu hoạch được là: 350 : 5 = 70 (tạ) Đáp số: 70 tạ Lưu ý: Ở dạng tốn này học sinh thường lúng túng bước vẽ sơ đồ, vì 5 đoạn thẳng thay cho 5 số khơng đều nhau. So sánh bằng mắt của học sinh còn hạn chế nên giáo viên hướng dẫn tỉ mỉ Bài 2: Số trung bình cộng của hai số bằng 20. Biết một trong hai số đó bằng 30. Tìm số kia? Bài tốn này dạng ngược lại của bài tốn trên vừa giải. Đó là bài tốn cho biết số trung bình cộng của hai số và một số cho trước, tìm số kia. Đối với bài này giáo viên cần hướng dẫn học sinh vẽ sơ đồ khi tóm tắt Ta có thể sử dụng bằng hai sơ đồ sau Một sơ đồ biểu thị trung bình cộng của hai số, đoạn thẳng tổng hai số được tạo bởi hai số bằng nhau có số chỉ là 20 Một sơ đồ có độ dài bằng sơ đồ trên nhưng có chỉ số khác nhau để biểu thị số phải tìm. 20 20 30 ? Nhìn vào sơ đồ trên học sinh thấy ngay tổng của hai số là: 20 + 20 = 40 hoặc 20 x 2 = 40 Sơ đồ dưới học sinh biết ngay cách tính số phải tìm là lấy tổng trừ đi số đã biết: 40 – 30 = 10 vậy số phải tìm là 10 Hoặc một bài tốn như sau: Bài 3: Một đội cơng nhân sửa chữa đường sắt ngày thứ nhất sửa được 15m đường, ngày thứ hai hơn ngày thứ nhất 1m, ngày thứ ba hơn ngày thứ nhất 2m. Hỏi trung bình mỗi ngày đội cơng nhân ấy sửa chữa được bao nhiêu mét đường sắt? * Nếu giải theo cách thơng thường sẽ giải như sau: Giải Ngày thứ hai đội cơng nhân sửa được số mét đường là: 15 + 1 = 16 (m) Ngày thứ ba đội cơng nhân sửa được số mét đường là: 15 + 2 = 17 (m) Trung bình mỗi ngày đội cơng nhân ấy sửa được số mét đường là: (15 + 16 + 17) : 3 = 16 (m) Đáp số: 16 m. * Nếu ta hướng dẫn học sinh vẽ sơ đồ để giải thì bài tốn có thể giải một cách ngắn gọn như sau: 15 m Ngày thứ nhất: 1m Ngày thứ hai: ? m 2m Ngày thứ ba: ? m Trung bình: ? mét Giải Nếu ta chuyển 1m của ngày thứ ba sang ngày thứ nhất thì số mét đường sửa được của cả ba ngày bằng nhau và bằng số mét của ngày thứ hai Vậy số mét đường sắt đội cơng nhân sửa chữa được trong ngày thứ hai là: 15 + 1 = 16 (m) Đáp số: Trung bình mỗi ngày sửa chữa được 16 m Như vậy qua đó ta thấy được rằng khi đó vẽ được sơ đồ thì bằng trực giác các em giải được ngay bài tốn một cách dễ dàng Tóm lại: Với dạng tốn số trung bình cộng các em có thể giải theo quy tắc mà sách giáo khoa đã nêu. Nhưng học sinh nên dựng sơ đồ đoạn thẳng để giải sẽ bớt khó khăn trong quy trình hướng dẫn của giáo viên mà học sinh hiểu sâu, nắm chắc được bài hơn Dạng 3: Dạng tốn “Tìm hai số khi biết tổng và hiệu của hai số đó” Ở dạng tốn này giáo viên cần hướng dẫn học sinh xác định các yếu tố số lớn, số bé, sau đó học sinh xác định đâu là tổng hai số, đâu là hiệu hai số. Nhiều bài tốn cho biết tổng và hiệu rất rõ, nhưng cũng có bài chưa cho biết tổng và hiệu, đòi hỏi học sinh phải tìm. Ở dạng tốn này nhất thiết phải tìm được tổng và hiệu của hai số trước khi vẽ sơ đồ Khi học sinh vẽ sơ đồ giáo viên lưu ý cho học sinh