Chương 1: Một số cơ sở lý luận để xây dựng các biện pháp dạy học Phát hiện và giải quyết vấn đề nhằm tích cực hoá hoạt động của học sinh. 1.1. Hoạt động. 1.2. Hoạt động học tập. 1.3. Tính tích cực hoá hoạt động của học sinh. 1.3.1. Tính tích cực. 1.3.2. Một vài đặc điểm về tính tích cực nhận thức của học sinh. 1.3.3. Phương pháp dạy học có thể phát huy được tính tích cực. 1.3.3.1. Một phương pháp dạy học cần thoả mãn những điều kiện nào có thể tích cực hoá hoạt động nhận thức của học sinh 1.3.3.2. Những dấu hiệu đặc trưng của các phương pháp dạy học tích cực 1.4. Dạy học Phát hiện và giải quyết vấn đề 1.4.1. Cơ sở khoa học của phương pháp dạy học PH và GQVĐ 1.4.1.1. Cơ sở triết học. 1.4.1.2. Cơ sở tâm lý học 1.4.1.3. Cơ sở giáo dục học 1.4.2. Những khái niệm cơ bản 1.4.2.1. Vấn đề 1.4.2.2. Tình huống gợi vấn đề 1.4.3. Dạy học PH và GQVĐ 1.4.4. Bản chất của dạy học PH và GQVĐ 1.4.5. Những hình thức và cấp độ dạy học PH và GQVĐ 1.4.6. Quy trình dạy học PH và GQVĐ 1.4.6.1. Nguyên tắc thiết lập quy trình dạy học PH và GQVĐ 1.4.6.2. Cấu trúc của quy trình dạy học PH và GQVĐ 1.5. Kết luận chương 1 Chương 2: Các biện pháp dạy học Phát hiện và giải quyết vấn đề nhằm tích cực hoá hoạt động của học sinh. 2.1. Các định hướng xây dựng các biện pháp 2.2. Các biện pháp 2.2.1. Biện pháp 1: Tạo tình huống gợi vấn đề nhờ giải bài tập mà người học chưa biết thuật giải. 2.2.2. Biện pháp 2: Tạo tình huống gợi vấn đề nhờ lật ngược vấn đề, xem xét tương tự, đặc biệt hoá, khái quát hoá. 2.2.3. Biện pháp 3: Sử dụng các phương pháp suy luận, mò mẫn, dự đoán để tìm ra cách giải quyết vấn đề. 2.2.4. Biện pháp 4: Hình thành thói quen kiểm tra và vận dụng kết quả của vấn đề được giải quyết. 2.2.5. Biện pháp 5: Phát hiện nguyên nhân sai lầm và sửa chữa sai lầm trong lời giải. 2.2.6. Biện pháp 6: Hình thành phương pháp tự học, tự nghiên cứu cho học sinh. 2.3. Kết luận chương 2. Chương 3: Thực nghiệm sư phạm 3.1. Mục đích thực nghiệm 3.2. Nội dung thực nghiệm 3.2.1. Lớp thực nghiệm 3.2.2. Tiến trình thực nghiệm 3.2.3. Nội dung và kết quả kiểm tra 3.3. Kết quả thực nghiệm 3.3.1. Đánh giá hoạt động học tập của học sinh ở lớp học 3.3.2. Kết luận về thực nghiệm sư phạm
1 MỞ ĐẦU LÝ DO CHỌN ĐỀ TÀI 1.1 Về phương pháp giáo dục đào tạo, Nghị hội nghị lần thứ II Ban chấp hành Trung ương Đảng Cộng Sản Việt Nam (Khóa VIII 1997 ) đề ra: “Phải đổi giáo dục đào tạo, khắc phục lối truyền thụ chiều, rèn luyện thành nếp tư sáng tạo người học Từng bước áp dụng phương pháp tiên tiến phương tiện đại vào trình dạy học, bảo đảm điều kiện thời gian tự học, tự nghiên cứu cho học sinh, sinh viên đại học” Trong Luật giáo dục Việt Nam, năm 2005, điều 28.2 viết: Phương pháp giáo dục phổ thơng phải phát huy tính tích cực, tự giác, chủ động, sáng tạo học sinh, phù hợp với đặc điểm lớp học, môn học; cần phải bồi dưỡng phương pháp tự học, rèn luyện kỹ vận dụng kiến thức vào thực tiễn; cần phải đem lại niềm vui, hứng thú học tập cho học sinh Vì vậy, đổi phương pháp dạy học làm cho học sinh học tập tích cực, chủ động, chống lại thói quen học tập thụ động Phải tiết học, học sinh suy nghĩ, thảo luận hoạt động nhiều Đây tiêu chí, thước đo đánh giá đổi Thay cho lối truyền thụ chiều, thuyết trình giảng dạy, người giáo viên cần phải tổ chức cho học sinh học tập hoạt động hoạt động tự giác, tích cực, chủ động, sáng tạo (Tài liệu bồi dưỡng thường xuyên giáo viên THPH chu kỳ 3) 1.2 Trong xã hội phát triển nhanh theo chế thị trường, theo định hướng xã hội chủ nghĩa cạnh tranh gay gắt, phát sớm giải hợp lý vấn đề nảy sinh thực tiễn lực bảo đảm thành đạt sống Vì tập dượt cho học sinh biết phát giải vấn đề gặp phải học tập, sống cá nhân, gia đình cộng đồng khơng có ý nghĩa tầm phương pháp dạy học mà phải đặt