Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 32 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
32
Dung lượng
1,54 MB
Nội dung
KHOẢNG CÁCH A- LÝ THUYẾT TÓM TẮT Khoảng cách từ điểm đến đường thẳng + Khoảng cách từ điểm đến đường thẳng a d(M, ) = MH, , H hình chiếu M Khoảng cách từ điểm đến mặt phẳng + Khoảng cách từ điểm đến đến mặt phẳng () d(O,()) OH , H hình chiếu O () Cách Tính trực tiếp Xác định hình chiếu H O () tính OH - Dựng mặt phẳng (P) chứa O vng góc với () - Tìm giao tuyến (P) () - Kẻ OH ( H ) Khi d(O,()) OH Cách Sử dụng công thức thể tích 3V Thể tích khối chóp V S.h h Theo cách này, để tính khoảng cách từ đỉnh hình S chóp đến mặt đáy, ta tính V S Cách Sử dụng phép trượt đỉnh Kết Nếu đường thẳng song song với mặt phẳng () M, N d(M;()) d(N;()) Kết Nếu đường thẳng cắt mặt phẳng () điểm I M, N (M, N không trùng với I) d(M;()) MI d(N;()) NI Đặc biệt: + M trung điểm NI d(M;()) d(N;()) d(M;( )) d(N;( )) + I trung điểm MN Cách Sử dụng tính chất tứ diện vng Cơ sở phương pháp tính chất sau: Giả sử OABC tứ diện vuông O ( OA OB,OB OC,OC OA ) H hình chiếu O mặt phẳng (ABC) 1 1 2 OH OA OB OC2 Cách Sử dụng phương pháp tọa độ Cơ sở phương pháp ta cần chọn hệ tọa độ thích hợp sau sử dụng công thức sau: Ax By0 Cz D + d(M;()) với M(x ; y0 ;z0 ) , () : Ax By Cz D A B2 C + d(M, ) + d(, ') MA u u với đường thẳng qua A có vectơ phương u u u '.AA ' u u' với ' đường thẳng qua A ' có vtcp u ' Khoảng cách từ đường thẳng đến mặt phẳng song song với + d(, ()) = d(M, ()), M điểm nằm HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang + Việc tính khoảng cách từ đường thẳng đến mặt phẳng () quy việc tính khoảng cách từ điểm đến mặt phẳng Khoảng cách hai mặt phẳng song song + d((), () ) = d(M, () ), M điểm nằm () + Việc tính khoảng cách hai mặt phẳng song song quy việc tính khoảng cách từ điểm đến mặt phẳng Khoảng cách hai đường thẳng chéo + Đường thẳng cắt a, b vng góc với a, b gọi đường vng góc chung a, b + Nếu cắt a, b I, J IJ gọi đoạn vng góc chung a, b + Độ dài đoạn IJ gọi khoảng cách a, b + Khoảng cách hai đường thẳng chéo khoảng cách hai đường thẳng với mặt phẳng chứa đường thẳng song song với + Khoảng cách hai đường thẳng chéo khoảng cách hai mặt phẳng song song chứa hai đường thẳng * Đặc biệt + Nếu a b ta tìm mặt phẳng (P) chứa a vng góc với b, ta tìm giao điểm I (P) với b Trong mp(P), hạ đường cao IH Khi d(a, b) IH + Nếu tứ diện ABCD có AC = BD, AD = BC đoạn thẳng nối hai trung điểm AB CD đoạn vng góc chung AB CD B – BÀI TẬP I – KHOẢNG CÁCH TỪ MỘT ĐIỂM ĐẾN MẶT PHẲNG Câu 1: Cho hình chóp S.ABCD có đáy hình chữ nhật, AB a, AD 2a ; cạnh bên SA a vng góc với đáy Khoảng cách từ điểm A tới mặt phẳng SBD là: 2a a a B C 3 Hướng dẫn giải: Áp dụng công thức đường cao tứ diện vuông SABD vng A, ta có d A; SBD AH với A D a 1 1 2a AH 2 2 AH AS AB AD Chọn đáp án B Câu 2: Cho hình chóp S.ABC có đáy ABC tam giác cạnh a, cạnh bên SA vng góc với đáy Biết hình chóp S.ABC tích a Tính khoảng cách d từ điểm A đến mặt phẳng (SBC) 8a 195 6a 195 4a 195 4a 195 A d B d C d D d 195 65 195 65 Hướng dẫn giải: Gọi điểm hình vẽ Ta có AI BC, SA BC suy BC AK AK d A, SBC Ta có: V a , S ABC a2 a SA 4a Mà AI HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang Trong tam giác vng SAI ta có AS AI 4a 195 2 AS AI 65 1 Vậy d AK 2 AK AS AI Chọn đáp án C Câu 3: Khối chóp S.ABC có đáy tam giác vng cân B AB a SA ABC Góc cạnh bên SB mặt phẳng (ABC) 600 Khi khoảng cách từ A đến (SBC) là: a a a A 3a B C D Hướng dẫn giải: a