cách biểu thị từng số lớn, số bé, hiệu của hai số. Tránh học sinh vẽ sơ đồ q rườm rà mà khơng nổi bật được các yếu tố của bài, khi vẽ được sơ đồ học sinh dễ dàng vẽ được bằng hai cách Bài 1: Tuổi bố và tuổi con cộng lại được 50. Bố hơn con 28 tuổi. Hỏi bố bao nhiêu tuổi, con bao nhiêu tuổi? Đây là bài toán đầu tiên thuộc dạng này, nên giáo viên cần cho học sinh đọc thật kỹ đề toán Giáo viên đưa ra hệ thống câu hỏi để học sinh phân tích nội dung bài tốn Hiểu được bài tốn cho biết gì? bài tốn bắt ta tìm gì? Để từ đó xác định được đâu là tổng, đâu là hiệu. Sau đó tóm tắt bài tốn bằng sơ đồ đoạn thẳng Lưu ý: Đây là dạng tốn tìm hai số khi biết tổng và hiệu, nên bao giờ cũng có số lớn và số bé, số lớn biểu thị đoạn thẳng dài chính là số tuổi của bố, số bé biểu thị đoạn thẳng ngắn chính là số tuổi con. Điểm lưu ý nữa, khoảng cách hiệu hai số phải xác định sao cho vừa phải cân đối Ta có sơ đồ sau: ? tuổi Tuổi con 28 tuổi 50 tuổi ( I ) Tuổi bố ? tuổi ? tuổi Tuổi bố 28 tuổi 50 tuổi ( II ) Tuổi con ? tuổi Khi vẽ được hai sơ đồ trên thì học sinh đều có thể giải được ngay bằng hai cách, tìm số bé trước bằng sơ đồ I, tìm số lớn trước bằng sơ đồ II Căn cứ vào sơ đồ I ta thấy nếu lấy tổng trừ đi hiệu thì ta có hai lần số bé, nên ta có thể giải như sau: Hai lần tuổi con là: 50 – 28 = 22 (tuổi) Tuổi con là: 22 : 2 = 11 (tuổi) Tuổi bố là: 11 + 28 = 39 (tuổi) (Hoặc: 50 – 11 = 39 (tuổi)) Đáp số: Tuổi con : 11 tuổi. Tuổi bố : 39 tuổi Căn cứ vào sơ đồ II ta thấy nếu tổng cộng với hiệu thì sẽ có hai lần số lớn vậy ta giải như sau: Hai lần tuổi bố là: 50 + 28 = 78 (tuổi) Tuổi bố là: 78 : 2 = 39 (tuổi) Tuổi con là: 39 – 28 = 11 (tuổi) (Hoặc: 50 – 39 = 11 (tuổi)) Đáp số: Tuổi con 11 tuổi, tuổi bố 39 tuổi Từ đây cho học sinh so sánh đối chiếu hai cách giải đều có kết quả như Trong q trính giải tốn học sinh nên lựa chọn đề trình bày một trong hai cách giải trên Dạng 4: Dạng tốn “Tìm hai số khi biết tổng và tỷ số của hai số đó” Đối với dạng tốn tìm hai số khi biết tổng và tỉ số của hai số, người giáo viên khi dạy phải biết phân ra các loại từ dễ đến khó thì học sinh mới nhớ và giải chính xác được. Tổng và tỷ phát triển nhiều trường hợp, hình thức khác nhau Với dạng tốn này tơi xin phân thành 3 loại Loại 1: Đề bài đã cho rõ tổng, tỉ số của hai số đó Đây là loại bài đơn giản nhất. Loại này áp dụng được cho tất cả các đối tượng học sinh. Đối với dạng này giáo viên chỉ cần cho học sinh nhắc đề bài cho tổng là bao nhiêu, tỉ là bao nhiêu và yếu tố cần tìm trong bài là gì? Học sinh vẽ sơ đồ căn cứ vào tổng và tỉ đã cho sẵn ở đề bài Ví dụ1: Tổng hai số là 90, số lớn gấp 4 lần số bé. Tìm hai số đó? Học sinh bám ngay lấy tổng là 90, tỉ số của hai số là số lớn gấp 4 lần số bé Xác định yếu tố cần tìm là số lớn, số bé để vẽ sơ đồ. ? Số bé Số lớn 90 ? Sau khi vẽ sơ đồ xong học sinh nhìn vào sơ đồ để giải tiếp Ví