mục tiêu giáo dục đào tạo Trong dạy học Phát (PH) giải vấn đề (GQVĐ), học sinh vừa nắm tri thức mới, vừa nắm phương pháp chiếm lĩnh tri thức đó, phát triển tư tích cực sáng tạo, chuẩn bị lực thích ứng với đời sống xã hội; phát kịp thời giải hợp lý vấn đề nảy sinh (Tài liệu bồi dưỡng giáo viên - tr 34) 1.3 Nhà tốn học Mỹ G.Polya nói: “Sự kích thích tốt cho việc học tập hứng thú mà tài liệu học tập gợi nên cho học sinh, phần thưởng tốt cho hoạt động trí óc căng thẳng sảng khối đạt nhờ vào hoạt động vậy” Theo V.A.Cruchetxki, khái niệm “tư tích cực”, “tư độc lập” “tư sáng tạo” có mối liên hệ mật thiết với nhau, mức độ tư khác nhau, mức độ trước tiền đề cho mức độ sau, ngược lại mức độ sau thể mức độ trước Như “tư tích cực” cấp độ tiền đề cho cấp độ tư đồng thời có mối liên hệ qua lại với cấp độ khác, phát huy tính tích cực học sinh hoạt động học tập việc quan trọng điều tác giả: Phan Gia Đức - Phạm Văn Hoàn “Rèn luyện công tác độc lập cho học sinh thông qua môn Toán” khẳng định cách đắn: “Nếu khơng có hoạt động tư tích cực cho học sinh khơng thể vũ trang cho học sinh kiến thức kỹ xảo chắn” Mâu thuẫn yêu cầu đào tạo người xây dựng xã hội cơng nghiệp hóa đại hóa với thực trạng lạc hậu phương pháp dạy học Toán làm nảy sinh thúc đẩy vận động đổi phương pháp dạy học Toán với định hướng đổi tổ chức cho người học học tập hoạt động hoạt động, tự giác, tích cực, sáng tạo 1.4 Bộ môn lượng giác đời từ lâu, việc giảng dạy phần khó khăn giáo viên khó học sinh trình tiếp thu PH GQVĐ phương pháp dạy học thích hợp với nhiều nội dung, đặc biệt sử dụng phương pháp để dạy học giải tập lượng giác hình thành cho học sinh lực tự GQVĐ Vì lý trên, chọn đề tài nghiên cứu Luận văn là: “Thực hành dạy học Phát giải vấn đề nhằm tích cực hố hoạt động học sinh thông qua dạy học giải tập lượng giác” MỤC ĐÍCH NGHIÊN CỨU Mục đích nghiên cứu Luận văn xác định sở lý luận tính tích cực hoạt động học tập học sinh thông qua phương pháp dạy học, PH GQVĐ Từ xây dựng biện pháp sư phạm làm sáng rõ khả dạy học PH GQVĐ, nhằm tích cực hóa hoạt động học sinh thông qua dạy học giải tập lượng giác NHIỆM VỤ NGHIÊN CỨU Để đạt mục đích nghiên cứu chúng tơi hình thành nhiệm vụ sau: 3.1 Hệ thống hóa sở lý luận tính tích cực hóa hoạt động học sinh dạy học PH GQVĐ Phân tích chất hình thức tổ chức phương pháp dạy học PH GQVĐ nhằm tích cực hóa hoạt động học sinh 3.2 Đề xuất định hướng làm sở xây dựng biện pháp dạy học 3.3 Xây dựng biện pháp dạy học PH GQVĐ nhằm tích cực hóa hoạt động học sinh thông qua dạy học giải tập lượng giác 3.4 Thực nghiệm sư phạm kiểm tra tính khả thi phương pháp dạy học PH GQVĐ nhằm tích cực hóa hoạt động học sinh GIẢ THUYẾT KHOA HỌC Nếu xây dựng số biện pháp dạy học PH GQVĐ nhằm tích cực hóa hoạt động học sinh q trình dạy học giải tập lượng giác, góp phần nâng cao chất lượng dạy học mơn Tốn trường phổ thông PHƯƠNG PHÁP NGHIÊN CỨU 5.1 Nghiên cứu lý luận: Nghiên cứu tài liệu tâm lý học, giáo dục học, phương pháp dạy học môn với tài liệu liên quan đến đề tài 5.2 Điều tra, quan sát: Dự giờ, quan sát việc dạy giáo viên việc học học sinh THPT 5.3 Thực nghiệm sư phạm: Tiến hành dạy thực nghiệm số tiết trường THPT để xét tính khả thi, hiệu đề tài ĐĨNG GÓP CỦA LUẬN VĂN 6.1 Về mặt lý luận Làm rõ phương pháp dạy học PH GQVĐ nhằm tích cực hóa hoạt động học sinh Đề định hướng biện pháp dạy học PH GQVĐ nhằm tích cực hóa hoạt động học sinh 6.2 Về mặt thực tiễn Luận văn dùng làm tài liệu tham khảo cho giáo viên Toán trường THPT CẤU TRÚC LUẬN VĂN Ngoài phần mở đầu, kết luận tài liệu tham khảo, luận văn có chương: Chương 1: Một số sở lý luận để xây dựng biện pháp dạy học Phát giải vấn đề nhằm tích cực hố hoạt động học sinh 1.1 Hoạt động 1.2 Hoạt động học tập 1.3 Tính tích cực hố