d A, SBC AH 1 2 a a Chọn đáp án D Câu 4: Cho hình chóp S.ABC có đáy ABC tam giác cân, AB = BC = 2a , ABC 1200 , SA = 3a SA vng góc với mặt phẳng đáy Tính khoảng cách d từ điểm A đến mặt phẳng (SBC) a a 3a 3a A d B d C d D d 2 Hướng dẫn giải: 1 + S AB.BC.sin1200 a ; VS ABC SA.SABC a 3 + Mặt khác, SB SA2 AB a 13 AC AB BC AB.BC.cos1200 12a CS SA2 AC a 21 + Áp dụng công thức hê-rông ta có SSBC SB BC CS SB BC CS SB BC CS SB BC CS 2a (Chú ý: Nhập vào máy tính biểu thức ấn = ta có kết 13 21 13 21 13 21 13 21 ) 3.V 3a3 3a + Vậy, khoảng cách từ A đến mặt phẳng SBC d S ABC SSBC 2a Chọn đáp án D Câu 5: Cho hình chóp S.ABC có cạnh bên SA vng góc với mặt đá; BC 9m, AB 10m, AC 17m Biết thể tích khối chóp S.ABC 73m3 Tính khoảng cách d từ điểm A đến mặt phẳng (SBC) 21 24 A d B d C d D d 4 HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang Hướng dẫn giải: Áp dụng công thức He-rong ta tính diện tích tam giác ABC AB BC CA p p AB p AC p BC 36 với p V SA.S ABC SA Kẻ AH BC, AI SH ta có d A, SBC AI Đặt BH x ta có AB BH AC CH AH thay liệu toán cho vào ta tính 102 x 17 x x 6 suy AH Áp dụng hệ thức lượng tam giác vng ta có 1 25 24 2 AI 2 AI SA AH 576 Chọn đáp án D Câu 6: Cho hình chóp S ABCD có đáy ABCD hình chữ nhật, cạnh bên SA vng góc với đáy Biết 6a khoảng cách từ A đến (SBD) Khoảng cách từ C đến mặt phẳng (SBD) bằng: 3a 3a 6a 8a A B C D 7 14 Hướng dẫn giải: Với toán ta thấy A C đối xứng qua tâm O Ta nhớ đến hệ sau: Cho mặt phẳng (P) đoạn thẳng MN Với MN P I d M ; P d N ; P IM IN Khi áp dụng vào tốn ta thấy AC SBD O áp dụng hệ ta : d C; SBD d A; SBD d C; SBD OA 1 OC 6a Chọn đáp án A Câu 7: Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a SA vng góc với đáy SC = 3a Khoảng cách từ điểm A đến mp(SCD) là: a a a a A B C D 12 Hướng dẫn giải: Gọi H hình chiếu A lên SD HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang SA ABCD SA CD , CD AD CD SAD SAD SCD mà SAD SCD SD nên AH SCD , d A, SCD AH Hình vng ABCD cạnh a có đường chéo AC a a Tam giác SAC vuông A theo định lí Pytago ta tính SA a Tam giác SAD vng A có AH đường cao nên 1 1 1 a 2 hay AH 2 AH SA AD AH 3a 3a 3a Chọn đáp án C Câu 8: Cho hình chóp S.ABC có đáy ABC tam giác vuông A , AB a, AC a Tam giác SBC nằm mặt phẳng vng với đáy Tính khoảng cách từ B đến mặt phẳng SAC A a 39 13 B a C 2a 39 13 D V a HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang Hướng dẫn giải: Gọi H trung điểm BC , suy SH BC SH ABC Gọi K trung điểm AC , suy HK AC Kẻ HE SK E SK Khi d B, SAC 2d H , SAC SH HK HE 2a 39 13 SH HK Chọn đáp án C Câu 9: Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a , D 600 SA vng góc với ABCD Biết thể tích khối chóp a3 Tính khoảng cách k từ A đến mặt phẳng SBC S ABCD 3a 2a A k B k a C k 5 Hướng dẫn giải: a2 Diện tích đáy S ABCD a3 1 V B.h B.SA SA 2 a 3 a BC AM BC SAM 1 BC SA BC SBC , Từ 1 SAM SBC SAM SBC D k a SM Kẻ AH SM AH d A, SBC Xét SAM vng A Ta có 3a 1 1 AH AH k a 2 2 2 AH SA AM 3a 3a 3a 5 Chọn đáp án B Câu 10: Cho hình chóp tứ giác S.ABCD, đáy có tất cạnh a có tâm O gọi M trung điểm OA Tính khoảng cách d từ điểm M đến mặt phẳng (SCD) a a a A d B d C d D d a 6 Hướng dẫn giải: Kẻ OH CD H CD , kẻ OK SH K SH Ta chứng minh OK SCD MO 3 d M , SCD dO , SCD OK MC 2 OH OS a Trong tam giác SOH ta có: OK 2 OH OS Vì HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang a Vậy d M , SCD OK Chọn đáp án B Câu 11: Cho lăng trụ ABCD A ' B ' C ' D ' có đáy ABCD hình chữ nhật AB a, AD a Hình chiếu vng góc điểm A' mặt phẳng (ABCD) trùng với giao