dụ 2: Một nơng trường có 352 con trâu và bò, số bò nhiều gấp 3 lần số trâu. Tính số trâu, số bò của nơng trường đó Bước 1: Tìm hiểu đề tốn u cầu học sinh đọc kỹ đề tốn, xác định yếu tố đã cho và yếu tố phải tìm 10 Bài tốn cho biết gì? (Tổng số bò và trâu của nơng trường, tỷ số là số bò nhiều gấp 3 lần số trâu) Bài tốn hỏi gì? (Tìm số trâu, số bò của nơng trường) Bước 2: Tóm tắt bằng sơ đồ đoạn thẳng Từ những dự kiện đã tìm hiểu của bài tốn bước trên học sinh tóm tắt bằng sơ đồ đoạn thẳng. ? con Số trâu 352 con Số bò ? con Lưu ý: Học sinh xác định đâu là tổng, đâu là tỷ số Bước 3: Lập kế hoạch giải tốn Nhìn sơ đồ ta thấy 352 con gồm tất cả mấy phần bằng nhau. (4 phần) Muốn tìm một phần xem ứng với bao nhiêu con ta làm thế nào? (lấy 352 : 4 = 88 con) Tìm được một phần gồm 88 con, muốn biết 3 phần ứng với bao nhiêu con ta làm thế nào? ( 88 x 3 = 264 con) Bước 4: Giải bài tốn Tổng số phần bằng nhau là: 1 + 3 = 4 (phần) Số trâu của nơng trường là: 352 : 4 = 88 (con) Số bò của nơng trường là: 88 x 3 = 264 (con) Đáp số: Số trâu: 88 con Số bò : 264 con Loại 2: Tổng hoặc tỉ số trong đề bài được dấu đi, thơng qua một số dự kiện trong đề bài ta mới tìm ra được tổng hoặc tỉ số rồi mới vẽ sơ đồ để giải. Cụ thể: Ví dụ 1: Hình chữ nhật có chu vi là 90dm, chiều rộng bằng 2/3 chiều dài Tính diện tích hình đó? Như vậy tổng đã bị ẩn đi học sinh phải biết nửa chu vi của hình chữ nhật chính là tổng của chiều dài và chiều rộng, nên phải tính nửa chu vi của hình chữ nhật sau đó mới vẽ sơ đồ theo tổng và tỉ số Tổng chiều dài và rộng là: 90 : 2 = 45 dm Sơ đồ : ? m Chiều dài 11 45 dm Chiều rộng ? m Ví dụ 2: Tổng của hai số bằng tích giữa số chẵn lớn nhất có một chữ số với số lẻ bé nhất có hai chữ số, số lớn gấp 3 lần số bé. Tìm hai số đó? Vậy học sinh phải hiểu tổng của hai số phải tìm bằng tích của 8 x 11 = 88 Bên cạnh đó tỷ số của hai số nhiều khi cũng được nêu ở các dạng khác nhau Có thể cho dưới dạng tỷ số là số tự nhiên n, hoặc trường hợp tỷ số dạng 1/n, hay có thể ở một dạng khác như: tỷ số của hai số bằng thương của một số lớn nhất có hai chữ số với số lẻ nhỏ nhất có hai chữ số. Ta phải tìm tỷ số hai số là: 99 : 11 = 9 (tức số bé bằng 1/9 số lớn) hoặc số lớn gấp 9 lần số bé Loại 3: Bài tốn khơng cho cụ thể tổng và tỉ số mà phải thơng qua một số bước giải mới xác định được tổng và tỉ rồi mới vẽ được sơ đồ để giải. Loại này có khó và nâng cao hơn, thường áp dụng cho đối tượng học sinh tiếp thu bài nhanh. Đối với loại này giáo viên cũng phải hướng dẫn học sinh giải được rõ tổng là bao nhiêu, tỉ số là bao nhiêu thì mới vẽ được sơ đồ và giải tiếp kết quả Ví dụ: Tổng của hai số là số nhỏ nhất có ba chữ số. Tìm hai số đó biết tỉ số của chúng là thương của số chẵn lớn nhất có một chữ số với số liền sau số 1 Như vậy để vẽ được sơ đồ học sinh phải tìm được: Tổng (số nhỏ nhất có ba chữ số) là 100 Tỉ số