Đề thi thử vào lớp 10 môn Toán trường THCS Ngô Sĩ Liên Hoàn Kiếm Hà Nội, bám sát đề thi vào THPT hàng năm của Sở giáo dục và đào tạo Hà Nội. Đề đảm bảo các phần thi, các phần cơ bản của đề thi vào 10. Đề thi có tính phân loại cao. Khi làm đề thi sẽ phân loại được học lực của học sinh.
UBND QUẬN HỒN KIẾM TRƯỜNG THCS NGƠ SĨ LIÊN ĐỀ THI THỬ LẦN MƠN TỐN LỚP Năm học 2018 – 2019 Thời gian: 120 phút Bài I (2 điểm) Cho biểu thức: A= x +3 B = x −4 x + x + 12 + với x ≥ 0; x ≠ 16 x − 16 x +4 a) Tính giá trị biểu thức A x = 19 − b) Rút gọn biểu thức B tìm giá trị x để B ≤ c) Tìm m để phương trình: A = m + có nghiệm B Bài II (2 điểm) Giải toán sau cách lập phương trình hệ phương trình: Một đội cơng nhân theo kế hoạch phải trồng 75 haaecsta rừng số tuần lễ Do tuần trông vượt mức hécta so với kế hoạch nên trồng 80 hécta hoàn thành sớm tuần Hỏi theo kế hoạch tuần cơng nhân trồng hécta rừng Bài III (2 điểm) 3y + y −1 = x −3 1) Giải hệ phương trình −2 y + y − = x −3 2) Cho parabol (P): y = x đường thẳng (d) y = (m − 1) x + m (m tham số) a) Tìm m để (d) cắt (P) điểm có hồnh độ –2 b) Tìm m để (d) cắt (P) hai điểm phân biệt có hoành độ x1, x2 thỏa mãn x1 < < x2 Bài IV (3,5 điểm) Cho đường tròn tâm O bán kính R, đường kính AB Lấy C thuộc (O) cho AC > CB M điểm cung nhỏ AC Các đường thẳng AM BC cắt I, đoạn thẳng AC BM cắt K 1) Chứng minh tứ giác MICK nội tiếp · · 2) Chứng minh ABM = IBM ∆ABI cân 3) Đường thẳng BM cắt tiếp tuyến A (O) N Chứng minh NI tiếp tuyến đường tròn tâm B bán kính BA NI ⊥ MO 4) Cho dây cung AC = R Hãy tính theo R thể tích hình tạo thành cho ∆AMB quay quanh trục BM Bài V (0,5 điểm) Cho a; b số dương thỏa mãn a + 2b ≥ Tìm GTNN biểu thức: P = 2a + 3b + + a b - Hết - UBND QUẬN HOÀN KIẾM TRƯỜNG THCS NGÔ SĨ LIÊN ĐỀ THI THỬ LẦN MÔN TOÁN LỚP Năm học 2018 – 2019 Thời gian: 120 phút Bài I (2 điểm) Cho biểu thức: x + x +1 x +1 x +1 + − B = với x ≥ 0; x ≠ x x −1 x + x +1 x −1 x +1 a) Tính giá trị biểu thức A x = A= b) Rút gọn biểu thức B c) Tìm m để phương trình: A.B = m có nghiệm Bài II (2 điểm) Giải tốn sau cách lập phương trình hệ phương trình: Một công nhân dự định làm 120 sản phẩm thời gian Sau làm với suất dự kiến, người cải tiến thao tác hợp lý nên tang suất sản phẩm người hoàn thành kế hoạch sớm dự định 36 phút Tính suất dự kiến người Bài III (2 điểm) x −5 + 1) Giải hệ phương trình − x −5 =2 y −2 = −9 y −2 2) Cho parabol (P): y = x đường thẳng (d) y = mx + (m tham số) a) Chứng minh (d) cắt (P) hai điểm phân biệt A, B b) Gọi giao điểm đường thẳng (d) với trục tung G Gọi H K hình chiếu A B trục hồnh Tìm m để diện tích tam giác GHK Bài IV (3,5 điểm) Cho tam giác ABC (AB ≤ AC) nội tiếp đường tròn (O; R) Lấy điểm M thuộc cung BC không chứa điểm A Gọi H, I, K hình chiếu M AB, BC, AC 1) Chứng minh bốn điểm A, H, M, K thuộc đường tròn 2) Chứng minh AM.IM = CM.HM 3) Chứng minh H, I, K thẳng hàng 4) Gọi D điểm đối