hoạt động học sinh 1.3.1 Tính tích cực 1.3.2 Một vài đặc điểm tính tích cực nhận thức học sinh 1.3.3 Phương pháp dạy học phát huy tính tích cực 1.3.3.1 Một phương pháp dạy học cần thoả mãn điều kiện tích cực hố hoạt động nhận thức học sinh 1.3.3.2 Những dấu hiệu đặc trưng phương pháp dạy học tích cực 1.4 Dạy học Phát giải vấn đề 1.4.1 Cơ sở khoa học phương pháp dạy học PH GQVĐ 1.4.1.1 Cơ sở triết học 1.4.1.2 Cơ sở tâm lý học 1.4.1.3 Cơ sở giáo dục học 1.4.2 Những khái niệm 1.4.2.1 Vấn đề 1.4.2.2 Tình gợi vấn đề 1.4.3 Dạy học PH GQVĐ 1.4.4 Bản chất dạy học PH GQVĐ 1.4.5 Những hình thức cấp độ dạy học PH GQVĐ 1.4.6 Quy trình dạy học PH GQVĐ 1.4.6.1 Nguyên tắc thiết lập quy trình dạy học PH GQVĐ 1.4.6.2 Cấu trúc quy trình dạy học PH GQVĐ 1.5 Kết luận chương Chương 2: Các biện pháp dạy học Phát giải vấn đề nhằm tích cực hố hoạt động học sinh 2.1 Các định hướng xây dựng biện pháp 2.2 Các biện pháp 2.2.1 Biện pháp 1: Tạo tình gợi vấn đề nhờ giải tập mà người học chưa biết thuật giải 2.2.2 Biện pháp 2: Tạo tình gợi vấn đề nhờ lật ngược vấn đề, xem xét tương tự, đặc biệt hoá, khái quát hoá 2.2.3 Biện pháp 3: Sử dụng phương pháp suy luận, mò mẫn, dự đốn để tìm cách giải vấn đề 2.2.4 Biện pháp 4: Hình thành thói quen kiểm tra vận dụng kết vấn đề giải 2.2.5 Biện pháp 5: Phát nguyên nhân sai lầm sửa chữa sai lầm lời giải 2.2.6 Biện pháp 6: Hình thành phương pháp tự học, tự nghiên cứu cho học sinh 2.3 Kết luận chương Chương 3: Thực nghiệm sư phạm 3.1 Mục đích thực nghiệm 3.2 Nội dung thực nghiệm 3.2.1 Lớp thực nghiệm 3.2.2 Tiến trình thực nghiệm 3.2.3 Nội dung kết kiểm tra 3.3 Kết thực nghiệm 3.3.1 Đánh giá hoạt động học tập học sinh lớp học 3.3.2 Kết luận thực nghiệm sư phạm CHƯƠNG MỘT SỐ CƠ SỞ LÝ LUẬN ĐỂ XÂY DỰNG CÁC BIỆN PHÁP DẠY HỌC PHÁT HIỆN VÀ GIẢI QUYẾT VẤN ĐỀ NHẰM TÍCH CỰC HĨA HOẠT ĐỘNG CỦA HỌC SINH 1.1 Hoạt động Hoạt động khái niệm tâm lý học đại Một hoạt động nhằm vào đối tượng định Hai hoạt động khác phân biệt hai đối tượng khác Và đối tượng động thực hoạt động Về phía đối tượng: Động thể thành nhu cầu Các nhu cầu sinh từ đối tượng ban đầu trừu tượng, ngày phát triển rõ ràng, cụ thể chốt lại hệ thống mục đích Mỗi mục đích lại phải thoả mãn loạt điều kiện (hay gọi phương tiện) Mối quan hệ biện chứng mục đích điều kiện coi nhiệm vụ Về phía chủ thể: Chủ thể dùng sức căng bắp, thần kinh, lực, kinh nghiệm thực tiễn, để thỏa mãn động gọi hoạt động Quá trình chiếm lĩnh mục đích gọi hành động Mỗi điều kiện để đạt mục đích, lại quy định cách thức hành động gọi thao tác Tác giả Nguyễn Tài Đức đánh giá mối quan hệ biện chứng hành động thao tác: Hành động q trình thực hóa mục đích (tạo sản phẩm), thao tác lại điều kiện quy định Như khác mục đích điều kiện quy định khác hành động thao tác Nhưng khác tương đối, để đạt mục đích ta dùng phương tiện khác Khi đó, hành động thay đổi mặt kỹ thuật tức cấu thao tác, không thay đổi chất (vẫn làm sản phẩm) Về mặt tâm lý, hành động sinh thao tác, thao tác lại phần riêng lẻ hành động Sau hình thành thao tác có khả tồn độc lập tham gia vào nhiều hành động Hoạt động có biểu bên ngồi hành vi Vì vậy, hai phạm trù hỗ trợ cho nhau; hoạt động bao gồm hành vi lẫn tâm lý ý thức (tức công việc tay chân não) Sự phân tích giúp ta nhận ý nghĩa quan trọng sau: Thực chất phương thức Giáo dục tổ chức hoạt động liên tục cho trẻ em theo chuỗi thao tác, cấu có tham gia động nhiệm vụ người Vì hành động sinh thao tác nên giáo dục ta huấn luyện gián tiếp thao tác thơng qua hành động Giáo viên nên biết rõ đối tượng lúc mục đích cần đạt, lúc phương tiện để đạt mục đích khác 1.2 Hoạt động học tập 1.2.1 Quá trình dạy học trình thống nhất, biện chứng hoạt động dạy thầy hoạt động học trò, hoạt động học trung tâm a) Đối tượng hoạt động