điểm AC BD Tính khoảng cách từ điểm B' đến mặt phẳng (A'BD) theo a là: a a a a A B C D Hướng dẫn giải: Gọi H hình chiếu A' lên mặt phẳng (ABCD) Ta có: B ' D '/ / BD A ' BD d B ', A ' BD d D ', A ' BD Mặt khác, xét hình chữ nhật A'D'DA D'A cắt A'D trung điểm A'D d D ', A ' BD d A, A ' BD Gọi G hình chiếu A lên BD A ' H AK BD AK A ' BD d A, A ' BD AK 1 a AK 2 AK AD AB Chọn đáp án C Tính Câu 12: Cho hình chóp S.ABC có đáy ABC tam giác vng A, ABC 300 , tam giác SBC tam giác cạnh a nằm mặt phẳng vng góc với mặt phẳng đáy Tính khoảng cách h từ điểm C đến mặt phẳng (SAB) a 39 a 39 a 39 2a 39 A h B h C h D h 13 52 26 13 Hướng dẫn giải: a Trong (SBC), dựng SH BC Vì SBC cạnh a nên H trung điểm BC SH SBC ABC Ta có: SBC ABC BC SH ABC SBC SH BC Vì H trung điểm BC nên d C , SAB 2d H , SAB Trong (ABC), dựng HI AB (SHI), dựng HK SI AB HI AB SHI SAB SHI AB SH Ta có HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang SHI SAB SHI SAB SI HK SAB d H , SAB HK SHI HK SI HI a a HI HB.sin HBI sin 300 HB Tam giác SHI vuông H, HK SI nên: Tam giác HBI vuông I nên sin HBI a a 2 2 2 1 SH HI 3a HK a 39 HK HK SH HI SH HI a 2 a 2 52 26 4 a 39 Vậy d C , SAB HK 13 Chọn đáp án B Câu 13: Cho hình chóp SABCD có đáy ABCD hình vng cạnh a Hình chiếu S lên mặt phẳng (ABCD) trùng với trọng tâm tam giác ABD Mặt bên SAB tạo với đáy góc 600 Tính theo a khoảng cách từ B đến mặt phẳng (SAD)? a a a a A d B d C d D d 2 Hướng dẫn giải: Gọi G trọng tâm tam giác ABD, E hình chiếu G lên AB Ta có: AB SGE SAG 600 SG GE.tan 600 Mà GE BC nên tính SG Hạ GN AD GH SN d B, SAB 3d G, SAB 3GH 3 GN GS GN GS Chọn đáp án A a Câu 14: Cho hình chóp S.ABCD có đáy ABCD hình vng BD 2a, SAC vuông S nằm mặt phẳng vng góc với đáy, SC a Khoảng cách từ điểm B đến mặt phẳng (SAD) là: a 30 2a 21 A B C 2a D a Hướng dẫn giải: BD AC 2a, CD SH BD a 2, SA AC SC a SA.SC a.a a AC 2a 3a a AH SA SH a 2 2 HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang Gọi O tâm hình vng ABCD Ta có d B, SAD 2d O, SAD 4d H , SAD a Kẻ HI / / BD I BD , HI CD Kẻ HK SI K HK SAD 4 a 3a SH HI 2a 21 d B, SAD HK 2 2 SH HI 3a 2a 16 Chọn đáp án B Câu 15: Cho hình chóp S.ABC có đáy ABC tam giác vuông A, AB 1, AC Tam giác SBC nằm mặt phẳng vng với đáy Tính khoảng cách từ B đến mặt phẳng (SAC) 39 39 A B C D 13 13 Hướng dẫn giải: Gọi H trung điểm BC, suy SH BC SH ABC Gọi K trung điểm AC, suy HK AC Kẻ HE SK E SK Khi d B, SAC 2d H , SAC HE SH H K SH HK Chọn đáp án C 2 39 13 Câu 16: Cho hình chóp S.ABCD có đáy hình chữ nhật ABCD với AB 2a, BC a Các cạnh bên hình chóp a Khoảng cách từ A đến mp (SCD) là: a 21 a A 2a B C a D Hướng dẫn giải: SO AC SO ABCD Ta có SO BD AB BC a 2 5a a SO SA2 AO 2a CD OH CD SOH Gọi H trung điểm CD CD SO AO AC Kẻ OK SH K: OK SCD HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang d A, SCD 2d O, SCD 2OK SO.OH SO OH a a 2 a 2 3a a 4 Chọn đáp án D Câu 17: Cho hình chóp S.ABC có đáy ABC tam giác vuông B biết BC a , BA a Hình chiếu vng góc H đỉnh S mặt phẳng đáy trung điểm cạnh AC biết thể tích khối chóp a3 S.ABC Khoảng cách h từ C đến mặt phẳng (SAB) a 30 a 30 2a 66 a 66 A h B h C h D h 10 11 11 Hướng dẫn giải: 1 a Đặt SH x suy V x. a.a 2 a3 6 x a a2 Ta có d C , SAB 2d H, SAB HK 1 a 66 HK HK 2a 3a 11 2a 66 d C , SAB 11 Chọn đáp án A mà Câu 18: Hình chóp S ABC có đáy ABC tam giác vuông B, BA = 3a, BC=4a SBC Biết SB 2a 3, SBC 6a 7 Hướng dẫn giải: A ABC 300 Tính khoảng cách từ B đến mp SAC B 3a 7 C 5a 7 D 4a 7 1 SH SB sin 30o 2a a ; SABC AB.BC 3a.4a 6a 2 2 Suy VS ABC 6a a 