là (thương của số chẵn lớn nhất có một chữ số (số 8) với số liền sau số 1 (số 2). Vậy tỉ số của hai số sẽ là 8: 2= 4. Tức số bé bằng 1/4 số lớn) hoặc số lớn gấp 4 lần số bé Qua bước tìm tổng 100, tỉ số là 4 học sinh mới vẽ được sơ đồ sau : ? Số bé 100 Số lớn ? Cho tổng và tỷ số được nêu ở dạng nào, cho biết trực tiếp hay dán tiếp, giáo viên đều hướng dẫn học sinh phải xác định rõ được tổng và tỷ, các yếu tố trong bài tương ứng với số lớn, số bé thì bài tốn mới giải được 12 Lưu ý: Khi hướng dẫn các em vẽ sơ đồ nên vẽ số bé trước để gấp số lần theo tỷ lệ số đã cho ta được số lớn, và điểm đầu để vẽ các đoạn thẳng đó phải đặt bằng nhau. Làm như vậy học sinh sẽ dễ vẽ sơ đồ và nhận ra các số Có khi ở dạng tốn này là việc vẽ sơ đồ đoạn thẳng khi vẽ được sơ đồ học sinh dễ dàng nhận ra số phần bằng nhau và định ra được hướng giải. Các bước giải dạng tốn này có thể tóm tắt như sau: Tóm tắt trên sơ đồ đoạn thẳng Tìm tổng số phần bằng nhau Tính giá trị một phần (lấy tổng chia cho tổng số phần) Tính giá trị từng số Tóm lại: Cho tổng và tỉ được nêu ở dạng nào, đề bài cho biết trực tiếp hay gián tiếp, giáo viên phải hướng dẫn học sinh biết phân loại các dạng tốn, phải xác định được tổng, tỉ số các yếu tố số lớn, số bé và tiến hành vẽ sơ đồ thì mới giải nhanh và chính xác được. Dạng 5: Dạng tốn tìm hai số khi biết hiệu và tỷ số của hai số đó Đối với dạng tốn này giáo viên cũng hướng dẫn tương tự như dạng 4 (tìm hai số khi biết tổng và tỷ số của hai số đó). Bước đầu là vẽ sơ đồ, quy trình giải cũng tương tự dạng tốn trên Cần hướng dẫn học sinh tìm hiểu đề, phân tích các yếu tố đã cho và yếu tố phải tìm để tóm tắt được bài tốn bằng sơ đồ đoạn thẳng. Lưu ý: Ở đây là dạng tốn tìm hai số khi biết hiệu và tỷ số của hai số đó, tức là bài tốn đã cho ta biết hiệu của số lớn và số bé kết hợp với tỷ số đã cho của bài tốn. Từ những yếu tố này học sinh dễ dàng thể hiện trên sơ đồ đoạn thẳng và dễ dàng định ra hướng giải Ví dụ: Mẹ hơn con 24 tuổi và tuổi mẹ gấp 5 lần tuổi con. Hãy tính tuổi mẹ, tuổi con? Bước 1: Tìm hiểu đề tốn u cầu học sinh đọc kỹ đề bài xác định rõ yếu tố đã cho và yếu tố phải tìm bằng hệ thống câu hỏi Bài tóan cho biết gì? (Hiệu tuổi mẹ và tuổi con là 24 tuổi, tỷ số là tuổi mẹ gấp 5 lần tuổi con) Bài tốn hỏi gì? (Tính tuổi mẹ, tuổi con) Bước 2: Tóm tắt bài tốn bằng sơ đồ đoạn thẳng ? tuổi Tuổi con 24 tuổi Tuổi mẹ 13 ? tuổi Bước 3: Lập kế hoạch bài giải Nhìn sơ đồ học sinh dễ dàng nhận thấy tuổi mẹ hơn tuổi con 4 phần Có thể hỏi học sinh 4 phần ứng với bao nhiêu tuổi ? (24 tuổi) Muốn biết một phần ứng với bao nhiêu tuổi ta tính thế nào? (24 : 4 = 6 (tuổi)) Một phần chính là số tuổi của ai? (số tuổi con) Biết số tuổi của con là 6 tuổi, muốn tính được số tuổi của mẹ ta làm thế nào? ( 6 x 5 = 30 (tuổi) Bước 4: Giải bài tốn Hiệu số phần bằng nhau là: 5 – 1 = 4 (phần) Tuổi con là: 24 : 