xứng với M qua AB, Q điểm đối xứng với M qua AC Chứng minh đường thẳng DQ qua trực tâm tam giác ABC Bài V (0,5 điểm) Giải phương trình: x + x + + x − = 3x + - Hết - UBND QUẬN HỒN KIẾM TRƯỜNG THCS NGƠ SĨ LIÊN ĐỀ THI THỬ LẦN MƠN TỐN LỚP Năm học 2018 – 2019 Thời gian: 120 phút Bài I (2 điểm) Cho biểu thức: x−4 5−4 x + − B = với x ≥ 0; x ≠ x −1 x −3 x + x − 1− x a) Tính giá trị biểu thức A x = 16 A= b) Rút gọn biểu thức B c) Tìm giá trị lớn m để bất phương trình A.B ≥ m với giá trị nguyên x thỏa mãn điều kiện để Bài II (2 điểm) Giải tốn sau cách lập phương trình hệ phương trình: Hai vòi nước chảy vào bể sau đầy bể Nếu chảy cho đầy bể vòi I cần nhiều thời gian vòi II Hỏi vòi chảy chảy đầy bể Bài III (2 điểm) 2 x − y − = 1) Giải hệ phương trình 3 x + = 12 y −1 2) Cho parabol (P): y = x đường thẳng (d) y = x − m + (m tham số) a) Tìm m để (d) tiếp xúc với (P) Khi tìm tọa độ tiếp điểm b) Gọi hoành độ giao điểm (d) (P) x1, x2 Tìm m để x1 = x2 Bài IV (3,5 điểm) Cho đường tròn (O) đường kính AB Ax, By hai tiếp tuyến (O) tiếp điểm A, B Lấy điểm M nửa đường tròn (M thuộc nửa mặt phẳng bờ AB chứa tia Ax, By), tiếp tuyến M (O) cắt Ax, By C D 1) Chứng minh tứ giác AOMC nội tiếp 2) Với BD = R , tính AM 3) Nối OC cắt AM E, OD cắt BM F, kẻ MN ⊥ AB (N ∈ AB) Chứng minh đường tròn ngoại tiếp tam giác NEF ln qua điểm cố định 4) Tìm vị trí điểm M nửa đường tròn để bán kính đường tròn ngoại tiếp tứ giác CFED nhỏ Bài V (0,5 điểm) Giải phương trình: x − 2016 − + x − 2016 y − 2017 − z − 2018 − + = y − 2017 z − 2018 - Hết - UBND QUẬN HỒN KIẾM TRƯỜNG THCS NGƠ SĨ LIÊN ĐỀ THI THỬ LẦN MƠN TỐN LỚP Năm học 2018 – 2019 Thời gian: 120 phút Bài I (2 điểm) Cho biểu thức: P= x −2 x +1 x − x − x +5 + + Q = với x ≥ 0; x ≠ 9− x 3− x x −3 x +3 a) Rút gọn biểu thức B b) Tìm x cho P = c) Đặt M = P : Q Tìm giá trị x để M < Bài II (2 điểm) Giải toán sau cách lập phương trình hệ phương trình: Hai vòi nước chảy vào bể cạn (khơng có nước) 12 phút đầy bể Nếu mở vòi thứ chảy 30 phút vòi thứ hai chảy bể Hỏi vòi chảy sau đầy bể? 12 Bài III (2 điểm) 21 2x − y − x + y = 1) Giải hệ phương trình 7−x− y + =1 x + y x − y 2) Cho hai hàm số: y = x − y = − x + a) Tìm tọa độ giao điểm M đồ thị hai hàm số b) Gọi N, P giao điểm hai đồ thị với trục tung Tính diện tích tam giác MNP Bài IV (3,5 điểm) Cho đường tròn (O; R), đường kính AB Điểm H thuộc đoạn OB, H khác O B Dây CD vng góc với AB H Đường thẳng d tiếp xúc với đường tròn A Nối CO DO cắt đường thẳng d M N Các đường thẳng CM DN cắt đường tròn (O) E F (E ≠ C, F ≠ D) 1) Chứng minh MNFE tứ giác nội tiếp 2) Chứng minh ME.MC = NF.ND 3) Tìm vị trí H để AEOF hình thoi 4) Lấy K đối xứng với C qua A Gọi G trọng tâm tam giác KAB Chứng minh H chuyển động đoạn OB G thuộc đường tròn cố định Bài V (0,5 điểm) Cho a, b ≥ 0, a2 + b2 = Tìm giá trị lớn biểu thức: M = a 9b(4a + 5b) + b 9a(4b + 5a) - Hết - UBND QUẬN HOÀN KIẾM TRƯỜNG