2a 3 Càn tính: SSAC ? Do tam giác SBA vuông B nên SA (2a 3)2 9a a 21 AC 9a 16a 5a Dùng định lí côsin SC SB2 BC 2SB.BC.cos30o 4a SC 2a p ( p a )( p b)( p c) , với = 12a 16a 2.2a 3.4a Dùng công thức Hêrông: S abc p HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 10 Câu 6: Cho lăng trụ ABC.A’B’C’ có đáy tam giác cạnh a Hình chiếu vng góc điểm A’ a3 lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC Biết thể tích khối lăng trụ Tính khoảng cách hai đường thẳng AA’ BC 3a 4a 3a 2a A B C D 3 Hướng dẫn giải: Gọi M trung điểm BC , dựng MN AA' N (1) Gọi O trọng tâm ABC O hình chiếu A’ lên (ABC) A'O BC Mặt khác AM BC ABC BC A 'MA BC MN Từ (1) (2) => MN đường vuông chung OP AO Kẻ OP // MN MN AM V 3a SABC OA ' ABCA'B'C' a SABC 1 a 3a Xét A 'OA vuông tai O, đường cao OP: OP MN 2 OP OA OA ' Chọn đáp án C Câu 7: Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy hình thoi cạnh a, BAD 1200 AC ' a Khoảng cách hai đường thẳng AB’ BD là: 10a 8a 6a 2a A B C D 17 17 17 17 Hướng dẫn giải: Tứ giác AB’C’D hình bình hành AB’//C’D AB’//(BC’D) d AB’, BD d AB’, BC’D d A, BC’D d C , BC’D Vì BD AC, BD CC’ BD (OCC’) (BC’D) (OCC’) Trong (OCC’),kẻ CH OC’(H thuộc OC’) => CH (BC’D) d C , BC’D CH OCC ' vuông C Vậy d(AB’,BD)= 1 2a CH 2 CH CO CC ' a 4a 17 2a 17 Chọn đáp án D Câu 8: Cho hình chóp S.ABCD có đáy hình vng cạnh a, SA a vng góc với đáy Tính khoảng cách hai đường thẳng AB SC a a a A d AB , SC a B d AB , SC C d AB , SC D d AB , SC Hướng dẫn giải: Vì AB / / CD SCD AB / / SCD Mà SC SCD d AB,SC d AB, SCD d A, SCD Gọi I trung điểm SD AI SD , mà AI CD a Suy AI SCD , d AB ,SC d A, SCD AI HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 18 Chọn đáp án B Câu 9: Cho hình chóp S.ABCD có đáy ABCD hình thoi cạnh a 3; ABC 1200 cạnh bên SA vuông góc với mặt phẳng đáy Biết số đo góc hai mặt phẳng (SBC) (ABCD) 600 Khoảng cách hai đường thẳng BD SC bằng: a 14 3a 29 3a 29 a 39 A B C D 26 13 26 Hướng dẫn giải: Kẻ CM / / BD, AN BC, AH SC suy AC CM d A, SCM AH Gọi ID DC IA AM Theo ta có góc hai mặt phẳng (SBC) (ABCD) góc SNA nên 3a SNA 600 SA AN tan 600 Áp dụng hệ thức lượng tam giác SAC vng taị A ta có 1 13 3a 39 2 AH 2 AH SA AC 27a 13 Ta có: d BD, SC d BD, SCM d D, SCM d A, SCM 3a 39 d BD,SC Suy 26 Chọn đáp án A I AD CM Câu 10: Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a Hình chiếu vng góc S lên mặt phẳng (ABCD) trùng với trung điểm H cạnh AB Góc tạo SC (ABCD) 450 Tính theo a tính khoảng cách hai đường thẳng SD AB a 15 2a a a A d B d C d D d 13 3 Hướng dẫn giải: Xác định góc SC (ABCD) SCH 450 a a SH Tính HC 2 Vì AB / / SCD , H AB nên d AB; SD d AB, SCD d H , SCD Gọi I trung điểm CD Trong (SHI), dựng HK SI K Chứng minh HK SCD d H ; SCD HK Xét tam giác SHI vuông H, HK đường cao: 1 a HK 2 HK SH HI 5a a 5a a Vậy d AB; SD HK Chọn đáp án C HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 19 Câu 11: Cho hình chóp S ABCD có đáy ABCD hình vng tâm O , cạnh a Cạnh bên SA vng góc với đáy, góc SBD 600 Tính theo a khoảng cách hai đường thẳng AB SO a a a a A B C D Hướng dẫn giải: SAD c g c , suy SB SD Ta có SAB Lại có SBD 600 , suy SBD cạnh SB SD BD a Trong tam giác vng SAB , ta có SA SB AB a Gọi E trung điểm AD , suy OE AB AE OE Do d AB, SO d AB, SOE d A, SOE Kẻ AK SE Khi d A, SOE AK SA AE SA2 AE a Chọn đáp án D Câu 12: Chóp tứ giác S ABCD cạnh đáy a, mặt bên tạo với mặt đáy góc 450 Ta có khoảng cách hai đường thẳng AB SC bằng: a a a a A B C D 2 Hướng dẫn giải: Ta có : d ( AB; SC) d ( AB;(SCD)) 2d ( H ;(SCD)) 2HK