4 = 6 (tuổi) Tuổi mẹ là: 6 x 5 = 30(tuổi) Đáp số: Tuổi con: 6 tuổi. Tuổi mẹ: 30 tuổi Như vậy để giải dạng tốn này ta cũng có thể hướng dẫn học sinh giải theo các bước sau: Tóm tắt bằng sơ đồ đoạn thẳng Tìm hiệu số phần bằng nhau (tức là tìm số phần ứng với hiệu hai số) Tính giá trị một phần Tính giá trị của từng số Tóm lại: Trên đây là một số ví dụ điển hình về các dạng tốn dùng sơ đồ đoạn thẳng để giải. Vậy để nâng cao hiệu quả giảng dạy tốn 4 về giải tốn giáo viên cần làm tốt các việc sau: Đối với các bài tốn có lời văn thuộc các dạng tốn điển hình như đã nêu trên, giáo viên cần hướng dẫn học sinh vẽ sơ đồ đoạn thẳng để giải Giáo viên lưu ý chú trọng khâu học sinh vẽ sơ đồ. Bởi vì muốn vẽ được sơ đồ đoạn thẳng chính xác trước tiên học sinh phải hiểu đề bài tốn. Phân tích kỹ đề bài tốn để tìm ra mối liên hệ phụ thuộc vào nhau của các đại lượng. Đó là bài tốn cho biết gì? bài tốn bắt tìm gì? Khi học sinh vẽ sơ đồ giáo viên cần hướng dẫn để các em định hướng được nên vẽ gì trước, vẽ gì sau. Hướng dẫn tỉ mỉ cách sắp xếp các đoạn thẳng trên sơ đồ cho hợp lý, phù hợp với yều cầu đề bài Để khi nhìn vào sơ đồ thấy ngay được mối tương quan giữa các đại lượng. Từ đó các em tìm ra cách giải một cách dễ dàng 14 Lưu ý: Hạn chế việc giáo viên vẽ mẫu sơ đồ cho học sinh chép lại, giáo viên chỉ sửa chữa giúp học sinh vẽ được sơ đồ c. Mối quan hệ giữa các giải pháp, biện pháp Với đề tài này thì mối quan hệ giữa các giải pháp là nền tảng để thực hiện mục tiêu. Đối với mơn tốn nhất là giải tốn bằng sơ đồ đoạn thẳng thì thơng qua nội dung thực tế nhiều hình vẽ của các đề tốn giáo viên cần có đồ dùng dạy học cho từng bài kết hợp với việc lựa chọn phương pháp dạy học phù hợp là hết sức cần thiết để học sinh tiếp nhận được nhiều kiến thức phong phú về cuộc sống, và có điều kiện rèn kỹ năng áp dụng các kiến thức tốn học vào cuộc sống hàng ngày d. Kết quả khảo nghiệm, giá trị khoa học của vấn đề nghiên cứu Năm học 2016 – 2017 Điểm 910 Điểm 78 Điểm 56 Duới điểm 5 TS TL% TS TL% TS TL% TS TL% Đầu năm 8,3 % 20,8 % 10 41,6 % 29,1 % GHK1 16,6 % 33,3 % 29,1 % 20,8 % GHK2 20,8 % 37,5 % 29,1 % 12,5 % Cuối năm 33,3 % 37,5 % 29,1 % 0 % III. Phần kết luận, kiến nghị 1. Kết luận Trong chương trình tốn lớp 4, nhất là các dạng tốn có thể dựng sơ đồ đoạn thẳng để giải. Ngồi việc rèn kỹ năng vẽ sơ đồ đoạn thẳng còn rèn cho học sinh khả năng tư duy, biết dựng sơ đồ đoạn thẳng để ứng dụng thực hành, làm tốt các dạng bài tập, luyện tập. Đặc biệt áp dụng vào để giải các bài tốn nâng cao Vậy để giúp học sinh có khả năng giải tốn bằng phương pháp dựng sơ đồ đoạn thẳng giáo viên cần lưu ý một số điểm sau: Nắm vững các dạng tốn giải để đạt được kết quả tốt trong q trình dạy học. Người thầy phải khơi dạy tính tò mò của học sinh qua việc tìm ra nhiều cách giải cho một bài tốn Khi dạy dạng tốn này giáo viên hướng dẫn học sinh