THCS NGÔ SĨ LIÊN ĐỀ THI THỬ LẦN MÔN TOÁN LỚP Năm học 2018 – 2019 Thời gian: 120 phút Bài I (2 điểm) Cho biểu thức: A= x x− x + B = với x ≥ 0; x ≠ x +1 x −1 x +1 a) Tính giá trị B x = b) Rút gọn biểu thức M = A.B c) Tìm giá trị K để phương trình M = k có nghiệm Bài II (2 điểm) Giải tốn sau cách lập phương trình hệ phương trình: Hai vòi nước chảy vào bể khơng có nước sau đầy bể Nếu để vòi chảy 20 phút, khóa lại mở tiếp vòi chảy 30 phút vòi chảy bể Tính thời gian vòi chảy đầy bể Bài III (2 điểm) x+3 − 1) Giải hệ phương trình + x+3 =9 y −1 =6 y −1 2) Cho đường thẳng (d) y = mx − m + parabol (P) y = x a) Chứng minh m thay đổi (d) ln qua điểm cố định b) Tìm m để (d) cắt (P) hai điểm phân biệt nằm phía trục tung Bài IV (3,5 điểm) Cho tam giác ABC nội tiếp đường tròn (O; R) Kẻ đường kính AD cắt BC H Gọi M điểm cung nhỏ AC Hạ BK ⊥ AM K Đường kính BK cắt CM E 1) Chứng minh bốn điểm A, B, H, K thuộc đường tròn 2) Chứng minh tam giác MBE cân M 3) Tia BE cắt đường tròn (O; R) N (N ≠ B) Tính độ dài cung nhỏ MN theo R 4) Tìm vị trí M để tam giác BME có chu vi lớn Bài V (0,5 điểm) Giải hệ phương trình: 2 y + xy = x 2 1 + x y = x - Hết - UBND QUẬN HỒN KIẾM TRƯỜNG THCS NGƠ SĨ LIÊN ĐỀ THI THỬ LẦN MƠN TỐN LỚP Năm học 2018 – 2019 Thời gian: 120 phút Bài I (2 điểm) Cho biểu thức: A= 1 x x +3 + − B = với x ≥ 0; x ≠ x −2 x +2 4− x 2− x a) Rút gọn biểu thức A b) Cho A = 3, tính giá trị biểu thức B 2A c) Tìm giá trị x để: A ( x − ) + x = x + + x + 16 + − x Bài II (2 điểm) Giải toán sau cách lập phương trình hệ phương trình: Một đội xe dự định dung số xe loại để chở hết 60 hàng Lúc khởi hành có xe phải điều làm việc khác xe lại phải chở nhiều dự định hàng Tính số xe lúc đầu đội (biết lượng hàng xe phải chở nhau) Bài III (2 điểm) x+ y + y−4 = 1) Giải hệ phương trình − y − = −5 x+ y 2) Cho hai đường thẳng d1: y = x − d2: y = mx − 2m − a) Tìm tìm m để d1 d2 song song với b) Với giá trị m tìm được: - Vẽ d1 d2 mặt phẳng tọa độ - Gọi A, B giao điểm đường thẳng d1 với Oy, Ox; C, D giao điểm đường thẳng d2 với Ox, Oy Tính diện tích tứ giác ABCD Bài IV (3,5 điểm) Cho tam giác ABC nội tiếp đường tròn (O; R) Điểm M thuộc cung nhỏ AC Hạ BK vng góc với AM K Đường thẳng BK cắt CM E Nối BE cắt đường tròn (O) N 1) Chứng minh rằng: Tam giác ABE cân M 2) Chứng minh rằng: EM.EB = EM.EC 3) Cho BM = 10cm, tính thể tích hình cầu có bán kính MK 4) Tìm vị trí điểm M để tam giác MBE có chu vi lớn Bài V (0,5 điểm) Với x > 1; y > tìm giá trị nhỏ biểu thức: x2 y2 P= + y −1 x −1 - Hết - UBND QUẬN HỒN KIẾM TRƯỜNG THCS NGƠ SĨ LIÊN ĐỀ THI THỬ LẦN MƠN TỐN LỚP Năm học 2018 – 2019 Thời gian: 120 phút Bài I (2 điểm) 1) Tính giá trị biểu thức A = x +1 x = x −1 x +1 x−2 + với x > 0; x ≠ ÷ x + x −1 x+2 x 2) Cho biểu thức P = a) Chứng minh P = x +1 x b) Tìm giá trị x để: 2P = x + Bài II (2 điểm) Giải toán sau cách lập phương trình hệ phương trình: Một tổ sản xuất