Mặt khác tam giác SHM ng cân H, nên ta có 1 a a HK SM HM 2 2 2 a Vậy d ( AB; SC) HK Chọn đáp án A a 17 hình chiếu vng góc H S lên mặt (ABCD) trung điểm đoạn AB Gọi K trung điểm AD Tính khoảng cách hai đường SD HK theo a? a 3a A B C a 21 D 3a Hướng dẫn giải: - Dựng HI BD HJ SI - Vì HK // BD HK // (SBD) Câu 13: Cho hình chóp S.ABCD có đáy hình vng cạnh a, SD HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 20 - Chứng minh BD SHI HJ SBD Ta có d HK,SD d HK , SBD d H , SBD HJ 17a 5a 12a a 4 1 1 25 2 2 2 HJ SH HI 3a a 3a a HJ Chọn đáp án D SH SD2 DH Câu 14: Cho hình chóp S.ABC có đáy ABC tam giác vuông A, mặt bên SAB tam giác nằm mặt phẳng vuông góc với mặt phẳng (ABC), gọi M điểm thuộc cạnh SC cho MC 2MS Biết AB 3, BC 3 , tính khoảng cách hai đường thẳng AC BM 21 21 21 B C 7 Hướng dẫn giải: Từ M kẻ đường thẳng song song với AC cắt SA N AC || MN AC || BMN A D 21 AC AB, AC SH AC SAB AC || MN MN SAB MN SAB BMN SAB theo giao tuyến BN Ta có: AC || BMN d AC , BM d AC , BMN d A, BMN AK với K hình chiếu A BN NA MC 2 32 3 S ABN S SAB (đvdt) SA SC 3 2 AN SA 2S BN AN AB AN AB.cos600 AK ABN BN Vậy d AC , BM 3 21 7 21 (đvđd) Chọn đáp án A Câu 15: Cho lăng trụ đứng ABC.A'B'C' có ABC tam giác vuông, AB BC 1, AA ' M trung điểm cạnh BC Tính khoảng cách hai đường thẳng AM; B'C 1 A d B d C d D d 7 Hướng dẫn giải: Gọi E trung điểm BB' Khi AME / / B ' C nên ta có: d B, AME d B ' C , AME d B ' C; AM HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 21 Ta có: d B; AME h Tứ diện BEAM có cạnh BE, BM, BA đơi vng góc nên tốn quen thuộc 1 1 7h 2 h BE BA BM Chọn đáp án A Câu 16: Cho lăng trụ tam giác ABC A1B1C1 có tất cạnh a, góc tạo cạnh bên mặt phẳng đáy 300 Hình chiếu H điểm A lên mặt phẳng A1 B1C1 thuộc đường thẳng B1C1 Khoảng cách hai đường thẳng AA1 BC1 theo a là: 2a 4a a a A B C D 3 Hướng dẫn giải: Do AH A1B1C1 nên góc AA1H góc AA1 A1B1C1 theo giả thiết góc AA1H 300 Xét tam giác vng AHA1 có AA1 a, AA1H 300 AH Xét AHA1 có AA1 a góc AA1H 300 A1H a a a Suy A1H vng góc B1C1, AH B1C1 nên B1C1 AA1H Do A1B1C1 cạnh a, H thuộc B1C1 A1H HK khoảng cách AA1 B1C1 Ta có AA1.HK A1H AH HK A1H AH a AA1 Chọn đáp án A Câu 17: Cho hình lăng trụ đứng ABC A ' B ' C ' có đáy ABC tam giác cạnh a Góc CA ' mặt ( AA ' B ' B) 30 Gọi d(AI’,AC) khoảng cách A ' I AC, kết tính d(AI’,AC) theo a với I trung điểm AB a 210 a 210 3a 210 2a 210 A B C D 70 35 35 35 Hướng dẫn giải: Ta có : CI AB CI ( AA ' B ' B ) CI AA ' ( AA ' ( ABC )) Trong ( AA ' B ' B ) : AB AA ' A Suy góc CA’ ( AA ' B ' B) góc CA’ IA’ góc CA ' I 30 Do A ' I IC tan CA ' I 3a AB a ; với IC 2 HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 22 9a a a 4 Kẻ Ix AC Khi d ( AC, A ' I ) d ( AC,( A ' I , Ix)) d ( A,( A' I , Ix)) Kẻ AE Ix E AF A ' E F Ta chứng minh được: d A,( A ' I , Ix) AF Suy ra: AA ' A ' I AI a a Ta có: AE AI sin AIE sin 60 1 1 16 35 a 210 AF 2 AF A' A AE 2a 3a 6a 35 a 210 Vậy: d AC , A ' I AF 35 Chọn đáp án B Câu 18: Cho hình chóp S.ABC có đáy ABC tam giác vuông A , mặt bên SAB tam giác nằm mặt phẳng vng góc với mặt phẳng (ABC) Gọi M điểm thuộc SC cho MC=2MS Biết AB=3, BC= 3 Khoảng cách hai đường thẳng AC BM là: 21 21 21 21 B C D 14 28 Hướng dẫn giải: Từ M kẻ đường thẳng song song với AC cắt SA N AC / / MN AC / / BMN A AC AB, AC SH AC (SAB),AC/ / MN MN (SAB) ( BMN ) (SAB) theo giao tuyến BN Ta có: AC / /( BMN ) d ( AC; BM ) d ( AC;( BMN )) d ( A;( BMN )) AK với hình chiếu A BN NA MC 2 32 3 S ABN S SAB (đvdt) AN SA SA SC 3 3 2 S 21 BN AN AB AN AB.cos600 AK