dạy nhân cách học sinh với hệ thống mục đích xếp theo thứ tự: Thái độ, kỹ năng, kiến thức Để thực chỉnh thể mục đích cần loạt điều kiện không thay đổi theo cho phù hợp như: Nội dung thay đổi cho phải hướng vào học sinh; trình học tập tổ chức cho phát huy tính tích cực học sinh mơi trường phải đảm bảo có dụng ý sư phạm; phương tiện dạy học ngày đại hóa; chủ thể (giáo viên) tiến hành hoạt động tương ứng điều khiển trình xây dựng kiến thức, vận dụng kiến thức vào thực tế, ôn tập, kiểm tra, đánh giá b) Hoạt động học hoạt động người tuân theo cấu trúc tổng quát hoạt động nói chung bàn đến hoạt động học học sinh Học sinh tiến hành hoạt động nhằm lĩnh hội kinh nghiệm xã hội, thể dạng tri thức, kỹ Theo tác giả Phạm Minh Hạc có hai cách học, có hai dạng hoạt động khác nhau: Cách thứ nhằm nắm lấy kinh nghiệm, kỹ xem mục đích trực tiếp; Cách thứ hai nhằm tiếp thu kinh nghiệm kỹ thực mục đích khác Thơng thường việc học học sinh diễn theo hai cách, hoạt động học mà ta nói hoạt động có mục đích theo cách thứ Một số khía cạnh hoạt động học tập: - Về cấu trúc hoạt động: + Động cơ: Nắm lấy tri thức, kỹ năng, kỹ xảo hay tự hoàn thiện thân + Mục đích: Học sinh phải vượt khỏi giới hạn kiến thức có để đạt tới mà em chưa có Vì nhiệm vụ học tập thường đề hình thức “bài tốn” có vấn đề + Học sinh giải nhiệm vụ nhờ vào hành động học tập cụ thể như: tách vấn đề từ nhiệm vụ; Vạch phương hướng giải sở phân tích mối quan hệ tài liệu học tập; mơ hình hóa, cụ thể hóa mối quan hệ đó; Kiểm tra tiến trình kết học tập + Các hành động thực thao tác tư đặc trưng phân tích, tổng hợp, so sánh, đối chiếu, quy nạp, suy luận lơgíc, Tuy nhiên tồn q trình khơng tự diễn mà đòi hỏi phải có điều kiện kích thích định giai đoạn: phát vấn đề; nhận thấy có mâu thuẫn, hình thành động cơ; tìm tòi khái qt hóa; 10 +Về hình thức: Hoạt động học điển hình diễn thời gian lớp, mà giáo viên thực vai trò đạo, hướng dẫn thời gian hoạt động độc lập lớp, làm tập nhà c) Hoạt động dạy hoạt động học có mối quan hệ khăng khít, chặt chẽ, trình tự bước hoạt động học hồn tồn thống với trình tự bước hoạt động dạy - giáo viên vạch nhiệm vụ, hành động học tập tới học sinh biện pháp thích hợp kích thích chúng học sinh tiếp nhận nhiệm vụ đó, thực hành động học tập đề ra; Nếu giáo viên kiểm tra hành động học sinh điều chỉnh hành động dạy ảnh hưởng giáo viên, học sinh điều chỉnh hành động Sự thống trình dạy học thể tương ứng giai đoạn hoạt động thầy lẫn trò Sự thống tạo nên tượng hoàn chỉnh mà ta gọi trình dạy học Kết thống chỗ học sinh nắm kiến thức theo mức độ: - Ý thức vấn đề (vạch nội dung, có biểu tượng chung kiện, nắm trình hình thành phát triển kiện đó) - Nắm vấn đề (vạch chất bên tượng quan hệ chúng) - Sáng tỏ vấn đề (biết cách tìm lối gặp khó khăn) Chỉ có kết hợp chặt chẽ tác động, điều khiển bên ngồi giáo viên tạo mơi trường học tập (hình thức tổ chức dạy học, phương thức hành động, phương tiện vật chất, thái độ tình cảm thầy, ) Với sức căng thẳng trí tuệ bên học sinh nhằm thích nghi với mơi trường đó, tạo nên sở cho việc học tập có kết 1.2.2 Hoạt động học tốn học sinh hoạt động nhằm lĩnh hội tri thức, khái niệm, kỹ giải vấn đề toán học Nó bao gồm việc định hướng tìm tòi, lập kế hoạch thực hiện, thân hoạt động kiểm tra 85 Để chứng minh X = giáo viên tạo tình cách đặt câu hỏi: “Nhắc lại công thức hạ bậc, công thức biến đổi tổng thành tích, cơng thức cộng?”, “Mối quan hệ góc A, B, C?”, “Mối quan hệ hàm số lượng giác hai góc bù nhau?” Với “tri thức cũ” vừa “tái hiện”, em dễ khám phá “tri thức mới” toán cần chứng minh Học sinh làm sau: Ta có: X= = 1- sin2A - 1 cos2B 1 cos2C - sin2A – 2sinBsinCcosA 2 (cos2B + cos2C) – 2sinBsinCcosA = cos2A – cos(B + C)cos(B – C) – 2sinBsinCcosA = cosA(cosA - 2sinBsinC) – cos(B + C)cos(B – C) = cos(B + C)[ cos(B + C) + 2sinBsinC] – cos(B + C)cos(B – C) = cos(B + C)[cosBcosC + sinBsinC] – cos(B + C)cos(B – C) = cos(B + C)cos(B – C) – cos(B + C)cos(B – C) = (đpcm.) Ngồi cách giải có hai cách giải khác: Cách 1: Xuất phát từ sin(B + C) = sinA � sinBcosC + sinCcosB = sinA Bình phương hai vế biến đổi ta suy đpcm Cách 2: Xuất phát từ cos(B + C) = -sinA � cosBcosC = sinBsinC – cosA Bình phương hai vế biến đổi ta suy đpcm Ví dụ 4: A, B, C ba góc tam giác Chứng minh rằng: Cos2B + Cos2C + cosBcosCcosA = sin2A Hồn tồn tương tự ví dụ em tự chứng minh * Phương pháp tự nghiên cứu khoa học phương pháp giáo viên tổ chức, hướng dẫn để học sinh tự đạt đến hiểu biết 86 Tất nhiên hiểu biết học sinh không thiết người; học sinh nói chung sáng tạo, phát minh lại chân lý, kiến thức mà khoa học biết mà Nhưng điều quan trọng khơng việc tìm hiểu biết mới, tìm chân lý mới, mà trình tìm tòi, sáng tạo, q trình hướng dẫn học sinh vào “phòng thí nghiệm tư sáng tạo” Vì trình tự nghiên cứu, học sinh tự tìm tòi, sáng tạo nên phương pháp có tác dụng lớn nhiều mặt: Nó rèn luyện cho học sinh tư lôgic, khoa học, tư biện chứng sáng tạo; Nó làm cho nội dung học có tính thuyết phục, biến kiến thức thành niềm tin; bồi dưỡng cho học sinh tình cảm trí tuệ sâu sắc: Có cảm xúc niềm vui lao động sáng tạo, tự tin lực mình, hứng thú với việc học tập, chiếm lĩnh kiến thức khoa học; Kiến thức học sinh vững chắc, học sinh tự tìm học sinh nhớ tốt hơn, có hệ thống hơn, qn học sinh xác lập lại dễ dàng [21] Phương pháp tự nghiên cứu coi dạng dạy học nêu vấn đề Nó thực theo ba mức độ khác nhau, với yêu cầu cao dần, tùy theo nội dung tài liệu học tập trình độ học sinh Mức độ thứ nhất: Học sinh tự giải vấn đề đặt phát biểu rõ ràng (chứng minh định lý cho sẵn, giải toán đặt cụ thể) Mức độ thứ hai: Giáo viên đặt vấn đề, học sinh phải tự phát biểu vấn đề giải vấn đề (học sinh phải nêu định lý đặt toán cụ thể, chứng minh định lý giải toán) Mức độ thứ ba: Học sinh phải tự đặt vấn đề, phát biểu vấn đề giải vấn đề Ví dụ 5: Chứng minh tam giác ABC ta ln có: a) sin2A + sin2B + sin2C = 4sinAsinBsinC b) sin4A + sin4B + sin4C = - 4sin2Asin2Bsin2C 87 Đây đẳng thức lượng giác tam giác, cách chứng minh đẳng thức tương tự Trước bước vào chứng minh, giáo viên cần kiểm tra lại kiến thức cũ câu hỏi: “Nhắc lai công thức biến đổi tổng thành tích?” “Mối quan hệ hàm số lượng giác hai góc bù nhau?”.Với “tri thức cũ” vừa “tái hiện”, em dễ dàng khám phá “tri thức mới” toán cần chứng minh Và biến đổi sau: a) sin2A + sin2B + sin2C = 2sin(A + B)cos(A- B) + 2sinCcosC = 2sinC(cos(A- B) – cos(A + B)) = 4sinC.sinA.sinB b) sin4A + sin4B + sin4C = 2sin2(A + B)cos2(A –B) + 2sin2C.cos2C = 2sin[2(1800 – C)].cos2(A-B) + 2sin2Ccos2(1800 – (A + B)) = -2sin2C.cos2(A – B) + 2sin2Ccos2 (A + B)) = 2sin2C (cos2 (A + B) – cos2(A –B)) =- 4sin2Asin2Bsin2C Từ đẳng thức em tự nghiên cứu xem sinnA + sinnB + sinnC có (-1)n+14sinnAsinnBsinnC khơng? Ví dụ 6: Chứng minh tam giác ABC ta ln có: a) Cos2A + cos2B + cos2C = -1 – 4cosAcosBcosC b) Cos4A + cos4B + cos4C = -1 + 4cos2Acos2Bcos2C Hoàn toàn tương tự em tự chứng minh đẳng thức từ đẳng thức em tự nghiên cứu xem cos2nA + cos2nB + cos2nC có (-1)n 4cosnAcosnBcosnC – khơng? Ví dụ 7: Chứng minh tam giác ABC ta có: cosAcosBcosC � 88 Đối với tốn có cách giải, giáo viên gợi ý cho cách giải, gợi ý giáo viên học sinh tự trình bày cách giải tốn Cách 1: Sử dụng cơng thức biến đổi tích thành tổng để biến đổi biểu thức cosAcossBcosC - tích số âm với tổng hai số không âm Suy đpcm Cách 2: Cũng sử dụng cơng thức biến đổi tích thành tổng, đưa cosAcosBcosC � tương đương với tam thức bậc hai bé không có biệt thức đen-ta bé khơng Cách 3: + Nếu góc tam giác tù thì: CosAcosBcosC < < (đpcm) + Nếu góc nhọn, sử dụng cơng thức biến đổi tích thành tổng để đưa vế trái bất đẳng thức � cosA(-cosA + 1), áp dụng bất đẳng thức Cosi với cosA - cosA suy đpcm Cách 4: + Nếu có góc tù biểu thức: CosAcosBcosC < < + Nếu góc nhọn cosA > 0, cosB > 0, cosC > Vì đem áp dụng bất đẳng thức cho số dương cosA, cosB, cosC, chứng minh thêm bất đẳng thức cosA + cosB + cosC � suy đpcm 2.3 Kết luận chương Nội dung chủ yếu chương đề cập đến định hướng, biện pháp dạy học PH GQVĐ nhằm tích cực hố hoạt động học tập học sinh thông qua dạy học giải tập lượng giác 89 Trong phần trình bày nội dung chương này, Luận văn đặc biệt quan tâm tới hình thức tạo tình gợi vấn đề dẫn dắt học sinh PH GQVĐ nhằm tích cực hóa hoạt động học tập học sinh, nhằm thực hóa việc thực biện pháp sư phạm điều kiện thực tế trình dạy học 90 CHƯƠNG THỰC NGHIỆM SƯ PHẠM 3.1 Mục đích thực nghiệm Mục đích thực nghiệm kiểm tra tính khả thi tính hiệu phương án triển khai dạy học PH GQVĐ nhằm tích cực hóa hoạt động học sinh thông qua giải tập lượng giác, nhằm kiểm nghiệm tính đắn giả thuyết khoa học 3.2 Tổ chức nội dung thực nghiệm 3.2.1 Tổ chức thực nghiệm Địa điểm thực nghiệm: Trường THPT Nghi Lộc - Nghi Lộc - Nghệ An Lớp thực nghiệm: Lớp 10 A5(năm học 2006 - 2007) có 49 học sinh, lớp 11A5 (năm học 2007 - 2008) có 48 học sinh Giáo viên dạy lớp thực nghiệm cô giáo Nguyễn Thị Lan Anh Lớp đối chứng: Lớp 10 A8 (năm học 2006 - 2007) có 45 học sinh, lớp 11A8 (năm học 2007 - 2008) có 47 học sinh Giáo viên dạy lớp đối chứng cô giáo Nguyễn Thị Tuyết Mai Chất lượng khảo sát đầu năm lớp tương đối 3.2.2 Nội dung thực nghiệm Thực nghiệm tiến hành hai giai đoạn Giai đoạn từ ngày 18 tháng năm 2007 đến ngày 11 tháng năm 2007 Thực nghiệm tiến hành Chương VI: Góc lượng giác - Đại số 10 (2006) Giai đoạn từ ngày tháng năm 2008 đến ngày tháng 10 năm 2008 Thực nghiệm tiến hành Chương I: Hàm số lượng giác - Đại số 11(2007) Sau dạy thực nghiệm nhằm thể biện pháp chương 2, cho học sinh làm kiểm tra Sau đề kiểm tra: Đề kiểm tra số (Thời gian 45 phút, kiểm tra sau học xong chương VI - Đại số 10) 91 Câu 1: Chứng minh rằng: sin 2000 sin3100 + cos3400cos500 = sin sin 3 sin 5 sin 7 tan 4 tan 2 cos cos3 cos5 cos 7 Câu 2: Chứng minh tam giác ABC có: Sin2A + sin2B + sin2C = 4sinAsinBsinC Câu 3: Chứng minh tam giác ABC có: cosA + cosB + cosC > Dụng ý sư phạm kiểm tra: -Rèn luyện kỹ tính giá trị lượng giác cung có liên quan đặc biệt - Rèn luyện kỹ sử dụng thành thạo công thức biến đổi lượng giác Đề kiểm tra số (Thời gian 15 phút, kiểm tra sau học xong chương I- Đại số 11) Trắc nghiệm khách quan Câu 1: Hãy đánh dấu vào ô cho ý đúng: Trong khoảng (0, ) : Hàm số y = sinx đồng biến Hàm số y = cosx đồng biến Hàm số y = tanx đồng biến Hàm số y = cotx đồng biến Câu 2: Hãy đánh dấu vào ô cho ý đúng: (a) Hàm số y = sinx có giá trị lớn (b) Hàm số y = cosx có giá trị lớn -1 92 (c) Hàm số y = tanx đồng biến (d) Hàm số y = cotx đồng biến Câu 3: Hãy đánh dấu vào ô cho ý đúng: � � Tập xác định hàm số y = tanx R \ � k � �2 Tập xác định hàm số y = cotx R � � Tập xác định hàm số y = cosx R \ � k � �2 Tập xác định hàm số y = sinx R Dụng ý sư phạm kiểm tra: Rèn luyện kỹ năng: - Xét tính đơn điệu hàm số lượng giác - Tìm giá trị lớn nhất, giá trị nhỏ hàm số lượng giác - Tìm tập xác định hàm số lượng giác Đề số kiểm tra số 3: (Thời gian 45 phút, kiểm tra sau học xong chương I - Đại số 11) Câu 1: Tìm tập xác định hàm số: y cos x sinx Câu 2: Tìm giá trị lớn giá trị nhỏ biểu thức: y sin x 2cos x sin x cos x Câu 3: Cho phương trình: cosx – sin2x + m – = a) Giải phương trình m = b) Xác định m để phương trình có nghiệm sinx = Câu 4: Giải phương trình sinx + sin2x + sin3x = Dụng ý sư phạm đề kiểm tra: Rèn luyện kỹ năng: Tìm tập xác định hàm