kỹ năng giải theo quy trình 4 bước. Chú trọng đến tìm hiểu đầu bài để học sinh nhận ra dạng tốn. Từ đó học sinh thực hiện tốt các bước sau: + Khi ra bài tập phải phù hợp với đối tượng học sinh + Đối với học sinh học tốt giáo viên nên thường xun Chuyển đổi liên tục các dạng tốn đề tránh sự nhàm chán Khuyến khích học sinh giải bài tốn bằng nhiều cách Nâng cao dần lượng, mức độ bài tập 15 + Đối với học sinh chưa hồn thành giáo viên nên Kết hợp chặt chẽ với gia đình học sinh Kèm cặp các em trong những giờ lên lớp Ra nhiều bài tập ở dạng tương tự nhau + Tích cực kiểm tra vở của học sinh, khuyến khích các em làm bài tập Phương pháp dạy học của giáo viên được coi là tốt nhất khi học sinh say sưa, nhiệt tình, hứng thú học tập Để đạt được kết quả cao hơn, đảm bảo tính khoa học, tính chính xác, phát huy được tính chủ động, sáng tạo của học sinh thì người giáo viên phải khơng ngừng nâng cao trình độ về tốn học và phương pháp dạy học tốn Cần hướng dẫn học sinh tìm hiểu đề, phân tích các yếu tố đã cho và yếu tố phải tìm để tóm tắt được bài tốn bằng sơ đồ đoạn thẳng. Lúc này học sinh sẽ dễ dàng định ra hướng giải Cần gây cho học sinh hứng thú, ham thích giải tốn bằng phương pháp này, giáo viên cần cho học sinh rèn luyện nhiều lần để học sinh có khả năng vẽ sơ đồ thành thạo. Biết đọc sơ đồ và có thể nhìn vào sơ đồ để đọc được đề bài tốn Giáo viên nên coi học sinh là nhân vật trung tâm của q trình dạy và học. Tổ chức và hướng dẫn phải để học sinh được họat động, tự làm lấy phần việc dưới sự chỉ đạo của giáo viên. Vẽ và sử dụng sơ đồ để tự học sinh làm, giáo viên khơng được làm thay học sinh. Bên cạnh đó giáo viên phải là người khơi dậy lòng ham mê tự tin của học sinh Các bài mẫu trong sách giáo viên cần vẽ lên bảng chính xác, dễ xem, dễ hiểu. Tránh trường hợp vẽ q nhỏ, q to hoặc rối hình làm học sinh khó hiểu Khi nêu câu hỏi phần hướng dẫn giải cần lựa chọn những câu hỏi ngắn, đúng trọng tâm để học sinh trả lời sát với u cầu đề bài 2. Kiến nghị * Đối với tổ chun mơn Đối với những dạng tốn giải cần áp dụng sơ đồ đoạn thẳng để hướng dẫn cho học sinh giải thì tổ chun mơn cần bố trí một số giáo viên đi dự giờ thăm lớp để học hỏi và góp ý cho đồng nghiệp của mình dạy tốt hơn. Phải lồng ghép phần tốn vào để thảo luận, trao đổi buổi sinh hoạt chuyên mơn Chun mơn thường xun tổ chức các tiết chun đề chun sâu về dạng tốn giải bằng sơ đồ đoạn thẳng để nâng cao trình độ và kĩ năng giải tốn cho giáo viên * Đối với nhà trường Thường xun tổ chức những chun đề đổi mới phương pháp dạy học, thi giáo viên giải tốn giỏi cấp trường, để tạo điều kiện và cơ hội cho cán bộ giáo 16 viên học hỏi và khẳng định, đánh giá được chính mình. Để giáo viên có những định hướng cụ thể trong việc dạy – học của mình * Đối với ngành giáo dục Tổ chức các buổi hội thảo về giải tốn bằng vẽ sơ đồ để giáo viên được tham gia rút