ABN BN 7 21 Vậy d(AC,BM)= Chọn đáp án A Câu 19: Cho hình lăng trụ tam giác ABC.A’B’C’ có cạnh AB=a, góc hai mặt phẳng (A’BC) (ABC) 60o Tính theo a thể tích tứ diện B’ABC khoảng cách từ B đến mặt phẳng (AB’C) a3 a a3 3a ;d ;d A VB ' ABC B VB ' ABC 8 a a ;d C VB'ABC D 4 a3 a VB'ABC ;d Hướng dẫn giải: Theo đề kiện ta dễ dàng tính thể tích khối lăng trụ tam giác ban đầu, từ suy thể tích khối tứ diện AB’BC Để tính khoảng cách từ B đến (AB’C) HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 23 thực chất tìm chiều cao tứ diện, đến toán giải quý độc giả tìm diện tích tam giác AB’C Vì đề cho kiện ((A’BC), (ABC))=60o, nên ta xác định góc cách gọi H trung điểm BC Tam giác ABC nên AH BC (1) A’A (ABC) ⟹A’A BC (2) Từ (1) (2) ⟹BC A’H ⟹((A’BC), (ABC)) = A’HA = 60o 3a a 3a 3 3a ⟹A’A = AH.tan 60o= Khi VABC A ' B ' C ' A ' A.S ABC a Và VB ' ABC V lúc ta loại C D Dễ thấy diện tích tam giác AB’C B’AC cân B’ có a 13 3a B'A B'C a ; AC a 2 Dễ tính chiều cao kẻ từ B’ tam giác có độ dài a 3VBABC 3a a2 SACB' d(B;(AB'C)) SAB'C Chọn đáp án B Câu 20: Cho lăng trụ đứng ABCA’B’C’có AC = a, BC= 2a, ACB 120 Đường thẳng A’C tạo với mặt phẳng (ABB’A’) góc 300 Gọi M trung điểm BB’ Tính thể tích khối lăng trụ ABCA’B’C’ khoảng cách hai đường thẳng AM CC’ theo a o A a 21 B a Hướng dẫn giải: + Kẻ đường cao CH tam giác ABC Có CH AB ;CH AA’ suy CH (ABB’A’),Do góc A’C mp(ABB’A’) góc C a D a a A 1200 2a B a2 + Ta có SABC CA.CB.sin1200 2 Trong tam giác ABC : AB AC BC AC.BC.cos1200 a M AB a + SABC + Vậy : d(CC’ ;AM)=d(CC’ ;(ABB’A’))=d(C;(ABB’A’)) =CH= a C H CA ' H 300 a2 3 AB.CH CH a 2 7 30 C/ A/ B/ Chọn đáp án D Câu 21: Cho lăng trụ ABC A’B’C’ mặt hình vng cạnh a Gọi D trung điểm cạnh BC Tính khoảng cách hai đường thẳng A’B’ DC’ theo a a a a a A B C D 4 HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 24 Hướng dẫn giải: Có cách để tiếp cận tốn hình học khơng gian thơng thường kẻ thêm hình tọa độ hóa Ở tốn này, phương pháp tọa độ có nhiều ưu điểm hẳn Gọi D ' trung điểm B ' C ' ta có DD '; DC; DA đơi vng góc với Ghép hệ tọa độ hình vẽ với D gốc tọa độ a a a Ta có D(0;0;0), B ;0;0 , C ' ;0; a , A ' 0; ; a 2 Gọi mặt phẳng qua DC ' / / A ' B suy phương trình : x z d ( A ' B, DC ') d ( B,()) a a Chọn đáp án C GÓC A – LÝ THUYẾT TÓM TẮT a//a', b//b' a, b a ', b ' 1) Góc hai đường thẳng: Chú ý: 00 a, b 900 2) Góc đường thẳng với mặt phẳng: Nếu d (P) d, (P) = 900 Nếu d (P) d, (P) = d, d ' với d hình chiếu d (P) Chú ý: 00 d, (P) 900 a (P) (P), (Q) a, b b (Q) 2) Góc hai mặt phẳng a (P), a c Giả sử (P) (Q) = c Từ I c, dựng (P), (Q) a, b b (Q), b c Chú ý: 00 (P), (Q) 900 3) Diện tích hình chiếu đa giác Gọi S diện tích đa giác (H) (P), S diện tích hình chiếu (H) (H) (Q), = (P), (Q) Khi đó: S = S.cos B – BÀI TẬP Câu 1: Cho tứ diện ABCD có AB = CD = 2a Gọi E, F trung điểm BC AD, biết EF a Góc hai đường thẳng AB CD : A 60 Hướng dẫn giải: B 45 Gọi M trung điểm BD, AB,CD C 30 D 90 MF , ME HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 25 Áp dụng định lý cosin tam giác EMF tính cos EMF EMF 1200 (AB,CD ) 600 Chọn đáp án A Câu 2: Cho hình chóp S.ABC Người ta tăng cạnh đáy lên gấp lần Để thể tích giữ ngun tan góc tạo cạnh bên mặt đáy phải giảm số lần : A B C D Hướng dẫn giải: Gọi S đỉnh hìnhchóp, O làtrọng tâm tam giác ABC; góc tạo cạnh bên vàmp(ABC) Chứng minh thể tích khối chóp V a3 tan 12 Khi cạnh bên tăng lên lần thể tích V (2a)3 tan ' Để thể tích giữ nguyên 12 tan ' tan , tức tan góc tạo cạnh bên mặt đáy phải giảm lần Chọn đáp án A Câu 