số 93 - Áp dụng điều kiện để phương trình asinx + bcosx = c có nghiệm - Vận dụng cơng thức biến đổi tổng thành tích hàm số lượng giác - Giải thành thạo phương trình lượng giác 3.3 Kết thực nghiệm 3.3.1 Kết đánh giá hoạt động học tập học sinh lớp học 3.3.1.1 Đối với lớp dạy thực nghiệm Hoạt động học tập học sinh nhìn chung diễn sơi nổi, khơng gây cảm giác khó chịu Việc sử dụng biện pháp kích thích hứng thú học tập học sinh Các em cảm thấy tự tin mong muốn tìm tòi khám phá Học sinh bắt đầu ý thức toán sách giáo khoa ẩn sau nhiều vấn đề khai thác Một số học sinh giỏi có khả tự học, tự nghiên cứu vấn đề giáo viên đề nghiên cứu thêm sách tham khảo để hệ thống hóa, đào sâu kiến thức Như với hình thức dạy học PH GQVĐ phù hợp với tất đối tượng học sinh lớp học lực học sinh phải tương đương Còn lớp học đại trà, lẫn lộn trình độ việc phát huy khả học tập em có mặt hạn chế 3.3.1.2 Đối với lớp đối chứng Hoạt động học tập học sinh lớp đối chứng ít, em chủ yếu tiếp thu kiến thức thầy truyền lại mà chưa phát huy tính tích cực, độc lập sáng tạo học sinh Mặc dù kiến thức học hơm em nắm để làm tập hay để học khả PH, GQVĐ tiếp thu không lớp dạy thực nghiệm 3.3.2 Kết kiểm tra Bảng 1: Kết kiểm tra số Điểm Lớp 10 Số 94 TN (10 A5) ĐC (10 A8) Kết quả: 0 9 49 5 6 45 Lớp thực nghiệm có 43/49 (87,76%) đạt trung bình trở lên, 30/49 (61,22%) đạt giỏi Lớp đối chứng có 29/45 (64,44%) đạt trung bình trở lên 19/45 (42,22%) đạt giỏi Bảng 2: Kết kiểm tra số Điểm Lớp TN (11A5) ĐC (11A8) 10 Số 0 11 9 48 0 10 8 47 Kết quả: Lớp TN có 47/48 (97,92%) đạt trung bình trở lên, 37/48 (77,08%) đạt giỏi Lớp ĐC có 38/47 (80,85%) đạt trung bình trở lên, 20/47 (42,55%) đạt giỏi Bảng 3: Kết kiểm tra số Điểm Lớp TN (11A5) ĐC (11A8) Kết quả: 10 Số 0 2 10 11 48 10 7 47 95 Lớp TN có 44/48(91,67%) đạt trung bình trở lên, 27/48 (56,25%) đạt giỏi Lớp ĐC có 38/47 (80,85%) đạt trung bình trở lên, 19/47 (40,43%) đạt giỏi 3.3.3 Kết luận chung thực nghiệm sư phạm Qua quan sát hoạt động dạy học kết thu qua đợt thực nghiệm sư phạm cho thấy: Tính tích cực hoạt động học sinh lớp thực nghiệm cao lớp đối chứng Nâng cao trình độ nhận thức, khả tư cho học sinh trung bình số học sinh yếu lớp thực nghiệm, tạo hứng thú niềm tin cho em, điều chưa có lớp đối chứng Cả ba kiểm tra cho thấy kết lớp thực nghiệm cao lớp đối chứng, đặc biệt loại giỏi Nguyên nhân học sinh lớp thực nghiệm việc ln học tập hoạt động phát triển kiến thức thông qua biện pháp sư phạm xây dựng chương Từ kết đến kết luận: Việc xây dựng biện pháp sư phạm có tác dụng tích cực hóa hoạt động học tập học sinh, tạo cho em khả tìm tòi, PH GQVĐ cách độc lập, sáng tạo, nâng cao hiệu học tập, góp phần nâng cao chất lượng dạy học mơn Tốn trường phổ thơng Như vậy, mục đích thực nghiệm đạt giả thuyết khoa học nêu kiểm nghiệm 96 KẾT LUẬN Qua trình nghiên cứu đề tài “Thực hành dạy học phát giải vấn đề nhằm tích cực hóa hoạt động học sinh thơng qua dạy học giải tập lượng giác ”, thu số kết sau: Để tích cực hóa người học có nhiều giải pháp khác nhiều lĩnh vực nội dung dạy học, phương pháp dạy học, phương tiện dạy học, mục đích dạy học Luận văn chọn giải pháp cải tiến phương pháp dạy học theo hướng PH GQVĐ để đề cao vai trò tính sẵn sàng học tập học sinh, phát triển tư tích cực, độc lập sáng tạo Luận văn hệ thống hóa quan điểm số nhà khoa học hoạt động học tập, tính tích cực hóa hoạt động học sinh dạy học PH GQVĐ Luận văn làm rõ phương pháp dạy học PH GQVĐ nhằm tích cực hóa hoạt động học tập học sinh Luận văn đề định hướng để xây dựng biện pháp sau biện pháp có ví dụ nhằm thể nội dung biện pháp Luận văn làm tài liệu tham khảo cho giáo viên Toán trường THPT Qua kết nhận định: Giả thuyết khoa học Luận văn chấp nhận được, đề tài khả thi, hiệu quả, mục