kinh nghiệm trong vấn đề đổi mới phương pháp giảng dạy Trong thời gian nghiên cứu và làm đề tài, tơi đã nhận được sự giúp đỡ và góp ý của nhà trường, của đồng nghiệp và đặc biệt là đề tài đã được thực nghiệm tại đơn vị cơng tác và thu được nhiều kết quả rất khả quan. Với niềm tin tuởng của tơi, đề tài này nếu được áp dụng đại trà sẽ góp phần nâng cao chất lượng giáo dục tồn diện cho nhà trường và nhất là phát triển kĩ năng giải tốn dựng sơ đồ đoạn thẳng cho học sinh tiểu học Ea Na, ngày 26 tháng 03 năm 2018 Giáo viên thực hiện Nguyễn Thế Nghiệp NHẬN XÉT CỦA HỘI ĐỒNG SÁNG KIẾN CẤP TRƯỜNG 17 NHẬN XÉT CỦA HỘI ĐỒNG SÁNG KIẾN CẤP HUYỆN 18 DANH MỤC TÀI LIỆU THAM KHẢO @&? 1. Thông tư 30/2014/TTBGDĐT ngày 28 tháng 8 năm 2014 ban hành quy định đánh giá học sinh tiểu học 2. Hướng dẫn điều chỉnh nội dung dạy học cấp tiểu học 3. Chuẩn kiến thức kĩ năng và sách giáo viên khối 4 4. Thơng tư 22/2016/TTBGD ĐT sửa đổi quy định đánh giá học sinh tiểu học kèm theo Thơng tư 30/2014/TTBGD ĐT 5. Nghiên cứu nhiệm vụ năm học 20162017 19 MỤC LỤC I. Phần mở đầu 1. Lí do chọn đề tài 2. Mục tiêu, nhiệm vụ của đề tài 3. Đối tượng nghiên cứu 4. Giới hạn của đề tài 5. Phương pháp nghiên cứu II. Phần nội dung 1.Cơ sở lí luận 2. Thực trạng 3. Nội dung và hình thức của giải pháp a. Mục tiêu của giải pháp b. Nội dung và cách thực hiện giải pháp c. Mối quan hệ giữa các giải pháp, biện pháp d. Kết quả khảo nghiệm, giá trị khoa học của vấn đề nghiên cứu III. Phần kết luận, kiến nghị 1. Kết luận 2. Kiến nghị Danh mục tài liệu tham khảo TRANG 1 1 2 2 2 2 2 2 3 3 3 14 14 14 14 15 18 20 21 MỤC LỤC @&? Trang I. Phần mở đầu 1. Lý do chọn đề tài 2. Mục tiêu, nhiệm vụ của đề tài 3. Đối tượng nghiên cứu 4 . Giới hạn của đề tài 5. Phương pháp nghiên cứu II. Phần nội dung 1. Cơ sỡ lý luận 2. Thực trạng của vấn đề 3. Nội dung và hình thức của giải pháp a. Mục tiêu của giải pháp b. Nội dung và cách thức thực hiện giải pháp c. Mối quan hệ giữa các biện pháp, giải pháp d. Kết quả khảo nghiệm, giá trị khoa học của vấn đề nghiên cứu III. Phần kết luận, kiến nghị 1. Kết luận 2. Kiến nghị . Nhận xét của Hội đồng sáng kiến Danh mục tài liệu tham khảo 22 ... với một số dạng tốn ở lớp 4. Trên cơ sở đó giúp học sinh hiểu về dạng tốn giải bằng sơ đồ đoạn thẳng, từ đó có đề xuất một số biện pháp về việc rèn kỹ năng giải tốn bằng sơ đồ đoạn thẳng đối với học sinh lớp 4 nhằm nâng cao chất lượng mơn học cho học sinh. ... Trong chương trình tốn lớp 4, nhất là các dạng tốn có thể dựng sơ đồ đoạn thẳng để giải. Ngồi việc rèn kỹ năng vẽ sơ đồ đoạn thẳng còn rèn cho học sinh khả năng tư duy, biết dựng sơ đồ đoạn thẳng để ứng dụng thực hành, làm tốt ... 3. Đối tượng nghiên cứu Rèn kĩ năng giải tốn bằng sơ đồ đoạn thẳng cho học sinh lớp 4A”. 4. Giới hạn của đề tài Học sinh lớp 4A trường Tiểu học Lê Lợi năm học 2016 2017 5. Phương pháp nghiên cứu