3: Cho khối chóp tứ giác S ABCD có tất cạnh a Khi cơsin góc mặt bên mặt đáy là: A 30O B C 60O D Hướng dẫn giải: Cho khối chóp tứ giác S ABCD có tất cạnh a Khi cơsin góc mặt bên mặt đáy là: Ta có SBC , ABCD SIH a HI Khi đó: cos SI a 3 Chọn đáp án D Câu 4: Cho hình chóp S.ABC có đường cao SA 2a, tam giác ABC vng C có AB 2a, CAB 300 Gọi H hình chiếu vng A SC Tính theo a thể tích khối chóp H.ABC Tính cơ-sin góc hai mặt phẳng SAB , SBC 7 7 B C D 14 14 Hướng dẫn giải: Gọi K hình chiếu vng góc A lên SB Ta có AH SC,AH CB(Do CB (SAC)) AH (SBC) AH SB A Lại có: SB AK SB (AHK) Vậy góc giữa hai mặt phẳng SAB , SBC HKA HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 26 1 1 a.2 2 2 AH 2 AH SA AC 4a 3a 12a 1 1 1 2 AK a 2 AK SA AB 4a 4a 2a Tam giác HKA vng H (vì AH (SBC),(SBC) HK) a.2 AH cos HKA sin HKA AK a Chọn đáp án A Câu 5: Cho hình chóp S.ABCD đáy ABCD hình vng cạnh a, SAB ABCD H trung điểm AB, SH HC, SA AB Gọi góc đường thẳng SC mặt phẳng (ABCD) Giá trị tan là: 1 A B C D 3 Hướng dẫn giải: a Ta có AH AB , SA AB a , 2 a SH HC BH BC Có 5a SA2 AH AH SAH SA AB SA ABCD AC hc SC ; ABCD Ta có: SC; ABCD SCA, tan SCA Chọn đáp án A Câu 6: Cho khối chóp S.ABCD có đáy ABCD hình vng cạnh a, tam giác SAB cân S nằm a 15 mặt phẳng vng góc với đáy Biết thể tích hình chóp S.ABCD Góc đường thẳng SC mặt phẳng đáy (ABCD) là: A 300 B 450 C 600 D 1200 Hướng dẫn giải: Gọi H trung điểm AB Ta có a 15 a 15 S ABCD a ,VS ABCD SH a SH HC AC AH a a2 a SC, ABCD SC, HC SCH tan SCH SH : CH a 15 a : a SCH 600 2 Chọn đáp án C HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 27 Câu 7: Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a Mặt phẳng (SAB) vng góc với đáy (ABCD) Gọi H trung điểm AB, SH HC, SA AB Gọi góc đường thẳng SC mặt phẳng (ABCD) Giá trị tan là: A B C D 2 3 Hướng dẫn giải: a Ta có AH AB 2 SA AB a a SH HC BH BC 2 5a Có AH SA2 SH SAH vuông A nên SA AB Do SA ABCD nên SC, ABCD SCA Trong tam giác vng SAC, có tan SCA SA AC Chọn đáp án A Câu 8: Cho hình chóp tam giác S.ABC có đáy tam giác cạnh 2a, có SA vng góc với (ABC), a3 tam giác SBC cân S Để thể tích khối chóp S.ABC góc hai mặt phẳng (SBC) (ABC) là: A 600 B 300 C 450 D Đáp án khác Hướng dẫn giải: Do tam giác SBC cân S nên gọi I trung điểm BC SI BC ; AI BC SIA SBC ; ABC Do đáy ABC tam giác nên 2a S ABC 2a a Thể tích khối chóp tính 2 a3 3a3 3a V SA.S ABC SA SA 2 a SA 3a 2a 3 : SIA atc tan Khi tan SIA AI 2 2 Chọn đáp án D Câu 9: Cho hình lập phương ABCD A’B’C’D’ có cạnh a Tính số đo góc (BA’C) (DA’C) A 300 B 1200 C 600 D 900 Hướng dẫn giải: Kẻ BH A ' C 1 BD AC Mặt khác, ta có AA ' BD AA ' ABCD BD ACA ' BD A ' C 2 HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 28 Từ (1), (2) suy A ' C BDH A ' C DH Do BA ' C , DA ' C HB; HD Xét tam giác vng BCA ' có: 1 BH DH a 2 BH BC BA 2 BH BD Ta có cos BHD BHD 1200 Vậy góc cần tìm 600 2 BH Chọn đáp án C Câu 10: Cho hình lăng trụ đứng ABC A’B’C’ có đáy tam giác cân với AB AC a, góc ABC 1200 , cạnh bên BB’ = a Gọi I trung điểm CC’ Tính cosin góc hai mặt phẳng (ABC) (AB’I)? 