đích nhiệm vụ nghiên cứu hồn thành 97 TÀI LIỆU THAM KHẢO [1] Nguyễn Vĩnh Cận, Lê Thống Nhất, Phan Thanh Quang (2004), Sai [2] lầm phổ biến giải toán, Nxb Giáo dục, Hà Nội Nguyễn Dương Chi (chủ biên), (2002), Từ điển tiếng Việt, Nxb Đồng [3] Nai Hoàng Chúng (1978), Phương pháp dạy học Toán học, Nxb Giáo dục, [4] Hà Nội Thái Thị Dung, Thiết kế huy động kiến thức trung gian hoạt động giải tập Lượng giác - Luận văn thạc sỹ năm 2006, ĐH [5] Vinh Hồ Ngọc Đại, Tâm lý học dạy học, Nxb Đại học quốc gia Hà Nội – [6] 2000 Trần Văn Hạo (Tổng chủ biên) - Vũ Tuấn (chủ biên)- Đào Ngọc Nam - Lê Văn Tiến - Vũ Viết Yên, Đại số giải tích 11, Nxb Giáo dục - [7] 2007 Trần Văn Hạo (Tổng chủ biên) - Vũ Tuấn (chủ biên)- Doãn Minh Cường - Đỗ Mạnh Hùng - Nguyễn Tiến Tài, Đại số 10, Nxb Giáo dục [8] - 2006 Phạm Văn Hoàn, Nguyễn Gia Cốc, Trần Thúc Trình (1981), Giáo dục [9] học mơn Tốn, Nxb Giáo dục, Hà Nội Trần Bá Hoành , Những đặc trưng phương pháp tích cực - Tạp [10] chí giáo dục tháng năm 2002 Trần Bá Hoành, “ Phương pháp tích cực”, Tạp chí thơng tin khoa học [11] giáo dục (3), trang 6, 7, năm 1996 Nguyễn Thị Mỹ Hằng, Thực hành dạy học giải vấn đề thông [12] qua dạy lượng giác 11 THPT - Luận văn thạc sỹ năm 2001, ĐH Vinh Trần Văn Hà, Vũ Văn Tảo, Dạy - Học giải vấn đề, hướng đổi công tác giáo dục, đào tạo, huấn luyện Trường CBQL [13] [14] GD ĐT - Hà Nội 1996 Nguyễn Bá Kim , Phương pháp dạy học mơn tốn, Nxb ĐHSP-2006 Nguyễn Bá Kim- Vũ Duy Thụy, Phương pháp dạy học mơn tốn - tập I- Nxb GD - 1992 98 [15] Nguyễn Lan Phương, Cải tiến phương pháp dạy học với yêu cầu tích cực hố hoạt động học tập học sinh theo hướng giúp học sinh phát giải vấn đề (qua phần giảng dạy “Quan hệ vuông góc khơng gian”lớp 11 Ban khoa học tự nhiên, trường trung [16] học chuyên ban), luận án tiến sỹ giáo dục - 1999 Nguyễn Cảnh Toàn (2003), Tập cho học sinh giỏi toán làm quen dần [17] với nghiên cứu toán học, Nxb Giáo dục Đào Văn Trung (2001), Làm để học Tốn phổ thơng, Nxb Đại [18] học Quốc Gia, Hà Nội Nguyễn Thượng Võ, 200 toán chọn lọc hệ thức lượng giác [19] tam giác, Hà Nội - 1989 I Aritstova Tính tích cực học tập học sinh, Nxb GD Moskva- [20] 1968 Bản dịch thư viện ĐHSP Hà Nội I V.A Cruchetxki (1980), Những sở tâm lý học sư phạm, Nxb [21] Giáo dục, Hà Nội V A Cruchetxki (1973), Tâm lý lực Toán học học sinh, Nxb [22] Giáo dục Hà Nội I FKharlamôp (1978), Phát huy tính tích cực học tập học sinh [23] nào? Tập I, Nxb GD Hà Nội I FKharlamơp (1978), Phát huy tính tích cực học tập học sinh [24] [25] [26] [27] [28] nào? Tập II,Nxb GD Hà Nội I Ia Lecne (1977), Dạy học nêu vấn đề, Nxb Giáo dục, Hà Nội J Piaget (1999), Tâm lý học giáo dục, Nxb Giáo dục, Hà Nội G Pơlia,(1977), Tốn học suy luận có lý, Nxb GD Hà Nội G Pơlia,(1977), Giải Tốn nào? Nxb GD Hà Nội Rubinstein 1960, Tư sáng tạo tình gợi vấn [29] đề Các chuyên đề chọn lọc bồi dưỡng học sinh khiếu Toán học hệ trung học phổ thông chuyên (tuyển tập báo cáo), Bộ Giáo dục [30] đào tạo, Hà nội - 2004 Tài liệu bồi dưỡng giáo viên thực chương trình SGK lớp 10 [31] THPT mơn tốn, Nxb Giáo dục (2005) Tài liệu bồi dưỡng thường xuyên giáo viên THPT chu kỳ (2004- 99 2007) ... dạy học Phát giải vấn đề nhằm tích cực hố hoạt động học sinh 1.1 Hoạt động 1.2 Hoạt động học tập 1.3 Tính tích cực hố hoạt động học sinh 1.3.1 Tính tích cực 1.3.2 Một vài đặc điểm tính tích cực. .. CÁC BIỆN PHÁP DẠY HỌC PHÁT HIỆN VÀ GIẢI QUYẾT VẤN ĐỀ NHẰM TÍCH CỰC HÓA HOẠT ĐỘNG CỦA HỌC SINH 1.1 Hoạt động Hoạt động khái niệm tâm lý học đại Một hoạt động nhằm vào đối tượng định Hai hoạt động. .. cho học sinh lực tự GQVĐ Vì lý trên, chúng tơi chọn đề tài nghiên cứu Luận văn là: Thực hành dạy học Phát giải vấn đề nhằm tích cực hố hoạt động học sinh thơng qua dạy học giải tập lượng giác