phải làm 600 sản phẩm thời gian quy định với suất quy định Sau làm xong 400 sản phẩm tổ sản xuất tang suất lao động ngày làm tăng thêm 10 sản phẩm so với quy định Vì mà cơng việc hồn thành sớm quy định ngày Tính xem, theo quy định, ngày tổ sản xuất phải làm sản phẩm Bài III (2 điểm) x+3 2y + =8 x y−2 1) Giải hệ phương trình 2 x + + y = 13 x y−2 2) Cho phương trình ẩn x: x − (m − 1) x − m − = a) Chứng tỏ phương trình ln có hai nghiệm trái dấu với m b) Tìm m để phương trình có nghiệm phân biệt x1, x2 thỏa mãn x1 + x2 = 2 Bài IV (3,5 điểm) Cho đường tròn (O; R) có đường kính AB cố định Vẽ đường kính MN đường tròn (O; R) (M khác A, M khác B) Tiếp tuyến đường tròn (O; R) B cắt đường thẳng AM, AN điểm Q, P 1) Chứng minh rằng: Tứ giác AMBN hình chữ nhật 2) Chứng minh bốn điểm M, N, P, Q thuộc đường tròn 3) Gọi E trung điểm BQ Đường thẳng vuông góc với OE O cắt PQ điểm F Chứng minh F trung điểm BP ME // NF 4) Khi đường kính MN quay quanh tâm O thỏa mãn điều kiện đề bài, xác định vị trí đường kính MN để tứ giác MNPQ có diện tích nhỏ Bài V (0,5 điểm) Với a, b, c số dương thỏa mãn điều kiện a + b + c = Tìm giá trị lớn biểu thức: Q = 2a + bc + 2b + ca + 2c + ab - Hết - UBND QUẬN HỒN KIẾM TRƯỜNG THCS NGƠ SĨ LIÊN ĐỀ THI THỬ LẦN MƠN TỐN LỚP Năm học 2018 – 2019 Thời gian: 120 phút Bài I (2 điểm) Cho biểu thức: P= x − Q = với x > 0; x ≠ x−3 x x −9 x +3 a) Tính giá trị Q x = 121 b) Rút gọn P Q x +1 P c) Tìm giá trị x để: A = = d) So sánh A A2 Bài II (2 điểm) Giải toán sau cách lập phương trình hệ phương trình: Một ơtơ từ A đến B với vận tốc thời gian quy định Nếu tang vận tốc thêm 10km/h đến B sớm quy định Nếu giảm vận tốc 10km/h đến B chậm Tính quãng đường AB Bài III (2 điểm) x −1 − 1) Giải hệ phương trình + x −1 = −2 y −4 =3 y −4 x + my = m + (1) mx + y = 3m − (2) 2) Cho hệ phương trình: a) Giải hệ phương trình m = b) Tìm m để hệ phương trình có nghiệm cho tích x.y có giá trị nhỏ Bài IV (3,5 điểm) Cho đường tròn (O; R) với dây cung BC cố định (BC không qua O) Gọi A điểm cung nhỏ BC Điểm E thuộc cung lớn BC Nối AE cắt BC D Hạ CH ⊥ AE H; CH cắt BE M Gọi I trung điểm BC 1) Chứng minh bốn điểm A, I, H, C thuộc đường tròn 2) Chứng minh E chuyển động cung lớn BC tích AD.AE khơng đổi 3) Chứng minh đường tròn ngoại tiếp tam giác BED tiếp xúc với AB 4) Tìm vị trí E để diện tích tam giác MAC lớn Bài V (0,5 điểm) Tìm x cho: −x + x −1 + x + = - Hết - ... z − 2018 − + = y − 2017 z − 2018 - Hết - UBND QUẬN HOÀN KIẾM TRƯỜNG THCS NGÔ SĨ LIÊN ĐỀ THI THỬ LẦN MƠN TỐN LỚP Năm học 2018 – 2019 Thời gian: 120 phút Bài I (2 điểm) Cho biểu... y + xy = x 2 1 + x y = x - Hết - UBND QUẬN HOÀN KIẾM TRƯỜNG THCS NGÔ SĨ LIÊN ĐỀ THI THỬ LẦN MƠN TỐN LỚP Năm học 2018 – 2019 Thời gian: 120 phút Bài I (2 điểm) Cho biểu...UBND QUẬN HỒN KIẾM TRƯỜNG THCS NGƠ SĨ LIÊN ĐỀ THI THỬ LẦN MƠN TỐN LỚP Năm học 2018 – 2019 Thời gian: 120 phút Bài I (2 điểm) Cho biểu