3 B cosα= C cosα= D cosα = 10 10 Hướng dẫn giải: Ta có: BC = a Áp dụng định lý Pytago tam giác vuông ACI, ABB’, B’C’I: 13 a , AB’ = 2a , B’I = a Suy AI = 2 Do AI2 + AB’2 = B’I2 Vậy tam giác AB’I vuông A 10 S AB' I AI AB ' a , S ABC a 4 Gọi góc hai mặt phẳng (ABC) (AB’I) Tam giác ABC hình chiếu vng góc tam giác AB’I 10 3 cos cos Suy : S AB' I cos S ABC 4 10 Chọn đáp án B Câu 11: Cho lăng trụ đứng ABC A ' B ' C ' có ABC tam giác vuông, AB BC 1, AA ' M trung điểm cạnh BC Khoảng cách hai đường thẳng AM B'C là: A d B d C d D d 7 Hướng dẫn giải: Gọi E trung điểm BB' Khi AME / / B ' C nên ta có: A cosα = Gọi E trung điểm BB’ d B ' C ; AM d ( B ' C ;( AME )) d ( B ';( AME )) d ( B;( AME )) Ta có: d ( B;( AME)) h Tứ diện BEAM có cạnh BE, BM, BA đơi vng góc nên tốn quen thuộc Ta có 1 1 7h 2 2 h BE BA BM Chọn đáp án A HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 29 Câu 12: Cho hình chóp S.ABC có mặt bên SAC tam giác cân S nằm mặt phẳng vng góc với đáy, đáy tam giác ABC vuông cân B, AB a Biết góc tạo SC (ABC) 450 Khoảng cách từ SB đến SC bằng: a a a A B a C D 2 Hướng dẫn giải: Hướng dẫn: Gọi H trung điểm AC Tính AC 2HC 2a;BH AC a CM SH ABC SC , ABC SCH 450 SH a tam giác SHB vuông cân H SB a Trong (SHB): Dựng HI SB I (1) CM AC SHB AC HI H (2) Từ (1) (2) d SB, AC HI a SB 2 Chọn đáp án C Câu 13: Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật, AB = 2a, BC = a Hình chiếu vng góc H đỉnh S mặt phẳng đáy trung điểm cạnh AB; Góc đường thẳng SC mặt phẳng đáy 600 Góc hai đường thẳng SB AC có giá trị gần với giá trị sau đây: A 60 B 80 C 70 D 90 Hướng dẫn giải: AC a 5; SB a 7; SB AC ( SH HB) AC HB AC AH AC 2a | SB AC | 700 SB AC 35 Chọn đáp án C cos= Câu 14: Cho hình vng ABCD cạnh 4a Lấy H, K AB, AD cho BH=3HA, AK=3KD Trên đường thẳng vng góc với mặt phẳng (ABCD) H lấy S cho góc SBH = 30 Gọi E giao điểm CH BK Tính cosin góc SE BC 18 36 28 A B C D 39 39 39 39 Hướng dẫn giải: Ta có: SE.BC cos( SE; BC ) SE.BC 9 SE.BC ( SH HE ).BC HE.BC HC.BC CH CB 25 25 9 CB 144a CH CB.cos HCB CH CB CB 25 25 CH 25 25 Ta chứng minh HK CH E HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 30 HE HE.HC HB 9 9a HE HC HB BC 2 HC HC HB BC 25 25 25 81a 2a 39 144a 18 SE SH HE 3a cos( SE; BC ) 25 25 2a 39.4a 39 Chọn đáp án A 2 Câu 15: Cho hình chóp tứ giác S.ABCD có cạnh đáy a, tâm đáy O Gọi M N trung điểm SA BC Biết góc MN (ABCD) 600 , cosin góc MN mặt phẳng (SBD) : 10 A B C D 5 Hướng dẫn giải: Gọi P trung điểm AO; Q giao điểm MC SO, từ Q kẽ tia song song với MN mp(MBC) cắt BC R, mặt phẳng đáy từ R kẽ tia song song với AC cắt BD S MP//SO nên MP ABCD , suy MNP 600 Ta tính PN cách vẽ thêm hình phụ bên, theo định lí Ta-lét PT 3a AB 4 a 10 a , theo định lý Pytago ta tính PN 4 NP a 10 Tam giác MPN vuông P có MN cosMNP CQ Dễ thấy Q trọng tâm tam giác SAC nên MC QR CQ CR 2 a 10 QR MN Vì QR//MN nên theo định lý Ta-lét ta suy MN MC NC 3 a Hình vng ABCD cạnh a có đường chéo AC a OC SR BR 2 a SR OC Vì SR//AC nên theo định lý Ta-lét ta suy OC BC 3 CA SBD , SR / / CA SR SBD , mặt khác QR//MN góc MN với (SBD) góc QR với (SBD) góc SQR Dễ thấy TN HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 31 Tam giác SQR vng S có cosSQR SR a a 10 : QR 3 Chọn đáp án C HOCTAI.VN – Trang cung cấp tài liệu, đề + thi thử online miễn phí kèm lời giải chi tiết Facebook: https://www.facebook.com/hoctai.vn Trang 32 ... AI 2 AI SA AH 576 Chọn đáp án D Câu 6: Cho hình chóp S ABCD có đáy ABCD hình chữ nhật, cạnh bên SA vng góc với đáy Biết 6a khoảng cách từ A đến (SBD) Khoảng cách từ C đến mặt phẳng (SBD)... OC 6a Chọn đáp án A Câu 7: Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a SA vng góc với đáy SC = 3a Khoảng cách từ điểm A đến mp(SCD) là: a a a a A B C D 12 Hướng dẫn giải: Gọi H hình chiếu... Trang 18 Chọn đáp án B Câu 9: Cho hình chóp S.ABCD có đáy ABCD hình thoi cạnh a 3; ABC 120 0 cạnh bên SA vuông góc với mặt phẳng đáy Biết số đo góc hai mặt phẳng (SBC) (ABCD) 600 Khoảng cách hai